Gretl Command Reference

Gnu Regression, Econometrics and Time-series Library

Allin Cottrell
Department of Economics
Wake Forest University

Riccardo “Jack” Lucchetti
Dipartimento di Economia
Universita Politecnica delle Marche

May, 2019

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see http://www.gnu.org/licenses/fd1.html).

http://www.gnu.org/licenses/fdl.html

1

Contents

Gretl commands 1
1.1 IntroducCtion o e e e e e e e e e 1
1.2 Commands o o i e e e e e e e e e e e 1

add .. e e 1
adf . L e e 2
) 10) 4
APPENA . . . e e e e e e e e e e e e 4
) 5
) 5
arbond e e e 6
arch . . e 7
ATIMA o o e e e e e e e e e e e e e e e e e e e 7
U 00 = 9
biprobit e e e e e e e e 9
DKW L e e e e 9
boXPIOT . . . o e e e 10
break e e e 10
catCh . . . e 10
Chow .« . e e 11
Clear . . . e e e e 11
coeffsum 11
COINT . . . o o e e e e e e e e e e e e e e 12
COIMEZ . . o o e e e e e e e e e e e e e e e e 13
[0) 14
[0) 3 2 14
L5] 1 0 0 15
data . . . e e e e e 15
dataset e e e e 16
debug e e e e 18
delete e e e 18
diff . . e e 18
difftest e e e 19
diSCrete e e e e e e e e e 19

Contents i

dpanel e e e e e e e e e 20
dummify e e e e 21
duration o e e e e e e 21
elif L e 22
elSe L e e e e e e 22
eNd . . . L e e e 22
endif . . . e e e e e 22
endloop e e e e e e e e 22
CONPIINT e e e e e e e e e e e 22
CQUATION e e e e e e e e e e e e e e e 23
eSTIMATE o e e e e e e e e e e e e e 23
eval L e e e e e 24
fCast . . . e e e e 24
flush . . . o e 25
foreign e e e e e e e 26
fractint e e e e 26
req . . e e e e e 27
funcerr . . . o e 28
function. e e e e e e 28
BArCh . . L e e 28
£ 1 29
SIMITL . & v v v v e 30
SNUPIOT o e e e e e e e e 32
BTAPNDE . . . L e e e e 35
hausman e 36
heckit . . . o e e e e e e e 36
help . . . e e 37
hfplot . . . e e e e e e e 37
WSk . . e 37
hurst . . e e e 38
) 38
include e 39
INEO . L e e e e e 39
INTERE . . . o o o e e e o e e e e e e e e e e e e e 39
JOIN L e e e e e e e e 40
KDSS . e e e e e e 40
labels e e e e 41
lad . . . e e e e e 42

Contents iii

Idiff . o e 43
leverage e e e e e e 43
levinlin e e e e e 44
logisStic . . . e e e e e e e e e e 44
Logit . . . e e e e e e e e e 45
L0gS . e e e e 46
100 o 46
mahal e 46
makepKg e e e e e e 47
markers e e e e 47
MEANTEST o e et e 48
MIdasTeg o e e e e e e e e e 48
MU . . L e e e e 49
modeltab e e e 51
MOdPTINt e e e e e e e e e e e e 51
MOATeST . . o o e e e e e e e e e e e 52
MPOLS . . o e e e e e e e 53
NeghIN e e e e e e e e e e e e 53
NS o o e e e e e e e e e e 54
NOTMTEST o o s e e e e e e e e e e e e e e e e e e 55
nulldata e e e 55
018 . o e 56
10101 57
10 6.1 6 L 57
orthdev e e 59
outfile L e e 59
Panel ..o e e e e e e 61
PaAnPIOt . . . e e e e e e e e e e e e 62
PCa . . o e 62
1S3 4 0 63
PRE . . o e e e e e 63
PlOt e e e e e e 64
POISSON . & . . e 65
PIING . . . o e e e e e e e e e e e e 66
PrintE . . L e e e e e e e 67
PrObit . . . L e e e e e e e e 68
PValue . . . e e e e e e 69
0] 70

Contents iv

1.3

QUANTTEEZ . . o o ot e 71
QUIT . o e e e e e e e e e e e e e e e e 71
TENAITIC . . o vt v it e 71
] 72
TESTEICT . . . o e 72
TMPIOT . . o o e e e e e e e e 74
0 74
TUIS & ot o v v v i e e et e 75
SCALRTS . . . o ot e e e e e e e e e e e e e e e e e e 75
SAIff . . . e e 75
T 76
SetiN O e e e e e e e e 80
SEUMISS o o e e e e e e e e e e e e e e e e e 81
SEIODS . . e e e e e 81
Y1 (0 0 83
Shell . . o e e e 83
SIPL . . o e e e 84
SPEATINIALL « « « v v v v e 85
SPIINtE . . L e e e e 86
SQUATE . . ot ot v e 86
STOTE . . o o o e e e e e e e e e e e e e e e e e e 86
SUIMIMATY « « v v v v v e e e e e e et e 87
SYSTRITL . . . o o ot e 88
ADPTING . . . o e e e e e 89
TeXIPIOt . . o o e e e e e e e e e 90
170) 90
SIS . o e e e 91
742 S 92
varlist . . . e e e 93
VA RSt . & . . e 93
724 6 0 93
VI e e 94
WIS L e e e e e 95
(&0 8 14 0 0 95
XEAD . L e e e e 96
Commands by tOpiC i e e e e e e e e e 97
Estimation e e e e e e e e e e e 97
0 97

Transformations e e e e e e e e e e e e e e e 98

Contents v
STAtISTICS . . . o e o e e e e e e e e e e e e 98
Dataset e e e e e e e e e 98
Graphs . . . e e e e e 98
Printing o e e e e e e e e e e 98
Prediction e e e e e e e 98
Programming e e e e e e e 99
Utilities o e e e e e e e e e e 99

1.4 Short-form command options e e e e 99

2 Gretl functions 100

2.1 Introduction e e e e e e e e e 100
2.2 ACCESSOTS . . v i i i e e e e e e e e e e e e e e e e e e e 100
Sahat e e 100
SaiC .. e 100
Sbic . e e 100
SChisq e e 100
Scoeff . .. e 100
Scommand L e e e e e 101
Scompan e e e 101
Sdatatype e e e e e e e 101
Sdepvar e e e e e 101
AL . . e 101
Sdiagpval e e 101
Sdiagtest e 101
AW L e 102
SAwpval . . . L e e e 102
] 102
S o 0 102
$eSS e e e 102
Sevals . .. e e 102
Sfcast . . L e e 103
SECSe . e 103
Sfevd .. e e e e 103
S At . . . e e e e e e 103
SEMMCTIt o e 103
) 103
Shausman e 103
Shqge . . . e e 104

Contents

vi
Sjalpha 104
Sibeta . .. e e e e 104
SJVbeta . .. e 104
Slang . .. e e 105
R 105
SInl .. e 105
Smacheps e 105
Smnlprobs e e e e e 105
Smodel e e e e 105
Sncoeff . .. e 106
SNObS . . e 106
SOW . . L e 106
VATS e e e 106
Sobsdate e e 106
SObSMAJOr e e 106
$obsmICro e e e e e 107
SObSIMINOT e 107
$parnames e e e e e e e e e 107
DA . e 107
S DL v e e 107
Spvalue e 108
$Salrbreak e e e e 108
Sresult . .. e e e 108
STho . . . e e 108
3 o 108
Ssample e 108
Ssargan e e e 109
$Sigma . .. L e 109
SStderT e e 109
Sstopwatch e e e e 109
Sy S A L L e e e e 109
BSYSB . . e e e 109
$SYSGAMIMA o e e e e e e e e e e e e e e 110
SSySINfO e 110
T 743 () '+ 110
0 111
1 111
] 111

Contents

2.3

vii
SUMAX . . . e e e 111
IS . . o i e e e e 111
Suhat e 111
SUNit. . . e 112
VOV o e 112
$vecGamma e e e e e e e e e e 112
SVeTSION e e 112
SVIMa . . e e 112
SWINAOWS e e e e e e e e 112
SISt . . e e e e 113
XEXINIV . . . o o e e e e e 113
Syhat . .. e 113
74 113
Functions proper o o i e e e e e e e e e 113
ADS L L e e e 113
ACOS o v v e 113
ACOSh . . e e e 113
AGETEZALE e 114
081 < 10 (< 115
U 115
ASIN . . e e e e e e e e e 115
asinh . .. e e 115
ATAIL . . . L L e e e e e e e e e e e e e e 116
ALANZ e e e e e e e e e e e e e e e e e 116
atanh . .. e e 116
0) 116
bessel . .. e e 117
BEGSMAX ot e e e e e e e e 117
BEGSMIN e e 117
BEGSCmax e e e e e e e 117
BEGScmin o e e e e 118
bKALt. . . e e 118
DKW L o e e e e e 119
DOXCOX . . o o e e e 119
bread e e e 119
brename e e e e e 120
bWt . . e e e 120
DWIIte . . . o e e e e 120

Contents

viii
Cdf L e e e 121
CAIV . o e e e e e e 122
cdummify e e e e e e e e 122
Ceil . o e e 123
cholesky e e e e e e 123
chowlin e e e 123
CIMUIT . . e e e e e e 123
10 070 0 123
CUMDbDET . . . o e e e e e e e e e e e e 124
1 1= 10 T T 124
CNAMESOT . & o o o e e i e e i e 124
OIS o e e e e e e e 125
CONV2d . o e e e e e 125
10 5 125
[0) 3 2 125
COS o v v e 125
COSN o . e e e 126
COV o o e 126
critical e e e e e e e e e e e 126
CUIML . 4t vt e 126
CUTL L e e e 127
dayspan e e e e e e e e e e e 128
defarray e e e 128
defbundle e e 128
deflist e e e 129
AeSeaS . . . v i e e e e e e e e e e e 129
det . o e e e e e 129
Aiag . . o e e e e e 129
diagrat o e e e e e e e e e e e e e 129
diff . . e e e 130
digamma e e e e e e 130
ANOTIM e e e e 130
dropcoll e e e e e e e e 130
ASOTT. . o e e e e e e 131
dummify e e e e e e 131
CASTEIdAY e e e e e e e e e e e e e e e e e 131
S) 132
CIZENZCIN e e e e e e e e e e e e e e e e e 132

CIZENSYIM e 132

Contents ix

eIgSOIVe . . L e e e e e e e e 133
epochday e e e e e e 133
EITIMSE .« v v v e et e 133
10] 134
CXD + vt e 134
0 7 L 134
fdjac . . . o e e 134
feval . . . o e 135
fevd . . e e e 136
5 136
0 136
flter . . . e e e e 137
irStobS . . . o e e e e 138
fixname e e 138
flatten o e e e 138
00 139
fracdiff e e e 139
fZer0 . . . e e e 139
gammafun e e e e e e 140
BENSETICS i e e e e e e e e e e e e e e e e e e e 140
BELRIIV e e e e e e e e e e e e e e 140
getinfo e e e e e e 141
BeTKeYS . . e e e e 141
getline L e e e e e e 141
GhK . e e e e e e 142
GINi. . . . e e e e e e e e 143
BV L L L e e e e e e e e 143
GSSIMAX . & v v o e e e e e e e e 143
GSSMIN e e e e e e e 144
halton e e e e e e 144
hdprod e e e e 144
hidiff . . . e 145
hildiff e e e e 145
hilags . . . o e e e e 145
0 146
hpfilt . . . e 146
hyp2fl . e e e e 146
146

Contents X

IMAXT . . o o e e e e e e e e e e e e e e e e e 147
IMhof . . . e e e 147
IMINC e e e e e e e e e e e e 147
IMINT . . L e e e e e e e e e e e 147
inbundle e e e e e 147
INFNOTIM e e e e e e e 148
ISt . . . e e e e e 148
INSIIING . . . o o e e e e e e e e e e e e e e e e e e 148
U . L e e e e e e e e e e e e e 149
IV L L e e e e e e e e e e e e e e e 149
Invedl . . . e e 149
Ivmills . . . e e e e e e e 150
INVPA . . . e e e e e 150
1 150
0 151
ISCOMST . . o e e e e e e e e e e e e e e e e e e 151
ISdiSCrete e e e e e e 151
ISAUMIMY e e e e e e e 151
ISNAN e 151
ISOCONV . . o o o e e e e e e e e e e e e e e 151
S0 1010 10 16 o/ 152
Isodate e e e 153
ISOWeEEK . . o e e e e 153
IWIShart e e e e e 153
JSOME et . . e e e e e e e e e e e e e 153
JSONgeth . . L e e e e e e e e e e 154
Juldate e e e e e 155
kdensity e e e e e e e 155
kdsmooth e 155
KElter . . . e e e 156
kmeier e e e e e 156
RPSSCTIt . . . o o e e e e e e e e e 156
KSetUD . . . o e e e e e e e 156
ksimul e e e 157
ksmooth e e 157
KUItOSIS o e e 157
lagS . e e e e e e 157
lastobs e e e e e 158

Contents

Xi
Idiff . o e 158
Lncomb L e e e e e 158
linearize e e e e 159
JungboxX e e e e e e 159
Ingamma e e e e e e e e e e 159
l0eSS . . o e e e e 159
L0g . o e e e e 160
Log10 . . e e e e e e e e 160
L0g2 o e e e e e e 160
JogiStiC . . . o e e e e 160
LOWeT . . e e e e e 160
a0 160
Irvar . . . e e 161
LSOIve . . o e e e 161
00 0= 161
0 2 162
08 12« 162
00 (a0 162
INCOV & o ottt e 162
INCOVE « o o o e 162
8 (TS U 0 164
10 LCE2 1 164
TNCANT . & & e e it e 164
median e e e e e e e 164
INEXD & v o o e 164
mgradient e e e e e e e e e e 164
0 100 165
8 100 L 165
001101 165
MUSSING . & . . o e e et e 165
TSSZEOTO .+ v i v o o e 165
MIAg o e e e e e e e e e e e e e 165
mlincomb e e e e e e e e 166
mnormal e e e e e e e e 166
OIS . . . e e e e e 166
monthlen e 167
INOVAVE © & o o o e 167
MPOLS . o o e e e e e e e 167

Contents Xii

MEead v e e e e e e e e e 168
TIFEVETSE & & v i i i i i e 169
LS . o o e e e e e e e e e 169
MShaPe e e e e e e e e 169
MSOTTDY . . o e e e e e e e e e e 169
msplitby e e e 170
muniform e e e e e 170
MWeIgNTS L e e e e e e e e e e 170
IMWIITE . . . o e 171
MXEAD . . . e e e e e e 171
naalen e e e e e 172
NAdArwal o e e e e e e e e e e e e e 172
Nelem e e e e e e e 173
NZETEIIV o i i i e e e e e e e e e e e e e e e e e 173
NHNES . . . e e e e 173
NMIMAX . & o o e 173
NMMIN . . . o e e e e e e e e e e e 174
NODS . L e e e 174
normal e e e e e e e e e 174
NOTMTEST o o s e e e e e e e e e e e e e e e e e e 174
10160 o 175
010 1 175
NRMaX . . . e e e e e e e e e 175
NRMIN e e e e e 176
nullsSpace e e e e e e e e 176
NUMNESS L e e e e e e e e e e 177
0D L o e e e e e 177
obslabel e e 177
ODSIUIM o e e e e 177
OK o e e e e e 178
107 0 1S3 8 10 1 0 4 L 178
1) 0 LT 178
orthdev e e e e e e 178
PAf . e e e e e 179
1 3 0 179
pPexpand e e e e e e e e 179
PINAX . o o e 179
8 0 1S 10 180

Contents

xiii
PNODS . . L e e e e e e 180
POITOOTS . . o . v o e e e e e e e e e 180
90 17 i L 181
9 410 a0)21 o 181
PIrOAC . . o e e e e e e e e e e e e e 181
Prodr .. e e e e e 181
PSA . o e e e e e e e e e 181
PSATOOt e e e e e e e e e 182
PShrink e e e e e e 182
PSUIL . . . o e 182
PValUe e e e e e e e e 183
PXNODS . . o e e e e e e e e e 183
€] 518 0 183
gform . . . e e e e e e e e 184
alrpval .. e e e e e e e e e 184
(0)0) 00 0 184
Ardecomp e e e e e 184
quadtable e e e e e e 185
quantile e e e e e e e e e 185
TANAZEN . . . o v i e e e e e e e e e e e e e e e e e e 186
randgenl e e e e 187
randint e e e e 187
TANK . .. e e e e e e e e 187
ranking e e e e e 187
TCONA . . o e e e e e e e e 187
readfile e e e 188
TeESUD . . . o e e e e e e e 188
1S3 116 10 188
e PlaCE . . . e e e e e e e e e 189
TeSAMPle L e e e e e e 189
TOUNA e e e e e 190
0 b2 0 L . 190
010 0 1] 190
TOWS & o ot e 191
o 191
SAC . o e e e e 191
6 1 191
SEASONAlS « . . v i e e e e e e e 191

Contents Xiv

SelfT . o . e e 192
SCU « v v v e 192
SEINOTE e e e e e e e e e e e e e e 193
SIMANDN o e e e e e e e e e e e e e e e e e e 193
SII . o L e e e e e e e e e e e e e e e 193
SINh . . e e e 193
SKEWNESS .« . . o e e e e 193
3 1) o 194
SIMPISPAN .« . o o v i e e e e e e e e e e e e e e 194
SOTT . o o o e e e e e e e e e e e e e e 194
SOItDY . . v o e e e e e e e e e e e 195
10 1 L 195
3]) 195
SQUATEC & o v v e e v e 196
SSCanf . . oL e e 196
L7 197
Strftime e e e 197
SNGifY o e e e e e e 198
0 1 198
SITNCIMP . . . o o et e 198
SITPUIME et e 198
ISPt . . e e e e e e e e e e e e e 199
SUTSIT . . . o o e e e e e e e e e e e e e e e e e 199
SIPSTIID e 200
SIISUD . . . o e e e e 200
SIIVALS e e e e e e e e e e 200
SUDSIT . . . o o e e e e e e e e e 200
5150 0 201
sumall e e e 201
SUITIC .« 4 v v v v v e e e e e e e e et e 201
SUITIT . . bt v v v v e e e e e e e et e 202
SVA L L e e 202
SVITL o ot i i e 202
TAN . . . e e e e e e e e e e e 202
anh . . e e e 203
T0EPSOIV . . o e e e e e e e e e e 203
TOlOWeT . . . e e e e e e e e e e 203
TOUPDPEOT . . . o o e e e e e e e e e e e e e e 203

Contents XV

ITANISD .« . v ot e o e 204

L8 0110 0 204
TYPEOL . o o e e e e 204

1710 1<~ 1 204
UNIfOTIM e e e e e e e 205

L8181 205
unvech . .. L e e 205
1010 01 <) 205
UrCpVal . . o e e e e e 205
ValluesS . . . e e e e e e 206

2 1 206
VAITIAITIC & & & vt v v v v v e 206
VAITIAITIES & & & & v v v v v v v e 206
7421 8 0 10 0 207
varsimul e e e e 207

VEC & o ittt e 207

VECh . L e e e e e 207
weekday e e e e e e e e e 207
L0728 LT 1 0 208

WSA o e e e e e 208

WVAT & o o o e 208
41 1< G 208

D4 8 11 0 209
XMLt . . o e e e e e e e 209
ZETOMISS & o o o v i e e i e 209
ZRTOS v i v e 209

3 Operators 210
3.1 Precedence e e e e e e e 210
3.2 ASSIgNMENT e e e e e e e e e e e e e e e e e e e 211
3.3 Increment and decrement. v ittt e e e e 212
4 Comments in scripts 213
5 Options, arguments and path-searching 215
5.1 Invoking gretl e e e e e 215
5.2 Preferences dialog e 215
5.3 Invoking gretlcli. L e 216
5.4 Pathsearching i e e e 216

MS WINAOWS . . . o o e e e e e e e e e e e e e e e e e e 217

Contents XVi
6 Reserved Words 218

Bibliography 220

Chapter 1

Gretl commands

1.1 Introduction

The commands defined below may be executed interactively in the command-line client program
or in the console window of the GUI program. They may also be placed in a “script” or batch file
for non-interactive execution.

The following notational conventions are used below:

e A typewriter font is used for material that you would type directly, and also for internal
names of variables.

e Terms in a slanted font are place-holders: you should substitute some specific replacement.
For example, you might type income in place of the generic xvar.

e The construction [arg] means that the argument arg is optional: you may supply it or not
(but in any case don’t type the brackets).

e The phrase “estimation command” means a command that generates estimates for a given
model, for example ols, ar or wls.

In general, each line of a command script should contain one and only one complete gretl command.
There are, however, two means of continuing a long command from one line of input to another.
First, if the last non-space character on a line is a backslash, this is taken as an indication that the
command is continued on the following line. In addition, if the comma is a valid character in a
given command (for instance, as a separator between function arguments, or as punctuation in the
command printf) then a trailing comma also indicates continuation. To emphasize the point: a
backslash may be inserted “arbitrarily” to indicate continuation, but a comma works in this capacity
only if it is syntactically valid as part of the command.

1.2 Commands

add
Argument: varlist
Options: --Tm (do an LM test, OLS only)

--quiet (print only the basic test result)
--silent (don’t print anything)
--vcvV (print covariance matrix for augmented model)
--both (IV estimation only, see below)
Examples: add 5 7 9
add xx yy zz --quiet
Must be invoked after an estimation command. Performs a joint test for the addition of the speci-

fied variables to the last model, the results of which may be retrieved using the accessors $test and
$pvalue.

Chapter 1. Gretl commands 2

By default an augmented version of the original model is estimated, including the variables in
varlist. The test is a Wald test on the augmented model, which replaces the original as the “current
model” for the purposes of, for example, retrieving the residuals as $uhat or doing further tests.

Alternatively, given the --1m option (available only for the models estimated via OLS), an LM test is
performed. An auxiliary regression is run in which the dependent variable is the residual from the
last model and the independent variables are those from the last model plus varlist. Under the null
hypothesis that the added variables have no additional explanatory power, the sample size times
the unadjusted R-squared from this regression is distributed as chi-square with degrees of freedom
equal to the number of added regressors. In this case the original model is not replaced.

The --both option is specific to two-stage least squares: it specifies that the new variables should
be added both to the list of regressors and the list of instruments, the default in this case being to
add to the regressors only.

Menu path: Model window, /Tests/Add variables

adf
Arguments: order varlist
Options: --nc (test without a constant)

--c (with constant only)
--ct (with constant and trend)
--ctt (with constant, trend and trend squared)
--seasonals (include seasonal dummy variables)
--g1s (de-mean or de-trend using GLS)
--verbose (print regression results)
--quiet (suppress printing of results)
--difference (use first difference of variable)
--test-down[=criterion] (automatic lag order)
--perron-qu (see below)

Examples: adf 0 y
adf 2 y --nc --c --ct
adf 12 y --c --test-down
See also jgm-1996.1inp

The options shown above and the discussion which follows pertain to the use of the adf command
with regular time series data. For use of this command with panel data please see below.

Computes a set of Dickey-Fuller tests on each of the listed variables, the null hypothesis being that
the variable in question has a unit root. (But if the --difference flag is given, the first difference
of the variable is taken prior to testing, and the discussion below must be taken as referring to the
transformed variable.)

By default, two variants of the test are shown: one based on a regression containing a constant and
one using a constant and linear trend. You can control the variants that are presented by specifying
one or more of the option flags.

The --g1s option can be used in conjunction with one or other of the flags --c and --ct (the model
with constant, or model with constant and trend). The effect of this option is that the de-meaning
or de-trending of the variable to be tested is done using the GLS procedure suggested by Elliott
et al. (1996), which gives a test of greater power than the standard Dickey-Fuller approach. This
option is not compatible with --nc, --ctt or --seasonals.

In all cases the dependent variable is the first difference of the specified variable, y, and the key
independent variable is the first lag of y. The model is constructed so that the coefficient on lagged

Chapter 1. Gretl commands 3

v equals the root in question minus 1. For example, the model with a constant may be written as
(I-L)yt=PBo+ (x—1)yt-1 + €

Under the null hypothesis of a unit root the coefficient on lagged v equals zero; under the alterna-
tive that y is stationary this coefficient is negative.

Selecting the lag order

If the order argument (henceforth, k) is greater than 0, then k lags of the dependent variable are
included on the right-hand side of the test regressions. If the order is given as —1, k is set following
the recommendation of Schwert (1989), namely the integer part of 12(T/100)%-2>, where T is the
sample size. In either case, however, if the --test-down option is given then k is taken as the
maximum lag and the actual lag order used is obtained by testing down. The criterion for testing
down can be selected using the option parameter, which should be one of AIC, BIC or tstat; AIC
is the default.

When testing down via AIC or BIC is called for, the final lag order for the ADF equation is that which
optimizes the chosen information criterion (Akaike or Schwarz Bayesian). The exact procedure
depends on whether or not the --g1s option is given: when GLS detrending is specified, AIC and
BIC are the “modified” versions described in Ng and Perron (2001), otherwise they are the standard
versions. In the GLS case a refinement is available: if the additional option --perron-qu is given,
the modified information criteria are computed according to the revised method recommended by
Perron and Qu (2007).

When testing down via the t-statistic method is called for, the procedure is as follows:

1. Estimate the Dickey-Fuller regression with k lags of the dependent variable.

2. Is the last lag significant? If so, execute the test with lag order k. Otherwise, let k =k — 1;if k
equals 0, execute the test with lag order 0, else go to step 1.

In the context of step 2 above, “significant” means that the t-statistic for the last lag has an asymp-
totic two-sided p-value, against the normal distribution, of 0.10 or less.

P-values for the Dickey-Fuller tests are based on MacKinnon (1996). The relevant code is included
by kind permission of the author. In the case of the test with linear trend using GLS these P-values
are not applicable; critical values from Table 1 in Elliott et al. (1996) are shown instead.

Panel data

When the adf command is used with panel data, to produce a panel unit root test, the applicable
options and the results shown are somewhat different.

First, while you may give a list of variables for testing in the regular time-series case, with panel
data only one variable may be tested per command. Second, the options governing the inclusion of
deterministic terms become mutually exclusive: you must choose between no-constant, constant
only, and constant plus trend; the default is constant only. In addition, the --seasonals option is
not available. Third, the --verbose option has a different meaning: it produces a brief account of
the test for each individual time series (the default being to show only the overall result).

The overall test (null hypothesis: the series in question has a unit root for all the panel units)
is calculated in one or both of two ways: using the method of Im et al. (2003) or that of Choi
(2001). The Choi test requires that P-values are available for the individual tests; if this is not the
case (depending on the options selected) it is omitted. The particular statistic given for the Im,
Pesaran, Shin test varies as follows: if the lag order for the test is non-zero their W statistic is
shown; otherwise if the time-series lengths differ by individual, their Z statistic; otherwise their
t-bar statistic. See also the levinlin command.

Menu path: /Variable/Unit root tests/Augmented Dickey-Fuller test

Chapter 1. Gretl commands 4

anova

Arguments: response treatment [block]
Option: --quiet (don’t print results)

Analysis of Variance: response is a series measuring some effect of interest and treatment must be
a discrete variable that codes for two or more types of treatment (or non-treatment). For two-way
ANOVA, the block variable (which should also be discrete) codes for the values of some control
variable.

Unless the --quiet option is given, this command prints a table showing the sums of squares and
mean squares along with an F-test. The F-test and its p-value can be retrieved using the accessors
$test and $pvalue respectively.

The null hypothesis for the F-test is that the mean response is invariant with respect to the treat-
ment type, or in words that the treatment has no effect. Strictly speaking, the test is valid only if
the variance of the response is the same for all treatment types.

Note that the results shown by this command are in fact a subset of the information given by the
following procedure, which is easily implemented in gretl. Create a set of dummy variables coding
for all but one of the treatment types. For two-way ANOVA, in addition create a set of dummies
coding for all but one of the “blocks”. Then regress response on a constant and the dummies using
ols. For a one-way design the ANOVA table is printed via the --anova option to ols. In the two-
way case the relevant F-test is found by using the omit command. For example (assuming y is the
response, xt codes for the treatment, and xb codes for blocks):

one-way

Tist dxt = dummify(xt)

ols y 0 dxt --anova

two-way

Tist dxb = dummify(xb)

ols y 0 dxt dxb

test joint significance of dxt
omit dxt --quiet

Menu path: /Model/Other linear models/ANOVA

append

Argument: filename

Options: --time-series (see below)
--fixed-sample (see below)
--update-overlap (see below)
See below for additional specialized options

Opens a data file and appends the content to the current dataset, if the new data are compatible.
The program will try to detect the format of the data file (native, plain text, CSV, Gnumeric, Excel,
etc.).

The appended data may take the form of either additional observations on series already present
in the dataset, and/or new series. In the case of adding series, compatibility requires either (a) that
the number of observations for the new data equals that for the current data, or (b) that the new
data carries clear observation information so that gretl can work out how to place the values.

One case that is not supported is where the new data start earlier and also end later than the
original data. To add new series in such a case you can use the --fixed-sample option; this
has the effect of suppressing the adding of observations, and so restricting the operation to the
addition of new series.

Chapter 1. Gretl commands 5

A special feature is supported for appending to a panel dataset. Let n denote the number of cross-
sectional units in the panel, T denote the number of time periods, and m denote the number of
observations for the new data. If m = n the new data are taken to be time-invariant, and are copied
into place for each time period. On the other hand, if m = T the data are treated as non-varying
across the panel units, and are copied into place for each unit. If the panel is “square”, and m
equals both n and T, an ambiguity arises. The default in this case is to treat the new data as
time-invariant, but you can force gretl to treat the new data as time series via the --time-series
option. (This option is ignored in all other cases.)

When a data file is selected for appending, there may be an area of overlap with the existing dataset;
that is, one or more series may have one or more observations in common across the two sources.
If the option --update-overlap is given, the append operation will replace any overlapping obser-
vations with the values from the selected data file, otherwise the values currently in place will be
unaffected.

The additional specialized options --sheet, --coloffset, --rowoffset and --fixed-cols work
in the same way as with open; see that command for explanations.

See also join for more sophisticated handling of multiple data sources.
Menu path: /File/Append data

ar

Arguments: lags ; depvar indepvars
Option: --vcv (print covariance matrix)
Example: ar 1 34 ; y 0 x1 x2 x3
Computes parameter estimates using the generalized Cochrane-Orcutt iterative procedure; see Sec-

tion 9.5 of Ramanathan (2002). Iteration is terminated when successive error sums of squares do
not differ by more than 0.005 percent or after 20 iterations.

lags is a list of lags in the residuals, terminated by a semicolon. In the above example, the error

term is specified as
Ut = P1Ut-1 + P3UL-3 + P4UL-4 T €

Menu path: /Model/Time series/AR Errors (GLS)

arl

Arguments: depvar indepvars
Options: --hiTu (use Hildreth-Lu procedure)
--pwe (use Prais-Winsten estimator)
--vcv (print covariance matrix)
--no-corc (do not fine-tune results with Cochrane-Orcutt)
--Toose (use looser convergence criterion)
Examples: arl 102 46 7
arl y 0 xTist --pwe
arl y 0 x1list --hilu --no-corc

Computes feasible GLS estimates for a model in which the error term is assumed to follow a first-
order autoregressive process.

The default method is the Cochrane-Orcutt iterative procedure; see for example section 9.4 of Ra-
manathan (2002). The criterion for convergence is that successive estimates of the autocorrelation
coefficient do not differ by more than 1e-6, or if the --1oose option is given, by more than 0.001.
If this is not achieved within 100 iterations an error is flagged.

Chapter 1. Gretl commands 6

If the --pwe option is given, the Prais-Winsten estimator is used. This involves an iteration similar
to Cochrane-Orcutt; the difference is that while Cochrane-Orcutt discards the first observation,
Prais-Winsten makes use of it. See, for example, Chapter 13 of Greene (2000) for details.

If the --hilu option is given, the Hildreth-Lu search procedure is used. The results are then fine-
tuned using the Cochrane-Orcutt method, unless the --no-corc flag is specified. The --no-corc
option is ignored for estimators other than Hildreth-Lu.

Menu path: /Model/Time series/AR Errors (GLS)

arbond

Argument: p [q] ; depvar indepvars [; instruments]
Options: --quiet (don’t show estimated model)
--vcv (print covariance matrix)
--two-step (perform 2-step GMM estimation)
--time-dummies (add time dummy variables)
--asymptotic (uncorrected asymptotic standard errors)
Examples: arbond 2 ; y Dx1 Dx2
arbond 2 5 ; y Dx1 Dx2 ; Dx1
arbond 1 ; y Dx1 Dx2 ; Dx1 GMM(x2,2,3)
See also arbond91.1inp

Carries out estimation of dynamic panel data models (that is, panel models including one or more
lags of the dependent variable) using the GMM-DIF method set out by Arellano and Bond (1991).
Please see dpanel for an updated and more flexible version of this command which handles GMM-
SYS as well as GMM-DIF.

The parameter p represents the order of the autoregression for the dependent variable. The op-
tional parameter g indicates the maximum lag of the level of the dependent variable to be used as
an instrument. If this argument is omitted, or given as 0, all available lags are used.

The dependent variable should be given in levels form; it will be automatically differenced (since
this estimator uses differencing to cancel out the individual effects). The independent variables are
not automatically differenced; if you want to use differences (which will generally be the case for
ordinary quantitative variables, though perhaps not for, say, time dummy variables) you should
create the differences first then specify these as the regressors.

The last (optional) field in the command is for specifying instruments. If no instruments are given, it
is assumed that all the independent variables are strictly exogenous. If you specify any instruments,
you should include in the list any strictly exogenous independent variables. For predetermined
regressors, you can use the GMM function to include a specified range of lags in block-diagonal
fashion. This is illustrated in the third example above. The first argument to GMM is the name of
the variable in question, the second is the minimum lag to be used as an instrument, and the third
is the maximum lag. If the third argument is given as 0, all available lags are used.

By default the results of 1-step estimation are reported (with robust standard errors). You may
select 2-step estimation as an option. In both cases tests for autocorrelation of orders 1 and 2
are provided, as well as the Sargan overidentification test and a Wald test for the joint significance
of the regressors. Note that in this differenced model first-order autocorrelation is not a threat
to the validity of the model, but second-order autocorrelation violates the maintained statistical
assumptions.

In the case of 2-step estimation, standard errors are by default computed using the finite-sample
correction suggested by Windmeijer (2005). The standard asymptotic standard errors associated
with the 2-step estimator are generally reckoned to be an unreliable guide to inference, but if for
some reason you want to see them you can use the --asymptotic option to turn off the Windmeijer
correction.

Chapter 1. Gretl commands 7

If the --time-dummies option is given, a set of time dummy variables is added to the specified
regressors. The number of dummies is one less than the maximum number of periods used in
estimation, to avoid perfect collinearity with the constant. The dummies are entered in levels; if
you wish to use time dummies in first-differenced form, you will have to define and add these
variables manually.

arch

Arguments: order depvar indepvars
Example: arch 4 y 0 x1 x2 x3
This command is retained at present for backward compatibility, but you are better off using the

maximum likelihood estimator offered by the garch command; for a plain ARCH model, set the first
GARCH parameter to 0.

Estimates the given model specification allowing for ARCH (Autoregressive Conditional Hetero-
skedasticity). The model is first estimated via OLS, then an auxiliary regression is run, in which
the squared residual from the first stage is regressed on its own lagged values. The final step is
weighted least squares estimation, using as weights the reciprocals of the fitted error variances
from the auxiliary regression. (If the predicted variance of any observation in the auxiliary regres-
sion is not positive, then the corresponding squared residual is used instead).

The alpha values displayed below the coefficients are the estimated parameters of the ARCH pro-
cess from the auxiliary regression.

See also garch and modtest (the --arch option).

arima

Arguments: pdq[; PD Q] ; depvar [indepvars]
Options: --verbose (print details of iterations)
--vcv (print covariance matrix)
--hessian (see below)
--opg (see below)
--nc (do not include a constant)
--conditional (use conditional maximum likelihood)
--x-12-arima (use X-12-ARIMA for estimation)
--1Tbfgs (use L-BFGS-B maximizer)
--y-diff-only (ARIMAX special, see below)
Examples: arima 1 0 2 ; vy
arima 2 0 2 ; y 0 x1 x2 --verbose
arima 011 ;011 ; vy --nc
See also armaloop.inp, bjg.inp

Note: arma is an acceptable alias for this command.

If no indepvars list is given, estimates a univariate ARIMA (Autoregressive, Integrated, Moving
Average) model. The values p, d and g represent the autoregressive (AR) order, the differencing
order, and the moving average (MA) order respectively. These values may be given in numerical
form, or as the names of pre-existing scalar variables. A d value of 1, for instance, means that the
first difference of the dependent variable should be taken before estimating the ARMA parameters.

If you wish to include only specific AR or MA lags in the model (as opposed to all lags up to a given
order) you can substitute for p and/or g either (a) the name of a pre-defined matrix containing a
set of integer values or (b) an expression such as {1,4}; that is, a set of lags separated by commas
and enclosed in braces.

Chapter 1. Gretl commands 8

The optional integer values P, D and Q represent the seasonal AR order, the order for seasonal
differencing, and the seasonal MA order, respectively. These are applicable only if the data have a
frequency greater than 1 (for example, quarterly or monthly data). These orders may be given in
numerical form or as scalar variables.

In the univariate case the default is to include an intercept in the model but this can be suppressed
with the --nc flag. If indepvars are added, the model becomes ARMAX; in this case the constant
should be included explicitly if you want an intercept (as in the second example above).

An alternative form of syntax is available for this command: if you do not want to apply differencing
(either seasonal or non-seasonal), you may omit the d and D fields altogether, rather than explicitly
entering 0. In addition, arma is a synonym or alias for arima. Thus for example the following
command is a valid way to specify an ARMA(2, 1) model:

arma 2 1 ; vy

The default is to use the “native” gretl ARMA functionality, with estimation by exact ML; estimation
via conditional ML is available as an option. (If X-12-ARIMA is installed you have the option of using
it instead of native code.) For details regarding these options, please see chapter 28 of the Gretl
User’s Guide.

When native exact ML code is used, estimated standard errors are by default based on a numerical
approximation to the (negative inverse of) the Hessian, with a fallback to the outer product of the
gradient (OPG) if calculation of the numerical Hessian should fail. Two (mutually exclusive) option
flags can be used to force the issue: the --opg option forces use of the OPG method, with no
attempt to compute the Hessian, while the --hessian flag disables the fallback to OPG. Note that
failure of the numerical Hessian computation is generally an indicator of a misspecified model.

The option --1bfgs is specific to estimation using native ARMA code and exact ML: it calls for use
of the “limited memory” L-BFGS-B algorithm in place of the regular BFGS maximizer. This may help
in some instances where convergence is difficult to achieve.

The option --y-diff-only is specific to estimation of ARIMAX models (models with a non-zero
order of integration and including exogenous regressors), and applies only when gretl’s native exact
ML is used. For such models the default behavior is to difference both the dependent variable and
the regressors, but when this option is specified only the dependent variable is differenced, the
regressors remaining in level form.

The AIC value given in connection with ARIMA models is calculated according to the definition used
in X-12-ARIMA, namely
AIC = =248 + 2k

where £ is the log-likelihood and k is the total number of parameters estimated. Note that X-12-
ARIMA does not produce information criteria such as AIC when estimation is by conditional ML.

The AR and MA roots shown in connection with ARMA estimation are based on the following
representation of an ARMA(p, q) process:

(1 =1L —poLl? — - —p,LP)Y =c + (1 + O1L + O2L% + - - - + 04L&
The AR roots are therefore the solutions to

1—prz—ppz?— - —ppl? =0

and stability requires that these roots lie outside the unit circle.

The “frequency” figure printed in connection with the AR and MA roots is the A value that solves
z = re'?™ where z is the root in question and 7 is its modulus.

Menu path: /Model/Time series/ARIMA

Chapter 1. Gretl commands 9

arma

See arima; arma is an alias.

biprobit

Arguments: depvarl depvar?2 indepvarsl [; indepvars2]
Options: --vcv (print covariance matrix)
--robust (robust standard errors)
--cluster=clustvar (see logit for explanation)
--opg (see below)
--save-xbeta (see below)
--verbose (print extra information)
Examples: biprobit yl y2 0 x1 x2
biprobit yl y2 0 x11 x12 ; 0 x21 x22
See also biprobit.inp

Estimates a bivariate probit model, using the Newton-Raphson method to maximize the likelihood.

The argument list starts with the two (binary) dependent variables, followed by a list of regressors.
If a second list is given, separated by a semicolon, this is interpreted as a set of regressors specific
to the second equation, with indepvarsl being specific to the first equation; otherwise indepvarsl
is taken to represent a common set of regressors.

By default, standard errors are computed using a numerical approximation to the Hessian at con-
vergence. But if the --opg option is given the covariance matrix is based on the Outer Product of
the Gradient (OPG), or if the --robust option is given QML standard errors are calculated, using a
“sandwich” of the inverse of the Hessian and the OPG.

After successful estimation, the accessor $uhat retrieves a matrix with two columns holding the
generalized residuals for the two equations; that is, the expected values of the disturbances con-
ditional on the observed outcomes and covariates. By default $yhat retrieves a matrix with four
columns, holding the estimated probabilities of the four possible joint outcomes for (y1, ¥>), in
the order (1,1), (1,0), (0,1), (0,0). Alternatively, if the option --save-xbeta is given, $yhat has two
columns and holds the values of the index functions for the respective equations.

The output includes a likelihood ratio test of the null hypothesis that the disturbances in the two
equations are uncorrelated.

bkw

Option: --quiet (don’t print anything)

Example: Tlongley.inp
Must follow the estimation of a model which includes at least two independent variables. Calculates
and displays diagnostic information pertaining to collinearity, namely the BKW Table, based on the
work of Belsley et al. (1980). This table presents a sophisticated analysis of the degree and sources

of collinearity, via eigenanalysis of the inverse correlation matrix. For a thorough account of the
BKW approach with reference to gretl, and with several examples, see Adkins et al. (2015).

Following this command the $result accessor may be used to retrieve the BKW table as a matrix.
See also the vif command for a simpler approach to diagnosing collinearity.

There is also a function named bkw which offers greater flexibility.

Menu path: Model window, /Analysis/Collinearity

Chapter 1. Gretl commands 10

boxplot

Argument: varlist

Options: --notches (show 90 percent interval for median)
--factorized (see below)
--panel (see below)
--matrix=name (plot columns of named matrix)
--output=filename (send output to specified file)

These plots display the distribution of a variable. The central box encloses the middle 50 percent
of the data, i.e. it is bounded by the first and third quartiles. The “whiskers” extend from each end
of the box for a range equal to 1.5 times the interquartile range. Observations outside that range
are considered outliers and represented via dots. A line is drawn across the box at the median. A
“+” sign is used to indicate the mean. If the option of showing a confidence interval for the median
is selected, this is computed via the bootstrap method and shown in the form of dashed horizontal
lines above and/or below the median.

The --factorized option allows you to examine the distribution of a chosen variable conditional
on the value of some discrete factor. For example, if a data set contains wages and a gender dummy
variable you can select the wage variable as the target and gender as the factor, to see side-by-side
boxplots of male and female wages, as in

boxplot wage gender --factorized

Note that in this case you must specify exactly two variables, with the factor given second.

If the current data set is a panel, and just one variable is specified, the --panel option produces a
series of side-by-side boxplots, one for each panel “unit” or group.

Generally, the argument varlist is required, and refers to one or more series in the current dataset
(given either by name or ID number). But if a named matrix is supplied via the --matrix option
this argument becomes optional: by default a plot is drawn for each column of the specified matrix.

Gretl’s boxplots are generated using gnuplot, and it is possible to specify the plot more fully by
appending additional gnuplot commands, enclosed in braces. For details, please see the help for
the gnuplot command.

In interactive mode the result is displayed immediately. In batch mode the default behavior is
that a gnuplot command file is written in the user’s working directory, with a name on the pattern
gpttmpN.plt, starting with N = 01. The actual plots may be generated later using gnuplot (under
MS Windows, wgnuplot). This behavior can be modified by use of the --output=filename option.
For details, please see the gnuplot command.

Menu path: /View/Graph specified vars/Boxplots

break

Break out of a loop. This command can be used only within a loop; it causes command execution
to break out of the current (innermost) loop. See also loop.

catch
Syntax: catch command

This is not a command in its own right but can be used as a prefix to most regular commands: the
effect is to prevent termination of a script if an error occurs in executing the command. If an error
does occur, this is registered in an internal error code which can be accessed as $error (a zero
value indicates success). The value of $error should always be checked immediately after using
catch, and appropriate action taken if the command failed.

Chapter 1. Gretl commands 11

The catch keyword cannot be used before if, elif or endif. In addition it should not be used
on calls to user-defined functions; it is intended for use only with gretl commands and calls to
“built-in” functions or operators.

chow

Variants: chow obs
chow dummyvar --dummy
Options: --dummy (use a pre-existing dummy variable)
--quiet (don't print estimates for augmented model)
--Timit-to=lIist (limit test to subset of regressors)
Examples: chow 25
chow 1988:1
chow female --dummy
Must follow an OLS regression. If an observation number or date is given, provides a test for the
null hypothesis of no structural break at the given split point. The procedure is to create a dummy
variable which equals 1 from the split point specified by obs to the end of the sample, O otherwise,
and also interaction terms between this dummy and the original regressors. If a dummy variable
is given, tests the null hypothesis of structural homogeneity with respect to that dummy. Again,

interaction terms are added. In either case an augmented regression is run including the additional
terms.

By default an F statistic is calculated, taking the augmented regression as the unrestricted model
and the original as the restricted. But if the original model used a robust estimator for the co-
variance matrix, the test statistic is a Wald chi-square value based on a robust estimator of the
covariance matrix for the augmented regression.

The --T1imit-to option can be used to limit the set of interactions with the split dummy variable
to a subset of the original regressors. The parameter for this option must be a named list, all of
whose members are among the original regressors. The list should not include the constant.

Menu path: Model window, /Tests/Chow test

clear
Option: --dataset (clear dataset only)

With no options, clears all saved objects, including the current dataset if any, out of memory. Note
that opening a new dataset, or using the nulldata command to create an empty dataset, also has
this effect, so use of clear is not usually necessary.

If the --dataset option is given, then only the dataset is cleared (plus any named lists of series);
other saved objects such as named matrices and scalars are preserved.

coeffsum

Argument: varlist

Option: --quiet (don’t print anything)

Example: coeffsum xt xt_1 xr_2
restrict.inp

Must follow a regression. Calculates the sum of the coefficients on the variables in varlist. Prints
this sum along with its standard error and the p-value for the null hypothesis that the sum is zero.

Note the difference between this and omit, which tests the null hypothesis that the coefficients on
a specified subset of independent variables are all equal to zero.

Chapter 1. Gretl commands 12

The --quiet option may be useful if one just wants access to the $test and $pvalue values that are
recorded on successful completion.

Menu path: Model window, /Tests/Sum of coefficients

coint

Arguments: order depvar indepvars
Options: --nc (do not include a constant)
--ct (include constant and trend)
--ctt (include constant and quadratic trend)
--seasonals (include seasonal dummy variables)
--skip-df (no DF tests on individual variables)
--test-down[=criterion] (automatic lag order)
--verbose (print extra details of regressions)
--silent (don’t print anything)
Examples: coint 4 y x1 x2
coint 0 y x1 x2 --ct --skip-df
The Engle and Granger (1987) cointegration test. The default procedure is: (1) carry out Dickey-
Fuller tests on the null hypothesis that each of the variables listed has a unit root; (2) estimate the

cointegrating regression; and (3) run a DF test on the residuals from the cointegrating regression.
If the --skip-df flag is given, step (1) is omitted.

If the specified lag order is positive all the Dickey-Fuller tests use that order, with this qualification:
if the --test-down option is given, the given value is taken as the maximum and the actual lag
order used in each case is obtained by testing down. See the adf command for details of this
procedure.

By default, the cointegrating regression contains a constant. If you wish to suppress the constant,
add the --nc flag. If you wish to augment the list of deterministic terms in the cointegrating
regression with a linear or quadratic trend, add the --ct or --ctt flag. These option flags are
mutually exclusive. You also have the option of adding seasonal dummy variables (in the case of
quarterly or monthly data).

P-values for this test are based on MacKinnon (1996). The relevant code is included by kind per-
mission of the author.

Menu path: /Model/Time series/Multivariate

Chapter 1. Gretl commands 13

coint2

Arguments: order ylist [; xlist] [; rxlist]
Options: --nc (no constant)
--rc (restricted constant)
--uc (unrestricted constant)
--crt (constant and restricted trend)
--ct (constant and unrestricted trend)
--seasonals (include centered seasonal dummies)
--asy (record asymptotic p-values)
--quiet (print just the tests)
--silent (don’t print anything)
--verbose (print details of auxiliary regressions)
Examples: coint2 2 y x
coint2 4 y x1 x2 --verbose
coint2 3 y x1 x2 --rc
See also hamilton.inp, denmark.inp
Carries out the Johansen test for cointegration among the variables in ylist for the given lag order.
For details of this test see chapter 30 of the Gretl User’s Guide or Hamilton (1994), Chapter 20.
P-values are computed via Doornik’s gamma approximation (Doornik, 1998). Two sets of p-values
are shown for the trace test, straight asymptotic values and values adjusted for the sample size. By

default the $pvalue accessor gets the adjusted variant, but the --asy flag may be used to record
the asymptotic values instead.

The inclusion of deterministic terms in the model is controlled by the option flags. The default if
no option is specified is to include an “unrestricted constant”, which allows for the presence of a
non-zero intercept in the cointegrating relations as well as a trend in the levels of the endogenous
variables. In the literature stemming from the work of Johansen (see for example his 1995 book)
this is often referred to as “case 3”. The first four options given above, which are mutually exclusive,
produce cases 1, 2, 4 and 5 respectively. The meaning of these cases and the criteria for selecting
a case are explained in chapter 30 of the Gretl User’s Guide.

The optional lists xlist and rxlist allow you to control for specified exogenous variables: these enter
the system either unrestrictedly (xlist) or restricted to the cointegration space (rxlist). These lists
are separated from ylist and from each other by semicolons.

The --seasonals option, which may be combined with any of the other options, specifies the
inclusion of a set of centered seasonal dummy variables. This option is available only for quarterly
or monthly data.

The following table is offered as a guide to the interpretation of the results shown for the test,
for the 3-variable case. Hj denotes the null hypothesis, H; the alternative hypothesis, and ¢ the
number of cointegrating relations.

Trace test A-max test

Rank Hj H; Hy H,;
0 c=0 =3 = =1
2 =2 =3 = =3

See also the vecm command.

Menu path: /Model/Time series/Multivariate

Chapter 1. Gretl commands 14

corr

Variants: corr [varlist |
corr --matrix=matname
Options: --uniform (ensure uniform sample)
--spearman (Spearman’s rho)
--kendal1 (Kendall’s tau)
--verbose (print rankings)
--plot=mode-or-filename (see below)
Examples: corr y x1 x2 x3
corr ylist --uniform
corr X y --spearman
corr --matrix=X --plot=display
By default, prints the pairwise correlation coefficients (Pearson’s product-moment correlation) for
the variables in varlist, or for all variables in the data set if varlist is not given. The standard
behavior is to use all available observations for computing each pairwise coefficient, but if the
--uniform option is given the sample is limited (if necessary) so that the same set of observations

is used for all the coefficients. This option has an effect only if there are differing numbers of
missing values for the variables used.

The (mutually exclusive) options --spearman and --kendall produce, respectively, Spearman’s
rank correlation rho and Kendall’s rank correlation tau in place of the default Pearson coefficient.
When either of these options is given, varlist should contain just two variables.

When a rank correlation is computed, the --verbose option can be used to print the original and
ranked data (otherwise this option is ignored).

If varlist contains more than two series and the program is not in batch mode, a “heatmap” plot
of the correlation matrix is shown. This can be adjusted via the --plot option. The acceptable
parameters to this option are none (to suppress the plot); dispTlay (to display a plot even when in
batch mode); or a file name. The effect of providing a file name is as described for the --output
option of the gnuplot command. When plotting is active the additional option --triangle can be
used to show only the lower triangle of the matrix.

If the alternative form is given, using a named matrix rather than a list of series, the --spearman
and --kendalT options are not available —but see the npcorr function.

The $result accessor can be used to obtain the correlations as a matrix.
Menu path: /View/Correlation matrix

Other access: Main window pop-up menu (multiple selection)

corrgm

Arguments: series [order]

Options: --bartlett (use Bartlett standard errors)
--plot=mode-or-filename (see below)
Example: corrgm x 12

Prints the values of the autocorrelation function (ACF) for series, which may be specified by name
or number. The values are defined as p(u;, u;—s), where u; is the t™ observation of the variable u
and s denotes the number of lags.

The partial autocorrelations (PACF, calculated using the Durbin-Levinson algorithm) are also shown:
these are net of the effects of intervening lags. In addition the Ljung-Box Q statistic is printed.
This may be used to test the null hypothesis that the series is “white noise”; it is asymptotically

Chapter 1. Gretl commands 15

distributed as chi-square with degrees of freedom equal to the number of lags used.

Asterisks are used to indicate statistical significance of the individual autocorrelations. By default
this is assessed using a standard error of one over the square root of the sample size, but if the
--bartlett option is given then Bartlett standard errors are used for the ACF. This option also
governs the confidence band drawn in the ACF plot, if applicable.

If an order value is specified the length of the correlogram is limited to at most that number of
lags, otherwise the length is determined automatically, as a function of the frequency of the data
and the number of observations.

By default, a plot of the correlogram is produced: a gnuplot graph in interactive mode or an ASCII
graphic in batch mode. This can be adjusted via the --plot option. The acceptable parameters
to this option are none (to suppress the plot); ascii (to produce a text graphic even when in
interactive mode); display (to produce a gnuplot graph even when in batch mode); or a file name.
The effect of providing a file name is as described for the --output option of the gnuplot command.

Upon successful completion, the accessors $test and $pvalue contain the corresponding figures of
the Ljung-Box test for the maximum order displayed. Note that if you just want to compute the Q
statistic, you'll probably want to use the ljungbox function instead.

Menu path: /Variable/Correlogram

Other access: Main window pop-up menu (single selection)

cusum

Options: --squares (perform the CUSUMSQ test)
--quiet (just print the Harvey-Collier test)

Must follow the estimation of a model via OLS. Performs the CUSUM test—or if the --squares op-
tion is given, the CUSUMSQ test—for parameter stability. A series of one-step ahead forecast errors
is obtained by running a series of regressions: the first regression uses the first k observations and
is used to generate a prediction of the dependent variable at observation k + 1; the second uses the
first k + 1 observations and generates a prediction for observation k + 2, and so on (where k is the
number of parameters in the original model).

The cumulated sum of the scaled forecast errors, or the squares of these errors, is printed and
graphed. The null hypothesis of parameter stability is rejected at the 5 percent significance level if
the cumulated sum strays outside of the 95 percent confidence band.

In the case of the CUSUM test, the Harvey-Collier t-statistic for testing the null hypothesis of
parameter stability is also printed. See Greene’s Econometric Analysis for details. For the CUSUMSQ
test, the 95 percent confidence band is calculated using the algorithm given in Edgerton and Wells
(1994).

Menu path: Model window, /Tests/CUSUM(SQ)

data

Argument: varlist
Options: --compact=method (specify compaction method)
--interpolate (do interpolation for low-frequency data)
--quiet (don’t report results except on error)
--name=identifier (rename imported series)
Reads the variables in varlist from a database (gretl, dbnomics, RATS 4.0 or PcGive), which must
have been opened previously using the open command. The data frequency and sample range may

be established via the setobs and smpl commands prior to using this command. Here is a full
example:

Chapter 1. Gretl commands 16

open macrodat.rat
setobs 4 1959:1
smpl ; 1999:4
data GDP_JP GDP_UK

The commands above open a database named macrodat. rat, establish a quarterly data set starting
in the first quarter of 1959 and ending in the fourth quarter of 1999, and then import the series
named GDP_JP and GDP_UK.

If setobs and smp1 are not specified in this way, the data frequency and sample range are set using
the first variable read from the database.

If the series to be read are of higher frequency than the working dataset, you may specify a com-
paction method as below:

data LHUR PUNEW --compact=average

The five available compaction methods are “average” (takes the mean of the high frequency obser-

vations), “last” (uses the last observation), “first”, “sum” and “spread”. If no method is specified,
the default is to use the average. The “spread” method is special: no information is lost, rather it
is spread across multiple series, one per sub-period. So for example when adding a monthly series
to a quarterly dataset three series are created, one for each month of the quarter; their names bear
the suffixes m01, m02 and m03.

If the series to be read are of lower frequency than the working dataset, the default is to repeat
the values of the added data as required, but the --interpolate option can be used to request
interpolation using the method of Chow and Lin (1971): the regressors are a constant and quadratic
trend and an AR(1) disturbance process is assumed. Note, however, that this option is available only
for conversion from quarterly data to monthly or annual data to quarterly.

In the case of native gretl databases (only), the “glob” characters * and ? can be used in varlist to
import series that match the given pattern. For example, the following will import all series in the
database whose names begin with cpii:

data cpi*

The --name option can be used to set a name for the imported series other than the original name
in the database. The parameter must be a valid gretl identifier. This option is restricted to the case
where a single series is specified for importation.

Menu path: /File/Databases

dataset

Arguments: keyword parameters

Examples: dataset addobs 24
dataset insobs 10
dataset compact 1
dataset compact 4 Tast
dataset expand interp
dataset transpose
dataset sortby x1
dataset resample 500
dataset renumber x 4
dataset pad-daily 7
dataset clear

Chapter 1. Gretl commands 17

Performs various operations on the data set as a whole, depending on the given keyword, which
must be addobs, insobs, clear, compact, expand, transpose, sortby, dsortby, resample, renumber
or pad-daily. Note: with the exception of clear, these actions are not available when the dataset

is currently subsampled by selection of cases on some Boolean criterion.

addobs: Must be followed by a positive integer. Adds the specified number of extra observations to
the end of the working dataset. This is primarily intended for forecasting purposes. The values of
most variables over the additional range will be set to missing, but certain deterministic variables
are recognized and extended, namely, a simple linear trend and periodic dummy variables.

insobs: Must be followed by a positive integer no greater than the current number of observations.
Inserts a single observation at the specified position. All subsequent data are shifted by one place
and the dataset is extended by one observation. All variables apart from the constant are given
missing values at the new observation. This action is not available for panel datasets.

clear: No parameter required. Clears out the current data, returning gretl to its initial “empty”
state.

compact: Must be followed by a positive integer representing a new data frequency, which should
be lower than the current frequency (for example, a value of 4 when the current frequency is 12
indicates compaction from monthly to quarterly). This command is available for time series data
only; it compacts all the series in the data set to the new frequency. A second parameter may be
given, namely one of sum, first, Tast or spread, to specify, respectively, compaction using the
sum of the higher-frequency values, start-of-period values, end-of-period values, or spreading of
the higher-frequency values across multiple series (one per sub-period). The default is to compact
by averaging.

expand: This command is only available for annual or quarterly time series data: annual data can
be expanded to quarterly, and quarterly data to monthly frequency. By default all the series in the
data set are padded out to the new frequency by repeating the existing values, but if the modifier
interp is appended then the series are expanded using Chow-Lin interpolation (see Chow and Lin
(1971)): the regressors are a constant and quadratic trend and an AR(1) disturbance process is
assumed.

transpose: No additional parameter required. Transposes the current data set. That is, each
observation (row) in the current data set will be treated as a variable (column), and each variable as
an observation. This command may be useful if data have been read from some external source in
which the rows of the data table represent variables.

sortby: The name of a single series or list is required. If one series is given, the observations on all
variables in the dataset are re-ordered by increasing value of the specified series. If a list is given,
the sort proceeds hierarchically: if the observations are tied in sort order with respect to the first
key variable then the second key is used to break the tie, and so on until the tie is broken or the
keys are exhausted. Note that this command is available only for undated data.

dsortby: Works as sortby except that the re-ordering is by decreasing value of the key series.

resample: Constructs a new dataset by random sampling, with replacement, of the rows of the
current dataset. One argument is required, namely the number of rows to include. This may be less
than, equal to, or greater than the number of observations in the original data. The original dataset
can be retrieved via the command smp1 fulT.

renumber: Requires the name of an existing series followed by an integer between 1 and the number
of series in the dataset minus one. Moves the specified series to the specified position in the dataset,
renumbering the other series accordingly. (Position 0 is occupied by the constant, which cannot be
moved.)

pad-daily: Valid only if the current dataset contains dated daily data with an incomplete calendar.
The effect is to pad the data out to a complete calendar by inserting blank rows (that is, rows
containing nothing but NAs). This option requires an integer parameter, namely the number of days
per week, which must be 5, 6 or 7, and must be greater than or equal to the current data frequency.

Chapter 1. Gretl commands 18

On successful completion, the data calendar will be “complete” relative to this value. For example
if days-per-week is 5 then all weekdays will be represented, whether or not any data are available
for those days.

Menu path: /Data

debug

Argument: function

Experimental debugger for user-defined functions, available in the command-line program, gretlcli,
and in the GUI console. The debug command should be invoked after the function in question is
defined but before it is called. The effect is that execution pauses when the function is called and
a special prompt is shown.

At the debugging prompt you can type next to execute the next command in the function, or
continue to allow execution of the function to continue unimpeded. These commands can be
abbreviated as n and c respectively. You can also interpolate an instruction at this prompt, for
example a print command to reveal the current value of some variable of interest.

delete

Variants: delete varlist
delete varname
delete --type=type-name
delete pkgname

Option: --db (delete series from database)

This command is an all-purpose destructor. It should be used with caution; no confirmation is
asked.

In the first form above, varlist is a list of series, given by name or ID number. Note that when you
delete series any series with higher ID numbers than those on the deletion list will be re-numbered.
If the --db option is given, this command deletes the listed series not from the current dataset but
from a gretl database, assuming that a database has been opened, and the user has write permission
for file in question. See also the open command.

In the second form, the name of a scalar, matrix, string or bundle may be given for deletion. The
--db option is not applicable in this case. Note that series and variables of other types should not
be mixed in a given call to deTete.

In the third form, the --type option must be accompanied by one of the following type-names:
matrix, bundle, string, 1ist, scalar or array. The effect is to delete all variables of the given
type. In this case no argument other than the option should be given.

The fourth form can be used to unload a function package. In this case the .gfn suffix must be
supplied, as in

delete somepkg.gfn

Note that this does not delete the package file, it just unloads the package from memory.

Menu path: Main window pop-up (single selection)
diff

Argument: varlist
Examples: penngrow.inp, sw_chl2.inp, sw_chl4.1inp

Chapter 1. Gretl commands 19

The first difference of each variable in varlist is obtained and the result stored in a new variable
with the prefix d_. Thus diff x y creates the new variables

= x(t) - x(t-D

d_x
d_y = y(t) - y(t-1

Menu path: /Add/First differences of selected variables

difftest

Arguments: seriesl series2
Options: --s1ign (Sign test, the default)
--rank-sum (Wilcoxon rank-sum test)
--signed-rank (Wilcoxon signed-rank test)
--verbose (print extra output)
--quiet (suppress printed output)
Example: ooballot.inp

Carries out a nonparametric test for a difference between two populations or groups, the specific
test depending on the option selected.

With the --sign option, the Sign test is performed. This test is based on the fact that if two
samples, x and y, are drawn randomly from the same distribution, the probability that x; > y;, for
each observation i, should equal 0.5. The test statistic is w, the number of observations for which
x; > vi. Under the null hypothesis this follows the Binomial distribution with parameters (n, 0.5),
where 1 is the number of observations.

With the --rank-sum option, the Wilcoxon rank-sum test is performed. This test proceeds by
ranking the observations from both samples jointly, from smallest to largest, then finding the sum
of the ranks of the observations from one of the samples. The two samples do not have to be of the
same size, and if they differ the smaller sample is used in calculating the rank-sum. Under the null
hypothesis that the samples are drawn from populations with the same median, the probability
distribution of the rank-sum can be computed for any given sample sizes; and for reasonably large
samples a close Normal approximation exists.

With the --signed-rank option, the Wilcoxon signed-rank test is performed. This is designed
for matched data pairs such as, for example, the values of a variable for a sample of individuals
before and after some treatment. The test proceeds by finding the differences between the paired
observations, x; — ¥, ranking these differences by absolute value, then assigning to each pair a
signed rank, the sign agreeing with the sign of the difference. One then calculates W, the sum of
the positive signed ranks. As with the rank-sum test, this statistic has a well-defined distribution
under the null that the median difference is zero, which converges to the Normal for samples of
reasonable size.

For the Wilcoxon tests, if the --verbose option is given then the ranking is printed. (This option
has no effect if the Sign test is selected.)

On successful completion the accessors $test and $pvalue are available. If one just wants to obtain
these values the --quiet flag can be appended to the command.

discrete

Argument: varlist
Option: --reverse (mark variables as continuous)
Examples: ooballot.inp, oprobit.inp

Chapter 1. Gretl commands 20

Marks each variable in varlist as being discrete. By default all variables are treated as continuous;
marking a variable as discrete affects the way the variable is handled in frequency plots, and also
allows you to select the variable for the command dummify.

If the --reverse flag is given, the operation is reversed; that is, the variables in varlist are marked
as being continuous.

Menu path: /Variable/Edit attributes

dpanel

Argument: p ; depvar indepvars [; instruments]
Options: --quiet (don’t show estimated model)
--vcv (print covariance matrix)
--two-step (perform 2-step GMM estimation)
--system (add equations in levels)
--time-dummies (add time dummy variables)
--dpdstyle (emulate DPD package for Ox)
--asymptotic (uncorrected asymptotic standard errors)
--keep-extra (see below)
Examples: dpanel 2 ; y x1 x2
dpanel 2 ; y x1 x2 --system
dpanel {2 3} ; y x1 x2 ; x1
dpanel 1 ; y x1 x2 ; x1 GMM(x2,2,3)
See also bbond98.1inp

Carries out estimation of dynamic panel data models (that is, panel models including one or more
lags of the dependent variable) using either the GMM-DIF or GMM-SYS method.

The parameter p represents the order of the autoregression for the dependent variable. In the
simplest case this is a scalar value, but a pre-defined matrix may be given for this argument, to
specify a set of (possibly non-contiguous) lags to be used.

The dependent variable and regressors should be given in levels form; they will be differenced
automatically (since this estimator uses differencing to cancel out the individual effects).

The last (optional) field in the command is for specifying instruments. If no instruments are given, it
is assumed that all the independent variables are strictly exogenous. If you specify any instruments,
you should include in the list any strictly exogenous independent variables. For predetermined
regressors, you can use the GMM function to include a specified range of lags in block-diagonal
fashion. This is illustrated in the third example above. The first argument to GMM is the name of the
variable in question, the second is the minimum lag to be used as an instrument, and the third is
the maximum lag. The same syntax can be used with the GMM1eve1l function to specify GMM-type
instruments for the equations in levels.

By default the results of 1-step estimation are reported (with robust standard errors). You may
select 2-step estimation as an option. In both cases tests for autocorrelation of orders 1 and 2
are provided, as well as the Sargan overidentification test and a Wald test for the joint significance
of the regressors. Note that in this differenced model first-order autocorrelation is not a threat
to the validity of the model, but second-order autocorrelation violates the maintained statistical
assumptions.

In the case of 2-step estimation, standard errors are by default computed using the finite-sample
correction suggested by Windmeijer (2005). The standard asymptotic standard errors associated
with the 2-step estimator are generally reckoned to be an unreliable guide to inference, but if for
some reason you want to see them you can use the --asymptotic option to turn off the Windmeijer
correction.

Chapter 1. Gretl commands 21

If the --time-dummies option is given, a set of time dummy variables is added to the specified
regressors. The number of dummies is one less than the maximum number of periods used in
estimation, to avoid perfect collinearity with the constant. The dummies are entered in differenced
form unless the --dpdstyle option is given, in which case they are entered in levels.

As with other estimation commands, a $model bundle is available after estimation. In the case
of dpanel, the --keep-extra option can be used to save additional information in this bundle,
namely the GMM weight and instrument matrices.

For further details and examples, please see chapter 21 of the Gretl User’s Guide.

Menu path: /Model/Panel/Dynamic panel model

dummify

Argument: varlist
Options: --drop-first (omit lowest value from encoding)
--drop-Tlast (omit highest value from encoding)
For any suitable variables in varlist, creates a set of dummy variables coding for the distinct values

of that variable. Suitable variables are those that have been explicitly marked as discrete, or those
that take on a fairly small number of values all of which are “fairly round” (multiples of 0.25).

By default a dummy variable is added for each distinct value of the variable in question. For
example if a discrete variable x has 5 distinct values, 5 dummy variables will be added to the data
set, with names Dx_1, Dx_2 and so on. The first dummy variable will have value 1 for observations
where x takes on its smallest value, 0 otherwise; the next dummy will have value 1 when x takes
on its second-smallest value, and so on. If one of the option flags --drop-first or --drop-Tast
is added, then either the lowest or the highest value of each variable is omitted from the encoding
(which may be useful for avoiding the “dummy variable trap”).

This command can also be embedded in the context of a regression specification. For example, the
following line specifies a model where y is regressed on the set of dummy variables coding for x.
(Option flags cannot be passed to dummi fy in this context.)

ols y dummify(x)

Other access: Main window pop-up menu (single selection)

duration

Arguments: depvar indepvars [; censvar]

Options: --exponential (use exponential distribution)
--logTogistic (use log-logistic distribution)
--lognormal (use log-normal distribution)
--medians (fitted values are medians)
--robust (robust (QML) standard errors)
--cluster=clustvar (see logit for explanation)
--vcv (print covariance matrix)
--verbose (print details of iterations)

Examples: duration y 0 x1 x2
duration y 0 x1 x2 ; cens
See also weibull.inp

Estimates a duration model: the dependent variable (which must be positive) represents the dura-
tion of some state of affairs, for example the length of spells of unemployment for a cross-section

Chapter 1. Gretl commands 22

of respondents. By default the Weibull distribution is used but the exponential, log-logistic and
log-normal distributions are also available.

If some of the duration measurements are right-censored (e.g. an individual’s spell of unemploy-
ment has not come to an end within the period of observation) then you should supply the trailing
argument censvar, a series in which non-zero values indicate right-censored cases.

By default the fitted values obtained via the accessor $yhat are the conditional means of the dura-
tions, but if the --medians option is given then $yhat provides the conditional medians instead.

Please see chapter 35 of the Gretl User’s Guide for details.
Menu path: /Model/Limited dependent variable/Duration data

elif

See if.

else

See if. Note that else requires a line to itself, before the following conditional command. You can
append a comment, as in

else # 0K, do something different
But you cannot append a command, as in

else x = 5 # wrong!

end

Ends a block of commands of some sort. For example, end system terminates an equation system.

endif
See if.

endloop

Marks the end of a command loop. See loop.

egnprint

Options: --complete (Create a complete document)
--output=filename (send output to specified file)
Must follow the estimation of a model. Prints the estimated model in the form of a KIgX equation.
If a filename is specified using the --output option output goes to that file, otherwise it goes to a

file with a name of the form equation_N. tex, where N is the number of models estimated to date
in the current session. See also tabprint.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

If the --compTete flag is given, the KIgX file is a complete document, ready for processing; other-
wise it must be included in a document.

Menu path: Model window, /LaTeX

Chapter 1. Gretl commands 23

equation

Arguments: depvar indepvars

Example: equation y x1 x2 x3 const
Specifies an equation within a system of equations (see system). The syntax for specifying an
equation within an SUR system is the same as that for, e.g., ols. For an equation within a Three-
Stage Least Squares system you may either (a) give an OLS-type equation specification and provide
a common list of instruments using the instr keyword (again, see system), or (b) use the same
equation syntax as for tsls.

estimate

Arguments: [systemname] [estimator]
Options: --iterate (iterate to convergence)
--no-df-corr (no degrees of freedom correction)
--geomean (see below)
--quiet (don’t print results)
--verbose (print details of iterations)
Examples: estimate "Klein Model 1" method=fiml
estimate Sysl method=sur
estimate Sysl method=sur --iterate
Calls for estimation of a system of equations, which must have been previously defined using the
system command. The name of the system should be given first, surrounded by double quotes
if the name contains spaces. The estimator, which must be one of ols, tsTs, sur, 3sl1s, fiml or
TimT, is preceded by the string method=. These arguments are optional if the system in question

has already been estimated and occupies the place of the “last model”; in that case the estimator
defaults to the previously used value.

If the system in question has had a set of restrictions applied (see the restrict command), estimation
will be subject to the specified restrictions.

If the estimation method is sur or 3s1s and the --iterate flag is given, the estimator will be iter-
ated. In the case of SUR, if the procedure converges the results are maximum likelihood estimates.
Iteration of three-stage least squares, however, does not in general converge on the full-information
maximum likelihood results. The --iterate flag is ignored for other methods of estimation.

If the equation-by-equation estimators ols or ts1s are chosen, the default is to apply a degrees of
freedom correction when calculating standard errors. This can be suppressed using the --no-df-corr
flag. This flag has no effect with the other estimators; no degrees of freedom correction is applied
in any case.

By default, the formula used in calculating the elements of the cross-equation covariance matrix is

If the --geomean flag is given, a degrees of freedom correction is applied: the formula is

AT A

_ u;u;j
(T = k) (T - k)

0ij

where the ks denote the number of independent parameters in each equation.

If the --verbose option is given and an iterative method is specified, details of the iterations are
printed.

Chapter 1. Gretl commands 24

eval

Argument: expression
Examples: eval x
eval inv(X’X)
eval sqrt($pi)
This command makes gretl act like a glorified calculator. The program evaluates expression and
prints its value. The argument may be the name of a variable, or something more complicated. In

any case, it should be an expression which could stand as the right-hand side of an assignment
statement.

Note that a command such as
print xA2

will not work in gretl, since xA2 is not (cannot be) the name of a variable, but (given a scalar variable
named Xx)

eval xA2

will work fine, displaying the square of x.

See also printf, for the case where you wish to combine textual and numerical output.

fcast

Variants: fcast [startobs endobs] [vname]
fcast [startobs endobs] steps-ahead [vname] --recursive
Options: --dynami c (create dynamic forecast)
--static (create static forecast)
--out-of-sample (generate post-sample forecast)
--no-stats (don’t print forecast statistics)
--stats-only (only print forecast statistics)
--quiet (don’t print anything)
--recursive (see below)
--plot=filename (see below)
Examples: fcast 1997:1 2001:4 f1
fcast fit2
fcast 2004:1 2008:3 4 rfcast --recursive
See also gdp_midas.inp
Must follow an estimation command. Forecasts are generated for a certain range of observations:
if startobs and endobs are given, for that range (if possible); otherwise if the --out-of-sample
option is given, for observations following the range over which the model was estimated; otherwise
over the currently defined sample range. If an out-of-sample forecast is requested but no relevant
observations are available, an error is flagged. Depending on the nature of the model, standard

errors may also be generated; see below. Also see below for the special effect of the --recursive
option.

If the last model estimated is a single equation, then the optional vname argument has the following
effect: the forecast values are not printed, but are saved to the dataset under the given name. If
the last model is a system of equations, vname has a different effect, namely selecting a particular
endogenous variable for forecasting (the default being to produce forecasts for all the endogenous

Chapter 1. Gretl commands 25

variables). In the system case, or if vname is not given, the forecast values can be retrieved using
the accessor $fcast, and the standard errors, if available, via $fcse.

The choice between a static and a dynamic forecast applies only in the case of dynamic models, with
an autoregressive error process or including one or more lagged values of the dependent variable as
regressors. Static forecasts are one step ahead, based on realized values from the previous period,
while dynamic forecasts employ the chain rule of forecasting. For example, if a forecast for y in
2008 requires as input a value of y for 2007, a static forecast is impossible without actual data for
2007. A dynamic forecast for 2008 is possible if a prior forecast can be substituted for y in 2007.

The default is to give a static forecast for any portion of the forecast range that lies within the
sample range over which the model was estimated, and a dynamic forecast (if relevant) out of
sample. The --dynamic option requests a dynamic forecast from the earliest possible date, and
the --static option requests a static forecast even out of sample.

The --recursive option is presently available only for single-equation models estimated via OLS.
When this option is given the forecasts are recursive. That is, each forecast is generated from an
estimate of the given model using data from a fixed starting point (namely, the start of the sample
range for the original estimation) up to the forecast date minus k, where k is the number of steps
ahead, which must be given in the steps-ahead argument. The forecasts are always dynamic if this
is applicable. Note that the steps-ahead argument should be given only in conjunction with the
--recursive option.

The --plot option (available only in the case of single-equation estimation) calls for a plot file
to be produced, containing a graphical representation of the forecast. The suffix of the filename
argument to this option controls the format of the plot: .eps for EPS, . pdf for PDF, .png for PNG,
.p1t for a gnuplot command file. The dummy filename display can be used to force display of
the plot in a window. For example,

fcast --plot=fc.pdf

will generate a graphic in PDF format. Absolute pathnames are respected, otherwise files are written
to the gretl working directory.

The nature of the forecast standard errors (if available) depends on the nature of the model and
the forecast. For static linear models standard errors are computed using the method outlined
by Davidson and MacKinnon (2004); they incorporate both uncertainty due to the error process
and parameter uncertainty (summarized in the covariance matrix of the parameter estimates). For
dynamic models, forecast standard errors are computed only in the case of a dynamic forecast, and
they do not incorporate parameter uncertainty. For nonlinear models, forecast standard errors are
not presently available.

Menu path: Model window, /Analysis/Forecasts

flush

This simple command (no arguments, no options) is intended for use in time-consuming scripts
that may be executed via the gretl GUI (it is ignored by the command-line program), to give the user
a visual indication that things are moving along and gretl is not “frozen”.

Ordinarily if you launch a script in the GUI no output is shown until its execution is completed, but
the effect of invoking flush is as follows:

¢ On the first invocation, gretl opens a window, displays the output so far, and appends the
message “Processing...”.

¢ On subsequent invocations the text shown in the output window is updated, and a new “pro-
cessing” message is appended.

Chapter 1. Gretl commands 26

When execution of the script is completed any remaining output is automatically flushed to the
text window.

Please note, there is no point in using flush in scripts that take less than (say) 5 seconds to execute.
Also note that this command should not be used at a point in the script where there is no further
output to be printed, as the “processing” message will then be misleading to the user.

The following illustrates the intended use of flush:

set echo off
scalar n = 10
Toop i=1..n
do some time-consuming operation
Toop 100 --quiet
a = mnormal(200,200)
b = inv(a)
endloop
print some results
printf "Iteration %2d done\n", i
if i <n
flush
endif
endloop

foreign

Syntax: foreign Tlanguage=Ilang
Options: --send-datal[=list] (pre-load data; see below)
--quiet (suppress output from foreign program)

This command opens a special mode in which commands to be executed by another program are
accepted. You exit this mode with end foreign; at this point the stacked commands are executed.

At present the “foreign” programs supported in this way are GNU R (language=R), Python, Julia,
GNU Octave (Tanguage=0Octave), Jurgen Doornik’s Ox and Stata. Language names are recognized
on a case-insensitive basis.

In connection with R, Octave and Stata the --send-data option has the effect of making data from
gretl’s workspace available within the target program. By default the entire dataset is sent, but you
can limit the data to be sent by giving the name of a predefined list of series. For example:

Tist Rlist = x1 x2 x3
foreign language=R --send-data=R1ist

See chapter 39 of the Gretl User’s Guide for details and examples.

fractint

Arguments: series [order]
Options: --gph (do Geweke and Porter-Hudak test)
--al1 (do both tests)
--quiet (don’t print results)
Tests the specified series for fractional integration (“long memory”). The null hypothesis is that the
integration order of the series is zero. By default the local Whittle estimator (Robinson, 1995) is

used but if the --gph option is given the GPH test (Geweke and Porter-Hudak, 1983) is performed
instead. If the --a11 flag is given then the results of both tests are printed.

Chapter 1. Gretl commands 27

For details on this sort of test, see Phillips and Shimotsu (2004).

If the optional order argument is not given the order for the test(s) is set automatically as the lesser
of T/2 and T°5.

The results can be retrieved using the accessors $test and $pvalue. These values are based on the
Local Whittle Estimator unless the --gph option is given.

Menu path: /Variable/Unit root tests/Fractional integration

freq

Argument: var

Options: --nbins=n (specify number of bins)
--min=minval (specify minimum, see below)
--binwidth=width (specify bin width, see below)
--normal (test for the normal distribution)
--gamma (test for gamma distribution)
--silent (don’t print anything)
--matrix=name (use column of named matrix)
--plot=mode-or-filename (see below)

Examples: freq x
freq x --normal

freq x --nbins=5

freq x --min=0 --binwidth=0.10

With no options given, displays the frequency distribution for the series var (given by name or
number), with the number of bins and their size chosen automatically.

If the --matrix option is given, var (which must be an integer) is instead interpreted as a 1-based
index that selects a column from the named matrix. If the matrix in question is in fact a column
vector, the var argument may be omitted.

To control the presentation of the distribution you may specify either the number of bins or the
minimum value plus the width of the bins, as shown in the last two examples above. The --min
option sets the lower limit of the left-most bin.

If the --normal option is given, the Doornik-Hansen chi-square test for normality is computed. If
the --gamma option is given, the test for normality is replaced by Locke’s nonparametric test for
the null hypothesis that the variable follows the gamma distribution; see Locke (1976), Shapiro and
Chen (2001). Note that the parameterization of the gamma distribution used in gretl is (shape,
scale).

By default, if the program is not in batch mode a plot of the distribution is shown. This can be
adjusted via the --plot option. The acceptable parameters to this option are none (to suppress
the plot); dispTlay (to display a plot even when in batch mode); or a file name. The effect of
providing a file name is as described for the --output option of the gnuplot command.

The --siTent flag suppresses the usual text output. This might be used in conjunction with one
or other of the distribution test options: the test statistic and its p-value are recorded, and can be
retrieved using the accessors $test and $pvalue. It might also be used along with the --plot option
if you just want a histogram and don’t care to see the accompanying text.

Note that gretl does not have a function that matches this command, but it is possible to use the
aggregate function to achieve the same purpose. In addition, the frequency distribution constructed
by freq can be obtained in matrix form via the $result accessor.

Menu path: /Variable/Frequency distribution

Chapter 1. Gretl commands 28

funcerr
Argument: [message]

Applicable only in the context of a user-defined function (see function). Causes execution of the
current function to terminate with an error condition flagged.

The optional message argument can take the form of a string literal or the name of a string variable;
if present it is printed as part of the error message shown to the caller of the function.

function
Argument: fnname

Opens a block of statements in which a function is defined. This block must be closed with end
function. See chapter 13 of the Gretl User’s Guide for details.

garch

Arguments: p q ; depvar [indepvars]
Options: --robust (robust standard errors)
--verbose (print details of iterations)
--vcv (print covariance matrix)
--nc (do not include a constant)
--stdresid (standardize the residuals)
--fcp (use Fiorentini, Calzolari, Panattoni algorithm)
--arma-init (initial variance parameters from ARMA)
Examples: garch 11 ; vy
garch 1 1 ; y 0 x1 x2 --robust
See also garch.inp, sw_chl4.inp
Estimates a GARCH model (GARCH = Generalized Autoregressive Conditional Heteroskedasticity),
either a univariate model or, if indepvars are specified, including the given exogenous variables.

The integer values p and g (which may be given in numerical form or as the names of pre-existing
scalar variables) represent the lag orders in the conditional variance equation:

q p
]’Lt = Xo + Z (Xié:'tz_i + Z tht—j
i=1 j=1

The parameter p therefore represents the Generalized (or “AR”) order, while g represents the reg-
ular ARCH (or “MA”) order. If p is non-zero, g must also be non-zero otherwise the model is
unidentified. However, you can estimate a regular ARCH model by setting g to a positive value and
p to zero. The sum of p and g must be no greater than 5. Note that a constant is automatically
included in the mean equation unless the --nc option is given.

By default native gretl code is used in estimation of GARCH models, but you also have the option
of using the algorithm of Fiorentini et al. (1996). The former uses the BFGS maximizer while the
latter uses the information matrix to maximize the likelihood, with fine-tuning via the Hessian.

Several variant estimators of the covariance matrix are available with this command. By default,
the Hessian is used unless the --robust option is given, in which case the QML (White) covari-
ance matrix is used. Other possibilities (e.g. the information matrix, or the Bollerslev-Wooldridge
estimator) can be specified using the set command.

By default, the estimates of the variance parameters are initialized using the unconditional error
variance from initial OLS estimation for the constant, and small positive values for the coefficients
on the past values of the squared error and the error variance. The flag --arma-init calls for the

Chapter 1. Gretl commands 29

starting values of these parameters to be set using an initial ARMA model, exploiting the relation-
ship between GARCH and ARMA set out in Chapter 21 of Hamilton’s Time Series Analysis. In some
cases this may improve the chances of convergence.

The GARCH residuals and estimated conditional variance can be retrieved as $uhat and $h respec-
tively. For example, to get the conditional variance:

series ht = $h

If the --stdresid option is given, the $uhat values are divided by the square root of h;.
Menu path: /Model/Time series/GARCH

genr
Arguments: newvar = formula

NOTE: this command has undergone numerous changes and enhancements since the following help
text was written, so for comprehensive and updated info on this command you’ll want to refer to
chapter 9 of the Gretl User’s Guide. On the other hand, this help does not contain anything actually
erroneous, so take the following as “you have this, plus more”.

In the appropriate context, series, scalar, matrix, string and bundle are synonyms for this
command.

Creates new variables, often via transformations of existing variables. See also diff, logs, lags,
1diff, sdiff and square for shortcuts. In the context of a genr formula, existing variables must be
referenced by name, not ID number. The formula should be a well-formed combination of variable
names, constants, operators and functions (described below). Note that further details on some
aspects of this command can be found in chapter 9 of the Gretl User’s Guide.

series c = 10

A genr command may yield either a series or a scalar result. For example, the formula x2 = x *
2 naturally yields a series if the variable x is a series and a scalar if x is a scalar. The formulae x
= 0 and mx = mean(x) naturally return scalars. Under some circumstances you may want to have
a scalar result expanded into a series or vector. You can do this by using series as an “alias” for
the genr command. For example, series x = 0 produces a series all of whose values are set to
0. You can also use scalar as an alias for genr. It is not possible to coerce a vector result into
a scalar, but use of this keyword indicates that the result should be a scalar: if it is not, an error
occurs.

When a formula yields a series result, the range over which the result is written to the target variable
depends on the current sample setting. It is possible, therefore, to define a series piecewise using
the smp1 command in conjunction with genr.

Supported arithmetical operators are, in order of precedence: A (exponentiation); *, / and % (mod-
ulus or remainder); + and -.

The available Boolean operators are (again, in order of precedence): ! (negation), & (logical AND),
| | (logical OR), >, <, == (is equal to), >= (greater than or equal), <= (less than or equal) and != (not
equal). The Boolean operators can be used in constructing dummy variables: for instance (x >
10) returns 1 if x > 10, 0 otherwise.

Built-in constants are pi and NA. The latter is the missing value code: you can initialize a variable
to the missing value with scalar x = NA.

The genr command supports a wide range of mathematical and statistical functions, including
all the common ones plus several that are special to econometrics. In addition it offers access to
numerous internal variables that are defined in the course of running regressions, doing hypothesis
tests, and so on.

Chapter 1. Gretl commands 30

For a listing of functions and accessors, see Chapter 2.

Besides the operators and functions noted above there are some special uses of genr:

e genr time creates a time trend variable (1,2,3,...) called time. genr index does the same
thing except that the variable is called index.

e genr dummy creates dummy variables up to the periodicity of the data. In the case of quarterly
data (periodicity 4), the program creates dql = 1 for first quarter and 0 in other quarters, dqg2
=1 for the second quarter and 0 in other quarters, and so on. With monthly data the dummies
are named dml, dm2, and so on. With other frequencies the names are dummy_1, dummy_2, etc.

e genr unitdum and genr timedum create sets of special dummy variables for use with panel
data. The first codes for the cross-sectional units and the second for the time period of the
observations.

Note: In the command-line program, genr commands that retrieve model-related data always ref-
erence the model that was estimated most recently. This is also true in the GUI program, if one
uses genr in the “gretl console” or enters a formula using the “Define new variable” option under
the Add menu in the main window. With the GUI, however, you have the option of retrieving data
from any model currently displayed in a window (whether or not it’s the most recent model). You
do this under the “Save” menu in the model’s window.

The special variable obs serves as an index of the observations. For instance series dum =
(obs==15) will generate a dummy variable that has value 1 for observation 15, 0 otherwise. You
can also use this variable to pick out particular observations by date or name. For example, series
d = (0bs>1986:4), series d = (obs>"2008-04-01"), or series d = (obs=="CA"). If daily
dates or observation labels are used in this context, they should be enclosed in double quotes.
Quarterly and monthly dates (with a colon) may be used unquoted. Note that in the case of annual
time series data, the year is not distinguishable syntactically from a plain integer; therefore if you
wish to compare observations against obs by year you must use the function obsnum to convert the
year to a 1-based index value, as in series d = (obs>o0bsnum(1986)).

Scalar values can be pulled from a series in the context of a genr formula, using the syntax var-
name[obs]. The obs value can be given by number or date. Examples: x[5], CPI[1996:01]. For
daily data, the form YYYY-MM-DD should be used, e.g. ibm[1970-01-23].

An individual observation in a series can be modified via genr. To do this, a valid observation
number or date, in square brackets, must be appended to the name of the variable on the left-hand
side of the formula. For example, genr x[3] = 30 or genr x[1950:04] = 303.7.

Menu path: /Add/Define new variable

Other access: Main window pop-up menu

gmm

Options: --two-step (two step estimation)
--iterate (iterated GMM)
--vcv (print covariance matrix)
--verbose (print details of iterations)
--Tbfgs (use L-BFGS-B instead of regular BFGS)
Example: hall_cbapm.inp
Performs Generalized Method of Moments (GMM) estimation using the BFGS (Broyden, Fletcher,
Goldfarb, Shanno) algorithm. You must specify one or more commands for updating the relevant
quantities (typically GMM residuals), one or more sets of orthogonality conditions, an initial matrix

of weights, and a listing of the parameters to be estimated, all enclosed between the tags gmm and
end gmm. Any options should be appended to the end gmm line.

Chapter 1. Gretl commands

Formula

= Xx1A3

= Tn((x1+x2)/x3)
= X>Yy

x(-2)

= x(+2)

= diff(x)

= 1diff(x)

K KKK NKKXK
1

= sort(x)

= dsort(x)

= int(x)

= abs(x)

= sum(x)

= cum(x)

aa = Yess

x = $coeff(sqft)

K K K K KK

rho4 = $rho(4)
cvx1lx2 = $vev(xl, x2)

foo uniform()
bar 3 * normal()
samp = ok(x)

Table 1.1: Examples of use of genr command
Comment

x1 cubed

z(t) =1if x(t) > y(t), otherwise 0
x lagged 2 periods

x led 2 periods

y(t) = x(t) - x(t-1)

y(t) = Tog x(t) - log x(t-1), the instantaneous rate of growth of
X

sorts x in increasing order and stores in y

sort x in decreasing order

truncate x and store its integer value as y

store the absolute values of x

sum x values excluding missing NA entries

cumulation: v, = >t _| x;

set aa equal to the Error Sum of Squares from last regression

grab the estimated coefficient on the variable sqft from the last regres-
sion

grab the 4th-order autoregressive coefficient from the last model (pre-
sumes an ar model)

grab the estimated coefficient covariance of vars x1 and x2 from the last
model

uniform pseudo-random variable in range 0-1
normal pseudo-random variable, y =0, o = 3
=1 for observations where x is not missing.

31

Chapter 1. Gretl commands 32

Please see chapter 24 of the Gretl User’s Guide for details on this command. Here we just illustrate
with a simple example.

gnm e =y - X*b
orthog e ; W
weights V
params b

end gmm

In the example above we assume that y and X are data matrices, b is an appropriately sized vector of
parameter values, W is a matrix of instruments, and V is a suitable matrix of weights. The statement

orthog e ; W

indicates that the residual vector e is in principle orthogonal to each of the instruments composing
the columns of W.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via
the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be either a double-quoted string literal holding k
space-separated names or the name of a string variable that holds k such names.

Menu path: /Model/Instrumental variables/GMM

gnuplot

Arguments: yvars xvar [dumvar]

Options: --with-Tines[=varspec] (use lines, not points)
--with-1p[=varspec] (use lines and points)
--with-impulses[=varspec] (use vertical lines)
--with-steps[=varspec] (use perpendicular line segments)
--time-series (plot against time)

--single-yaxis (force use of just one y-axis)
--dummy (see below)

--fit=fitspec (see below)

--font=fontspec (see below)

--band=bandspec (see below)
--band-styTle=style (see below)

--matrix=name (plot columns of named matrix)
--output=filename (send output to specified file)
--input=filename (take input from specified file)

Examples: gnuplot yl y2 x
gnuplot x --time-series --with-1ines
gnuplot wages educ gender --dummy
gnuplot y x --fit=quadratic
gnuplot yl y2 x --with-Tines=y2

The variables in the list yvars are graphed against xvar. For a time series plot you may either give
time as xvar or use the option flag --time-series. See also the plot and panplot commands.

Chapter 1. Gretl commands 33

By default, data-points are shown as points; this can be overridden by giving one of the options
--with-Tines, --with-1p, --with-impulses or --with-steps. If more than one variable is to
be plotted on the 7y axis, the effect of these options may be confined to a subset of the variables by
using the varspec parameter. This should take the form of a comma-separated listing of the names
or numbers of the variables to be plotted with lines or impulses respectively. For instance, the final
example above shows how to plot y1 and y2 against x, such that y2 is represented by a line but y1
by points.

If the --dummy option is selected, exactly three variables should be given: a single y variable, an x
variable, and dvar, a discrete variable. The effect is to plot yvar against xvar with the points shown
in different colors depending on the value of dvar at the given observation.

Taking data from a matrix

Generally, the arguments yvars and xvar are required, and refer to series in the current dataset
(given either by name or ID number). But if a named matrix is supplied via the --matrix option
these arguments become optional: if the specified matrix has k columns, by default the first k —
1 columns are treated as the yvars and the last column as xvar. If the --time-series option is
given, however, all k columns are plotted against time. If you wish to plot selected columns of the
matrix, you should specify yvars and xvar in the form of 1-based column numbers. For example if
you want a scatterplot of column 2 of matrix M against column 1, you can do:

gnuplot 2 1 --matrix=M

Showing a line of best fit

The --fit option is applicable only for bivariate scatterplots and single time-series plots. The
default behavior for a scatterplot is to show the OLS fit if the slope coefficient is significant at the
10 percent level, while the default behavior for time-series is not to show any fitted line. You can
call for different behavior by using this option along with one of the following fitspec parameter
values. Note that if the plot is a single time series the place of x is taken by time.

Tinear: show the OLS fit regardless of its level of statistical significance.
e none: don’t show any fitted line.

e inverse, quadratic, cubic, semilog or 1inlog: show a fitted line based on a regression of
the specified type. By semilog, we mean a regression of log y on x; the fitted line represents
the conditional expectation of y, obtained by exponentiation. By 1in1og we mean a regression
of v on the log of x.

e Toess: show the fit from a robust locally weighted regression (also is sometimes known as
“lowess”).

Plotting a band

The --band option can be used for plotting zero or more series along with a “band” of some sort
(typically representing a confidence interval). This option requires two comma-separated parame-
ters: the name or ID number of a series representing the center of the band, and the name or ID
of a series giving the width of the band: the effect is to draw a band with y coordinates equal to
center minus width and center plus width. An optional third parameter (again, comma-separated)
can be used to give a multiplier for the width dimension, in the form of a numerical constant or the
name of a scalar variable. So for example, the following example plots y along with a band of plus
or minus 1.96 times se_y:

gnuplot y --time-series --band=y,se_y,1.96 --with-Tines

Chapter 1. Gretl commands 34

When the --band option is given, the companion option --band-style can be used to control
the band’s representation. By default the upper and lower limits are shown as solid lines, but the
parameters fil1, dash, bars or step cause the band to be drawn as a shaded area, using dashed
lines, using error bars or using steps, respectively. In addition a color specification can be appended
(following a comma) or substituted. Here are some style examples:

gnuplot ... --band-style=fill

gnuplot ... --band-style=dash,0xbbddff
gnuplot ... --band-style=,black
gnuplot ... --band-style=bars,blue

The first example produces a shaded area in the default color; the second switches to dashed lines
with a specified blue-gray color; the third uses solid black lines; and the last shows blue bars. Note
that colors can be given as either hexadecimal RGB values or by name; you can access the list of
color-names recognized by gnuplot by issuing the command “show colornames” in gnuplot itself,
or in the gretl console by doing

eval readfile("@gretldir/data/gnuplot/gpcolors.txt")

Recession bars

The “band” options described above can also be used to add “recession bars” to a plot. By this we
mean vertical bars occupying the full y-dimension of the plot and indicating the presence (bar) or
absence (no bar) of some qualitative feature in a time-series plot. Such bars are commonly used to
flag periods of recession; they could also be used to indicate periods of war, or anything that can
be coded in a 0/1 dummy variable.

In this context the --band option requires a single parameter: the identifier of a series with values
0 and 1, where 1 indicates “on” and 0 “off”. The --band-style option may be used to specify a
color for the bars, given in hexadecimal form or as the name of a color known to gnuplot (see the
previous section). An example showing a single bar is given below:

open AWM17 --quiet

series dum = obs >= 1990:1 && obs <= 1994:2

gnuplot YER URX --with-Tines --time-series \
--band=dum --band-style=0xcccccc --output=display \
{set key top left;}

Controlling the output

In interactive mode the plot is displayed immediately. In batch mode the default behavior is that
a gnuplot command file is written in the user’s working directory, with a name on the pattern
gpttmpN.plt, starting with N = 01. The actual plots may be generated later using gnuplot (under MS
Windows, wgnuplot). This behavior can be modified by use of the --output=filename option. This
option controls the filename used, and at the same time allows you to specify a particular output
format via the three-letter extension of the file name, as follows: .eps results in the production of
an Encapsulated PostScript (EPS) file; . pdf produces PDF; . png produces PNG format, .emf calls for
EMF (Enhanced MetaFile), . fig calls for an Xfig file, and . svg for SVG (Scalable Vector Graphics). If
the dummy filename “dispTlay” is given then the plot is shown on screen as in interactive mode. If
a filename with any extension other than those just mentioned is given, a gnuplot command file is
written.

Specifying a font

The --font option can be used to specify a particular font for the plot. The fontspec parameter
should take the form of the name of a font, optionally followed by a size in points separated from
the name by a comma or space, all wrapped in double quotes, as in

Chapter 1. Gretl commands 35
--font="serif,12"

Note that the fonts available to gnuplot will vary by platform, and if you're writing a plot command
that is intended to be portable it is best to restrict the font name to the generic sans or serif.

Adding gnuplot commands

A further option to this command is available: following the specification of the variables to be plot-
ted and the option flag (if any), you may add literal gnuplot commands to control the appearance
of the plot (for example, setting the plot title and/or the axis ranges). These commands should be
enclosed in braces, and each gnuplot command must be terminated with a semi-colon. A backslash
may be used to continue a set of gnuplot commands over more than one line. Here is an example
of the syntax:

{ set title ’My Title’; set yrange [0:1000]; }

Menu path: /View/Graph specified vars

Other access: Main window pop-up menu, graph button on toolbar

graphpg
Variants: graphpg add
graphpg fontscale value
graphpg show
graphpg free
graphpg --output=filename

The session “graph page” will work only if you have the KIgX typesetting system installed, and are
able to generate and view PDF or PostScript output.

In the session icon window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the graph page (or right-click and select “Display”), a page containing the selected
graphs will be composed and opened in a suitable viewer. From there you should be able to print
the page.

To clear the graph page, right-click on its icon and select “Clear”.

Note that on systems other than MS Windows, you may have to adjust the setting for the program
used to view PDF or PostScript files. Find that under the “Programs” tab in the gretl Preferences
dialog box (under the Tools menu in the main window).

It’s also possible to operate on the graph page via script, or using the console (in the GUI program).
The following commands and options are supported:

To add a graph to the graph page, issue the command graphpg add after saving a named graph,
as in

grfl <- gnuplot Y X
graphpg add

To display the graph page: graphpg show.
To clear the graph page: graphpg free.

To adjust the scale of the font used in the graph page, use graphpg fontscale scale, where scale
is a multiplier (with a default of 1.0). Thus to make the font size 50 percent bigger than the default
you can do

Chapter 1. Gretl commands 36

graphpg fontscale 1.5

To call for printing of the graph page to file, use the flag --output= plus a filename; the filename
should have the suffix “. pdf”, “.ps” or “. eps”. For example:

graphpg --output="myfile.pdf"

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

In this context the output uses colored lines by default; to use dot/dash patterns instead of colors
you can append the --monochrome flag.

hausman

Options: --nerlove (use Nerlove method for random effects)
--matrix_diff (use matrix-difference method for Hausman test)

This test is available only after estimating an OLS model using panel data (see also setobs). It tests
the simple pooled model against the principal alternatives, the fixed effects and random effects
models.

The fixed effects model allows the intercept of the regression to vary across the cross-sectional
units. An F-test is reported for the null hypotheses that the intercepts do not differ. The random
effects model decomposes the residual variance into two parts, one part specific to the cross-
sectional unit and the other specific to the particular observation. (This estimator can be computed
only if the number of cross-sectional units in the data set exceeds the number of parameters to be
estimated.) The Breusch-Pagan LM statistic tests the null hypothesis that the pooled OLS estimator
is adequate against the random effects alternative.

The pooled OLS model may be rejected against both of the alternatives, fixed effects and random
effects. Provided the unit- or group-specific error is uncorrelated with the independent variables,
the random effects estimator is more efficient than the fixed effects estimator; otherwise the ran-
dom effects estimator is inconsistent and the fixed effects estimator is to be preferred. The null
hypothesis for the Hausman test is that the group-specific error is not so correlated (and therefore
the random effects model is preferable). A low p-value for this test counts against the random
effects model and in favor of fixed effects.

The two options for this command pertain to the random effects model. By default the method of
Swamy and Arora is used, and the Hausman test statistic is calculated using the regression method.
The options enable the use of Nerlove’s alternative variance estimator and/or the matrix-difference
approach to the Hausman statistic.

Menu path: Model window, /Tests/Panel diagnostics

heckit
Arguments: depvar indepvars ; selection equation
Options: --quiet (suppress printing of results)

--two-step (perform two-step estimation)
--vcv (print covariance matrix)
--opg (OPG standard errors)
--robust (QML standard errors)
--cluster=clustvar (see logit for explanation)
--verbose (print extra output)

Example: heckit y 0 x1 x2 ; ys 0 x3 x4
heckit.inp

Chapter 1. Gretl commands 37

Heckman-type selection model. In the specification, the list before the semicolon represents the
outcome equation, and the second list represents the selection equation. The dependent variable
in the selection equation (ys in the example above) must be a binary variable.

By default, the parameters are estimated by maximum likelihood. The covariance matrix of the
parameters is computed using the negative inverse of the Hessian. If two-step estimation is desired,
use the --two-step option. In this case, the covariance matrix of the parameters of the outcome
equation is appropriately adjusted as per Heckman (1979).

Menu path: /Model/Limited dependent variable/Heckit

help

Variants: help
help functions
help command
help function
Option: --func (select functions help)

If no arguments are given, prints a list of available commands. If the single argument functions
is given, prints a list of available functions (see genr).

help command describes command (e.g. help smp1). help function describes function (e.g. help
Tdet). Some functions have the same names as related commands (e.g. diff): in that case the
default is to print help for the command, but you can get help on the function by using the --func
option.

Menu path: /Help

hfplot
Arguments: hflist [; Iflist]
Options: --with-Tines (plot with lines)

--time-series (put time on x-axis)
--output=filename (send output to specified file)

Provides a means of plotting a high-frequency series, possibly along with one or more series ob-
served at the base frequency of the dataset. The first argument should be a MIDAS list; the optional
additional Iflist terms, following a semicolon, should be regular (“low-frequency”) series.

For details on the effect of the --output option, please see the gnuplot command.

hsk
Arguments: depvar indepvars
Options: --no-squares (see below)

--vcv (print covariance matrix)

This command is applicable where heteroskedasticity is present in the form of an unknown func-
tion of the regressors which can be approximated by a quadratic relationship. In that context
it offers the possibility of consistent standard errors and more efficient parameter estimates as
compared with OLS.

The procedure involves (a) OLS estimation of the model of interest, followed by (b) an auxiliary
regression to generate an estimate of the error variance, then finally (c) weighted least squares,
using as weight the reciprocal of the estimated variance.

In the auxiliary regression (b) we regress the log of the squared residuals from the first OLS on
the original regressors and their squares (by default), or just on the original regressors (if the

Chapter 1. Gretl commands 38

--no-squares option is given). The log transformation is performed to ensure that the estimated
variances are all non-negative. Call the fitted values from this regression u*. The weight series for
the final WLS is then formed as 1/exp(u*).

Menu path: /Model/Other linear models/Heteroskedasticity corrected

hurst

Argument: series
Option: --plot=mode-or-filename (see below)

Calculates the Hurst exponent (a measure of persistence or long memory) for a time-series variable
having at least 128 observations.

The Hurst exponent is discussed by Mandelbrot (1983). In theoretical terms it is the exponent, H,
in the relationship
RS(x) = anf

where RS is the “rescaled range” of the variable x in samples of size n and a is a constant. The
rescaled range is the range (maximum minus minimum) of the cumulated value or partial sum of
x over the sample period (after subtraction of the sample mean), divided by the sample standard
deviation.

As a reference point, if x is white noise (zero mean, zero persistence) then the range of its cumu-
lated “wandering” (which forms a random walk), scaled by the standard deviation, grows as the
square root of the sample size, giving an expected Hurst exponent of 0.5. Values of the exponent
significantly in excess of 0.5 indicate persistence, and values less than 0.5 indicate anti-persistence
(negative autocorrelation). In principle the exponent is bounded by 0 and 1, although in finite
samples it is possible to get an estimated exponent greater than 1.

In gretl, the exponent is estimated using binary sub-sampling: we start with the entire data range,
then the two halves of the range, then the four quarters, and so on. For sample sizes smaller
than the data range, the RS value is the mean across the available samples. The exponent is then
estimated as the slope coefficient in a regression of the log of RS on the log of sample size.

By default, if the program is not in batch mode a plot of the rescaled range is shown. This can be
adjusted via the --pTot option. The acceptable parameters to this option are none (to suppress the
plot); display (to display a plot even when in batch mode); or a file name. The effect of providing
a file name is as described for the --output option of the gnuplot command.

Menu path: /Variable/Hurst exponent

if

Flow control for command execution. Three sorts of construction are supported, as follows.

simple form
if condition

commands
endif

two branches
if condition
commandsl
else
commands?2
endif

three or more branches
if conditionl

Chapter 1. Gretl commands 39

commandsl
elif condition2

commands?2
else

commands3
endif

condition must be a Boolean expression, for the syntax of which see genr. More than one elif
block may be included. In addition, if ... endif blocks may be nested.

include

Argument: filename
Option: --force (force re-reading from file)
Examples: include myfile.inp
include sols.gfn
Intended for use in a command script, primarily for including definitions of functions. filename

should have the extension inp (a plain-text script) or gfn (a gretl function package). The commands
in filename are executed then control is returned to the main script.

The --force option is specific to gfn files: its effect is to force gretl to re-read the function package
from file even if it is already loaded into memory. (Plain inp files are always read and processed in
response to this command.)

See also run.

info
Prints out any supplementary information stored with the current datafile.
Menu path: /Data/Dataset info

Other access: Data browser windows

intreg

Arguments: minvar maxvar indepvars

Options: --quiet (suppress printing of results)
--verbose (print details of iterations)
--robust (robust standard errors)
--o0pg (see below)
--cluster=clustvar (see logit for explanation)

Example: intreg lo hi const x1 x2
wtp.inp

Estimates an interval regression model. This model arises when the dependent variable is imper-

fectly observed for some (possibly all) observations. In other words, the data generating process is
assumed to be

Vi =xiB+e
but we only observe
my <y < My

(the interval may be left- or right-unbounded). Note that for some observations m may equal M.
The variables minvar and maxvar must contain NAs for left- and right-unbounded observations,
respectively.

Chapter 1. Gretl commands 40

The model is estimated by maximum likelihood, assuming normality of the disturbance term.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber-White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient. Alternatively, the --opg option can be given, in which case standard errors
are based on the outer product of the gradient alone.

Menu path: /Model/Limited dependent variable/Interval regression

join
Arguments: filename varname
Options: --data=column-name (see below)
--filter=expression (see below)
--ikey=inner-key (see below)
--okey=outer-key (see below)
--aggr=method (see below)
--tkey=column-name,format-string (see below)
--verbose (report on progress)
This command imports a data series from the source filename (which must be either a delimited

text data file or a “native” gretl data file) under the name varname. For details please see chapter 7
of the Gretl User’s Guide; here we just give a brief summary of the available options.

The --data option can be used to specify the column heading of the data in the source file, if this
differs from the name by which the data should be known in gretl.

The --filter option can be used to specify a criterion for filtering the source data (that is, selecting
a subset of observations).

The --ikey and --okey options can be used to specify a mapping between observations in the cur-
rent dataset and observations in the source data (for example, individuals can be matched against
the household to which they belong).

The --aggr option is used when the mapping between observations in the current dataset and the
source is not one-to-one.

The --tkey option is applicable only when the current dataset has a time-series structure. It can
be used to specify the name of a column containing dates to be matched to the dataset and/or the
format in which dates are represented in that column.

See also append for simpler joining operations.

kpss

Arguments: order varlist
Options: --trend (include a trend)
--seasonals (include seasonal dummies)
--verbose (print regression results)
--quiet (suppress printing of results)
--difference (use first difference of variable)
Examples: kpss 8 y
kpss 4 x1 --trend

For use of this command with panel data please see the final section in this entry.

Computes the KPSS test (Kwiatkowski et al., 1992) for stationarity, for each of the specified variables

Chapter 1. Gretl commands 41

(or their first difference, if the --difference option is selected). The null hypothesis is that the
variable in question is stationary, either around a level or, if the --trend option is given, around a
deterministic linear trend.

The order argument determines the size of the window used for Bartlett smoothing. If a negative
value is given this is taken as a signal to use an automatic window size of 4(T/100)°-2>, where T is
the sample size.

If the --verbose option is chosen the results of the auxiliary regression are printed, along with the
estimated variance of the random walk component of the variable.

The critical values shown for the test statistic are based on response surfaces estimated in the
manner set out by Sephton (1995), which are more accurate for small samples than the values given
in the original KPSS article. When the test statistic lies between the 10 percent and 1 percent critical
values a p-value is shown; this is obtained by linear interpolation and should not be taken too
literally. See the kpsscrit function for a means of obtaining these critical values programmatically.

Panel data

When the kpss command is used with panel data, to produce a panel unit root test, the applicable
options and the results shown are somewhat different. While you may give a list of variables
for testing in the regular time-series case, with panel data only one variable may be tested per
command. And the --verbose option has a different meaning: it produces a brief account of the
test for each individual time series (the default being to show only the overall result).

When possible, the overall test (null hypothesis: the series in question is stationary for all the
panel units) is calculated using the method of Choi (2001). This is not always straightforward, the
difficulty being that while the Choi test is based on the p-values of the tests on the individual series,
we do not currently have a means of calculating p-values for the KPSS test statistic; we must rely
on a few critical values.

If the test statistic for a given series falls between the 10 percent and 1 percent critical values, we
are able to interpolate a p-value. But if the test falls short of the 10 percent value, or exceeds the 1
percent value, we cannot interpolate and can at best place a bound on the global Choi test. If the
individual test statistic falls short of the 10 percent value for some units but exceeds the 1 percent
value for others, we cannot even compute a bound for the global test.

Menu path: /Variable/Unit root tests/KPSS test

labels

Variants: Tlabels [varlist]
Tabels --to-file=filename
Tabels --from-file=filename
labels --delete

Example: oprobit.inp

In the first form, prints out the informative labels (if present) for the series in varlist, or for all
series in the dataset if varlist is not specified.

With the option --to-f1ile, writes to the named file the labels for all series in the dataset, one
per line. If no labels are present an error is flagged; if some series have labels and others do not,
a blank line is printed for series with no label. The output file will be written in the currently set
workdir, unless the filename string contains a full path specification.

With the option --from-file, reads the specified file (which should be plain text) and assigns
labels to the series in the dataset, reading one label per line and taking blank lines to indicate blank
labels.

The --delete option does what you’d expect: it removes all the series labels from the dataset.

Chapter 1. Gretl commands 42

Menu path: /Data/Variable labels

lad
Arguments: depvar indepvars
Options: --vcv (print covariance matrix)

--no-vcv (don’t compute covariance matrix)

Calculates a regression that minimizes the sum of the absolute deviations of the observed from
the fitted values of the dependent variable. Coefficient estimates are derived using the Barrodale-
Roberts simplex algorithm; a warning is printed if the solution is not unique.

Standard errors are derived using the bootstrap procedure with 500 drawings. The covariance
matrix for the parameter estimates, printed when the --vcv flag is given, is based on the same
bootstrap. Since this is quite an expensive operation, the --no-vcv option is provided for the case
where the covariance matrix is not required; when this option is given standard errors will not be
available.

Note that this method can be slow when the sample is large or there are many regressors; in that
case it may be preferable to use the quantreg command. Given a dependent variable y and a list
of regressors X, the following commands are basically equivalent, except that the quantreg method
uses the faster Frisch-Newton algorithm and provides analytical rather than bootstrapped standard
erTors.

lad y const X
quantreg 0.5 y const X

Menu path: /Model/Robust estimation/Least Absolute Deviation

lags
Arguments: [order ;] laglist
Option: --byTag (order terms by lag)
Examples: Tags x y

Tlags 12 ; x y
Tags 4 ; x1 x2 x3 --bylag
See also sw_ch12.1inp, sw_chl4.1inp
Creates new series which are lagged values of each of the series in varlist. By default the number of

lags created equals the periodicity of the data. For example, if the periodicity is 4 (quarterly), the
command Tags x creates

x_1 = x(t-1)
x_2 = x(t-2)
x_3 = x(t-3)
x_4 = x(t-4)

The number of lags created can be controlled by the optional first parameter (which, if present,
must be followed by a semicolon).

The --bylag option is meaningful only if varlist contains more than one series and the maximum
lag order is greater than 1. By default the lagged terms are added to the dataset by variable: first
all lags of the first series, then all lags of the second series, and so on. But if --bylag is given, the
ordering is by lags: first lag 1 of all the listed series, then lag 2 of all the list series, and so on.

Menu path: /Add/Lags of selected variables

Chapter 1. Gretl commands 43

1diff
Argument: varlist

The first difference of the natural log of each series in varlist is obtained and the result stored in a
new series with the prefix 1d_. Thus 1diff x y creates the new variables

Td_x
Td_y

Tog(x) - Tog(x(-1))
Tog(y) - Tog(y(-1))

Menu path: /Add/Log differences of selected variables

leverage

Options: --save (save the resulting series)
--quiet (don’t print results)
--plot=mode-or-filename (see below)

Example: Tleverage.inp

Must follow an ols command. Calculates the leverage (h, which must lie in the range 0 to 1) for
each data point in the sample on which the previous model was estimated. Displays the residual
(u) for each observation along with its leverage and a measure of its influence on the estimates,
uh/(1 — h). “Leverage points” for which the value of h exceeds 2k/n (where k is the number of
parameters being estimated and n is the sample size) are flagged with an asterisk. For details on
the concepts of leverage and influence see Davidson and MacKinnon (1993), Chapter 2.

DFFITS values are also computed: these are “studentized residuals” (predicted residuals divided
by their standard errors) multiplied by +/h/(1 — h). For discussions of studentized residuals and
DFFITS see chapter 12 of Maddala’s Maddala (1992) or Belsley et al. (1980).

Briefly, a “predicted residual” is the difference between the observed value of the dependent vari-
able at observation t, and the fitted value for observation t obtained from a regression in which that
observation is omitted (or a dummy variable with value 1 for observation t alone has been added);
the studentized residual is obtained by dividing the predicted residual by its standard error.

If the --save flag is given with this command, the leverage, influence and DFFITS values are added
to the current data set; in this context the --quiet flag may be used to suppress the printing
of results. The default names of the saved series are, respectively, Tever, influ and dffits.
However, if series of these names already exist, the names of the newly saved series will be adjusted
to ensure uniqueness; in any case, they will be the highest-numbered three series in the dataset.

After execution, the $test accessor returns the cross-validation criterion, which is defined as
n
D (yi—P-i)?
i=1

where y_; is the forecast error for the i-th observation, after it has been excluded from the sample.
The criterion is, hence, the sum of the squared forecasting errors where all n observations but
the i-th one are used to predict it (the so-called leave-one-out estimator). For a broader discussion
of the cross-validation criterion, see Davidson and MacKinnon’s Econometric Theory and Methods,
pages 685-686, and the references therein.

By default, if this command is invoked interactively a plot of the leverage and influence values is
shown. This can be adjusted via the --plot option. The acceptable parameters to this option
are none (to suppress the plot); display (to display a plot even when in script mode); or a file
name. The effect of providing a file name is as described for the --output option of the gnuplot
command.

Menu path: Model window, /Analysis/Influential observations

Chapter 1. Gretl commands 44

levinlin
Arguments: order series
Options: --nc (test without a constant)
--ct (with constant and trend)
--quiet (suppress printing of results)
--verbose (print per-unit results)
Examples: Tevinlin 0 y
levinlin 2 y --ct
levinlin {2,2,3,3,4,4} y
Carries out the panel unit-root test described by Levin et al. (2002). The null hypothesis is that all
of the individual time series exhibit a unit root, and the alternative is that none of the series has a

unit root. (That is, a common AR(1) coefficient is assumed, although in other respects the statistical
properties of the series are allowed to vary across individuals.)

By default the test ADF regressions include a constant; to suppress the constant use the --nc
option, or to add a linear trend use the --ct option. (See the adf command for explanation of ADF
regressions.)

The (non-negative) order for the test (governing the number of lags of the dependent variable to
include in the ADF regressions) may be given in either of two forms. If a scalar value is given, this
is applied to all the individuals in the panel. The alternative is to provide a matrix containing a
specific lag order for each individual; this must be a vector with as many elements as there are
individuals in the current sample range. Such a matrix can be specified by name, or constructed
using braces as illustrated in the last example above.

When the --verbose option is given, the following results are printed for each unit in the panel:
delta, the coefficient on the lagged level in each ADF regression; s2e, the estimated variance of
the innovations; and s2y, the estimated long-run variance of the differenced series.

Note that panel unit-root tests can also be conducted using the adf and kpss commands.
Menu path: /Variable/Unit root tests/Levin-Lin-Chu test

logistic

Arguments: depvar indepvars
Options: --ymax=value (specify maximum of dependent variable)
--robust (robust standard errors)
--cluster=clustvar (see logit for explanation)
--vcVv (print covariance matrix)
--fixed-effects (see below)
Examples: logistic y const x
Togistic y const x --ymax=50

Logistic regression: carries out an OLS regression using the logistic transformation of the depen-
dent variable,
log <*y)
yr-y

The dependent variable must be strictly positive. If all its values lie between 0 and 1, the default is
to use a y* value (the asymptotic maximum of the dependent variable) of 1; if its values lie between
0 and 100, the default y* is 100.

If you wish to set a different maximum, use the --ymax option. Note that the supplied value must
be greater than all of the observed values of the dependent variable.

Chapter 1. Gretl commands 45

The fitted values and residuals from the regression are automatically adjusted using the inverse of
the logistic transformation:
k
v=E (73})

l1+e X

where x represents either a fitted value or a residual from the OLS regression using the logistic
dependent variable. The reported values are therefore comparable with the original dependent
variable. The need for approximation arises because the inverse transformation is nonlinear and
therefore does not conserve expectation.

The --fixed-effects option is applicable only if the dataset takes the form of a panel. In that case
we subtract the group means from the logistic transform of the dependent variable and estimation
proceeds as usual for fixed effects.

Note that if the dependent variable is binary, you should use the logit command instead.

Menu path: /Model/Limited dependent variable/Logistic

logit

Arguments: depvar indepvars

Options: --robust (robust standard errors)
--cluster=clustvar (clustered standard errors)
--multinomial (estimate multinomial logit)
--vcv (print covariance matrix)
--verbose (print details of iterations)
--p-values (show p-values instead of slopes)

Examples: keane.inp, oprobit.inp

If the dependent variable is a binary variable (all values are 0 or 1) maximum likelihood estimates
of the coefficients on indepvars are obtained via the Newton-Raphson method. As the model is
nonlinear the slopes depend on the values of the independent variables. By default the slopes
with respect to each of the independent variables are calculated (at the means of those variables)
and these slopes replace the usual p-values in the regression output. This behavior can be sup-
pressed by giving the --p-values option. The chi-square statistic tests the null hypothesis that all
coefficients are zero apart from the constant.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber-White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient; see chapter 10 of Davidson and MacKinnon (2004). But if the --cluster
option is given, then “cluster-robust” standard errors are produced; see chapter 19 of the Gretl
User’s Guide for details.

If the dependent variable is not binary but is discrete, then by default it is interpreted as an ordi-
nal response, and Ordered Logit estimates are obtained. However, if the --muTtinomial option is
given, the dependent variable is interpreted as an unordered response, and Multinomial Logit esti-
mates are produced. (In either case, if the variable selected as dependent is not discrete an error
is flagged.) In the multinomial case, the accessor $mnTprobs is available after estimation, to get a
matrix containing the estimated probabilities of the outcomes at each observation (observations in
rows, outcomes in columns).

If you want to use logit for analysis of proportions (where the dependent variable is the proportion
of cases having a certain characteristic, at each observation, rather than a 1 or 0 variable indicating
whether the characteristic is present or not) you should not use the lTogit command, but rather
construct the logit variable, as in

series 1gt_p = log(p/(1 - p))

Chapter 1. Gretl commands 46

and use this as the dependent variable in an OLS regression. See chapter 12 of Ramanathan (2002).

Menu path: /Model/Limited dependent variable/Logit

logs
Argument: varlist
The natural log of each of the series in varlist is obtained and the result stored in a new series with

the prefix 1_ (“el” underscore). For example, Togs x y creates the new variables 1_x = In(x) and
1_y = In(y).

Menu path: /Add/Logs of selected variables

loop

Argument: control
Options: --progressive (enable special forms of certain commands)
--verbose (report details of genr commands)
--quiet (do not report number of iterations performed)
Examples: Toop 1000
Toop 1000 --progressive
Toop while essdiff > .00001
Toop 1=1991..2000
loop for (r=-.99; r<=.99; r+=.01)
Toop foreach i xTist
See also armaloop.inp, keane.inp
This command opens a special mode in which the program accepts commands to be executed

repeatedly. You exit the mode of entering loop commands with endToop: at this point the stacked
commands are executed.

The parameter control may take any of five forms, as shown in the examples: an integer number of
times to repeat the commands within the loop; “whiTe” plus a boolean condition; a range of integer
values for index variable; “for” plus three expressions in parentheses, separated by semicolons
(which emulates the for statement in the C programming language); or “foreach” plus an index
variable and a list.

See chapter 12 of the Gretl User’s Guide for further details and examples. The effect of the
--progressive option (which is designed for use in Monte Carlo simulations) is explained there.
Not all gretl commands may be used within a loop; the commands available in this context are also
set out there.

mahal

Argument: varlist
Options: --quiet (don’t print anything)
--save (add distances to the dataset)
--vcv (print covariance matrix)
Computes the Mahalanobis distances between the series in varlist. The Mahalanobis distance is the
distance between two points in a k-dimensional space, scaled by the statistical variation in each

dimension of the space. For example, if p and q are two observations on a set of k variables with
covariance matrix C, then the Mahalanobis distance between the observations is given by

\/(v -q)'Cl(p-q)

Chapter 1. Gretl commands 47

where (p — q) is a k-vector. This reduces to Euclidean distance if the covariance matrix is the
identity matrix.

The space for which distances are computed is defined by the selected variables. For each ob-
servation in the current sample range, the distance is computed between the observation and the
centroid of the selected variables. This distance is the multidimensional counterpart of a standard
z-score, and can be used to judge whether a given observation “belongs” with a group of other
observations.

If the --vcv option is given, the covariance matrix and its inverse are printed. If the --save option
is given, the distances are saved to the dataset under the name mdist (or mdistl, mdist2 and so
on if there is already a variable of that name).

Menu path: /View/Mahalanobis distances

makepkg

Argument: filename
Options: --index (write auxiliary index file)
--translations (write auxiliary strings file)

Supports creation of a gretl function package via the command line. The mode of operation of this
command depends on the extension of filename, which must be either .gfn or .zip.

Gfn mode

Writes a gfn file. It is assumed that a package specification file, with the same basename as filename
but with the extension .spec, is accessible, along with any auxiliary files that it references. It is
also assumed that all the functions to be packaged have been read into memory.

Zip mode

Writes a zip package file (gfn plus other materials). If a gfn file of the same basename as filename
is found, gretl checks for corresponding inp and spec files: if these are both found and at least
one of them is newer than the gfn file then the gfn is rebuilt, otherwise the existing gfn is used. If
no such file is found, gretl first attempts to build the gfn.

Gfn options

The option flags support the writing of auxiliary files, intended for use with gretl “addons”. The
index file is a short XML document containing basic information about the package; it has the
same basename as the package and the extension .xm1. The translations file contains strings from
the package that may be suitable for translation, in C format; for package foo this file is named
foo-118n.c. These files are not produced if the command is operating in zip mode and a pre-
existing gfn file is used.

For details on all of this, see the Function Package Guide.

Menu path: /File/Function packages/New package

markers

Variants: markers --to-file=filename
markers --from-file=filename
markers --delete
With the option --to-file, writes to the named file the observation marker strings from the cur-

rent dataset, one per line. If no such strings are present an error is flagged. The output file will be
written in the currently set workdir, unless the filename string contains a full path specification.

Chapter 1. Gretl commands 48

With the option --from-file, reads the specified file (which should be plain text) and assigns
observation markers to the rows in the dataset, reading one marker per line. In general there should
be at least as many markers in the file as observations in the dataset, but if the dataset is a panel it
is also acceptable if the number of markers in the file matches the number of cross-sectional units
(in which case the markers are repeated for each time period.)

The --delete option does what you'd expect: it removes the observation marker strings from the
dataset.

Menu path: /Data/Observation markers

meantest
Arguments: seriesl series?
Option: --unequal-vars (assume variances are unequal)

Calculates the t statistic for the null hypothesis that the population means are equal for the vari-
ables series1 and series?2, and shows its p-value.

By default the test statistic is calculated on the assumption that the variances are equal for the two
variables. With the --unequal-vars option the variances are assumed to be different; in this case
the degrees of freedom for the test statistic are approximated as per Satterthwaite (1946).

Menu path: /Tools/Test statistic calculator

midasreg

Arguments: depvar indepvars ; MIDAS-terms
Options: --vcv (print covariance matrix)
--robust (robust standard errors)
--quiet (suppress printing of results)
--Tevenberg (see below)
Examples: midasreg y 0 y(-1) ; mds(X, 1, 9, 1, theta)
midasreg y 0 y(-1) ; mds(X, 1, 9, 0)
midasreg y 0 y(-1) ; mdsT(XL, 2, theta)
See also gdp_midas.inp
Carries out least-squares estimation (either NLS or OLS, depending on the specification) of a MIDAS
(Mixed Data Sampling) model. Such models include one or more independent variables that are

observed at a higher frequency than the dependent variable; for a good brief introduction see
Armesto et al. (2010).

The variables in indepvars should be of the same frequency as the dependent variable. This list
should usually include const or 0 (intercept) and typically includes one or more lags of the depen-
dent variable. The high-frequency terms are given after a semicolon; each one takes the form of a
number of comma-separated arguments within parentheses, prefixed by either mds or mdsT.

mds: this variant generally requires 5 arguments, as follows: the name of a MIDAS list, two inte-
gers giving the minimum and maximum high-frequency lags, an integer between 0 and 4 (or string,
see below) specifying the type of parameterization to use, and the name of a vector holding initial
values of the parameters. The example below calls for lags 3 to 11 of the high-frequency series rep-
resented by the list X, using parameterization type 1 (exponential Almon, see below) with initializer
theta.

mds(X, 3, 11, 1, theta)

mds1: generally requires 3 arguments: the name of a list of MIDAS lags, an integer (or string, see
below) to specify the type of parameterization and the name of an initialization vector. In this case

Chapter 1. Gretl commands 49

the minimum and maximum lags are implicit in the initial list argument. In the example below
XTags should be a list which already holds all the required lags; such a list can be constructed
using the hflags function.

mds1(XLags, 1, theta)

The supported types of parameterization are shown below; in the context of mds and mds1 specifi-
cations these may be given in the form of numeric codes or the double-quoted strings shown after
the numbers.

0 or "umidas": unrestricted MIDAS or U-MIDAS (each lag has its own coefficient)

: iz X i ; ui , u
1 or "nealmon": normalized exponential Almon; requires at least one parameter, commonly uses
two

2 or "beta0": normalized beta with a zero last lag; requires exactly two parameters
3 or "betan": normalized beta with non-zero last lag; requires exactly three parameters
4 or "almonp": (non-normalized) Almon polynomial; requires at least one parameter

When the parameterization is U-MIDAS, the final initializer argument is not required. In other cases
you can request an automatic initialization by substituting one or other of these two forms for the
name of an initial parameter vector:

e The keyword null: this is accepted if the parameterization has a fixed number of terms
(the beta cases, with 2 or 3 parameters). It’s also accepted for the exponential Almon case,
implying the default of 2 parameters.

e An integer value giving the required number of parameters.

The estimation method used by this command depends on the specification of the high-frequency
terms. In the case of U-MIDAS the method is OLS, otherwise it is nonlinear least squares (NLS).
When the normalized exponential Almon or normalized beta parameterization is specified, the
default NLS method is a combination of constrained BFGS and OLS, but the --1evenberg option
can be given to force use of the Levenberg-Marquardt algorithm.

Menu path: /Model/Time series/MIDAS

mle

Arguments: log-likelihood function [derivatives]
Options: --quiet (don’t show estimated model)
--vcv (print covariance matrix)
--hessian (base covariance matrix on the Hessian)
--robust (QML covariance matrix)
--cluster=clustvar (cluster-robust covariance matrix)
--verbose (print details of iterations)
--no-gradient-check (see below)
--auxiliary (see below)
--1bfgs (use L-BFGS-B instead of regular BFGS)
Examples: weibull.inp, biprobit_via_ghk.inp, frontier.inp, keane.inp
Performs Maximum Likelihood (ML) estimation using either the BFGS (Broyden, Fletcher, Goldfarb,
Shanno) algorithm or Newton’s method. The user must specify the log-likelihood function. The
parameters of this function must be declared and given starting values prior to estimation. Option-

ally, the user may specify the derivatives of the log-likelihood function with respect to each of the
parameters; if analytical derivatives are not supplied, a numerical approximation is computed.

Chapter 1. Gretl commands 50

This help text assumes use of the default BFGS maximizer. For information on using Newton’s
method please see chapter 23 of the Gretl User’s Guide.

Simple example: Suppose we have a series X with values 0 or 1 and we wish to obtain the maximum
likelihood estimate of the probability, p, that X = 1. (In this simple case we can guess in advance
that the ML estimate of p will simply equal the proportion of Xs equal to 1 in the sample.)

The parameter p must first be added to the dataset and given an initial value. For example, scalar
p = 0.5.

We then construct the MLE command block:

mle Toglik = X*Tog(p) + (1-X)*1og(1l-p)
deriv p = X/p - (1-X)/(1-p)
end mle

The first line above specifies the log-likelihood function. It starts with the keyword mle, then a
dependent variable is specified and an expression for the log-likelihood is given (using the same
syntax as in the genr command). The next line (which is optional) starts with the keyword deriv
and supplies the derivative of the log-likelihood function with respect to the parameter p. If no
derivatives are given, you should include a statement using the keyword params which identifies
the free parameters: these are listed on one line, separated by spaces and can be either scalars, or
vectors, or any combination of the two. For example, the above could be changed to:

mle loglik = X*log(p) + (1-X)*1og(1l-p)
params p
end mle

in which case numerical derivatives would be used.

Note that any option flags should be appended to the ending line of the MLE block.

Covariance matrix and standard errors

If the log-likelihood function returns a series or vector giving per-observation values then estimated
standard errors are by default based on the Outer Product of the Gradient (OPG), while if the
--hessian option is given they are instead based on the negative inverse of the Hessian, which
is approximated numerically. If the --robust option is given, a QML estimator is used (namely,
a sandwich of the negative inverse of the Hessian and the OPG). However, if the log-likelihood
function just returns a scalar value, the OPG is not available (and so neither is the QML estimator),
and standard errors are of necessity computed using the numerical Hessian.

In the event that you just want the primary parameter estimates you can give the --auxiTliary
option, which suppresses computation of the covariance matrix and standard errors; this will save
some CPU cycles and memory usage.

Checking analytical derivatives

If you supply analytical derivatives, by default gretl runs a numerical check on their plausibility.
Occasionally this may produce false positives, instances where correct derivatives appear to be
wrong and estimation is refused. To counter this, or to achieve a little extra speed, you can give
the option --no-gradient-check. Obviously, you should do this only if you are confident that the
gradient you have specified is right.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via

Chapter 1. Gretl commands 51

the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be either a double-quoted string literal holding k
space-separated names or the name of a string variable that holds k such names.

For an in-depth description of mle please refer to chapter 23 of the Gretl User’s Guide.
Menu path: /Model/Maximum likelihood

modeltab

Variants: modeltab add
modeltab show
modeltab free
modeltab --output=filename

Manipulates the gretl “model table”. See chapter 3 of the Gretl User’s Guide for details. The sub-
commands have the following effects: add adds the last model estimated to the model table, if
possible; show displays the model table in a window; and free clears the table.

To call for printing of the model table, use the flag --output= plus a filename. If the filename has
the suffix “.tex”, the output will be in TgX format; if the suffix is “. rtf” the output will be RTF;
otherwise it will be plain text. In the case of TgX output the default is to produce a “fragment”, suit-
able for inclusion in a document; if you want a stand-alone document instead, use the --complete
option, for example

modeTtab --output="myfile.tex" --complete

Menu path: Session icon window, Model table icon

modprint

Arguments: coeffmat names [addstats]
Option: --output=filename (send output to specified file)

Prints the coefficient table and optional additional statistics for a model estimated “by hand”.
Mainly useful for user-written functions.

The argument coeffmat should be a k by 2 matrix containing k coefficients and k associated stan-
dard errors. The names argument should supply at least k names for labeling the coefficients; it
can take the form of a string literal (in double quotes) or string variable, in which case the names
should be separated by commas or spaces, or it may be given as a named array of strings.

The optional argument addstats is a vector containing p additional statistics to be printed under the
coefficient table. If this argument is given, then names should contain k + p names, the additional
p names to be associated with the extra statistics.

To put the output into a file, use the flag --output= plus a filename. If the filename has the suffix
“.tex”, the output will be in TgX format; if the suffix is “. rtf” the output will be RTF; otherwise
it will be plain text. In the case of TgX output the default is to produce a “fragment”, suitable for
inclusion in a document; if you want a stand-alone document instead, use the --compTlete option.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

Chapter 1. Gretl commands 52

modtest

Argument: [order]

Options: --normality (normality of residual)
--Togs (nonlinearity, logs)
--squares (nonlinearity, squares)
--autocorr (serial correlation)
--arch (ARCH)
--white (heteroskedasticity, White’s test)
--white-nocross (White’s test, squares only)
--breusch-pagan (heteroskedasticity, Breusch-Pagan)
--robust (robust variance estimate for Breusch-Pagan)
--panel (heteroskedasticity, groupwise)
--comfac (common factor restriction, AR1 models only)
--xdepend (cross-sectional dependence, panel data only)
--quiet (don’t print details)
--silent (don’t print anything)

Example: credscore.inp

Must immediately follow an estimation command. The discussion below applies to usage of the
command following estimation of a single-equation model; see chapter 29 of the Gretl User’s Guide
for an account of how modtest operates after estimation of a VAR.

Depending on the option given, this command carries out one of the following: the Doornik-Hansen
test for the normality of the error term; a Lagrange Multiplier test for nonlinearity (logs or squares);
White’s test (with or without cross-products) or the Breusch-Pagan test (Breusch and Pagan (1979))
for heteroskedasticity; the LMF test for serial correlation (Kiviet, 1986); a test for ARCH (Autore-
gressive Conditional Heteroskedasticity; see also the arch command); a test of the common factor
restriction implied by AR(1) estimation; or a test for cross-sectional dependence in panel-data mod-
els. With the exception of the normality, common factor and cross-sectional dependence tests most
of the options are only available for models estimated via OLS, but see below for details regarding
two-stage least squares.

The optional order argument is relevant only in case the --autocorr or --arch options are se-
lected. The default is to run these tests using a lag order equal to the periodicity of the data, but
this can be adjusted by supplying a specific lag order.

The --robust option applies only when the Breusch-Pagan test is selected; its effect is to use
the robust variance estimator proposed by Koenker (1981), making the test less sensitive to the
assumption of normality.

The --panel option is available only when the model is estimated on panel data: in this case a
test for groupwise heteroskedasticity is performed (that is, for a differing error variance across the
cross-sectional units).

The --comfac option is available only when the model is estimated via an AR(1) method such as
Hildreth-Lu. The auxiliary regression takes the form of a relatively unrestricted dynamic model,
which is used to test the common factor restriction implicit in the AR(1) specification.

The --xdepend option is available only for models estimated on panel data. The test statistic
is that developed by Pesaran (2004). The null hypothesis is that the error term is independently
distributed across the cross-sectional units or individuals.

By default, the program prints the auxiliary regression on which the test statistic is based, where
applicable. This may be suppressed by using the --quiet flag (minimal printed output) or the
--silent flag (no printed output). The test statistic and its p-value may be retrieved using the
accessors Stest and $pvalue respectively.

Chapter 1. Gretl commands 53

When a model has been estimated by two-stage least squares (see tsls), the LM principle breaks
down and gretl offers some equivalents: the --autocorr option computes Godfrey’s test for au-
tocorrelation (Godfrey, 1994) while the --white option yields the HET1 heteroskedasticity test
(Pesaran and Taylor, 1999).

For additional diagnostic tests on models, see chow, cusum, reset and glrtest.

Menu path: Model window, /Tests

mpols

Arguments: depvar indepvars
Options: --vcv (print covariance matrix)
--simple-print (do not print auxiliary statistics)
--quiet (suppress printing of results)
Computes OLS estimates for the specified model using multiple precision floating-point arithmetic,
with the help of the Gnu Multiple Precision (GMP) library. By default 256 bits of precision are used
for the calculations, but this can be increased via the environment variable GRETL_MP_BITS. For

example, when using the bash shell one could issue the following command, before starting gretl,
to set a precision of 1024 bits.

export GRETL_MP_BITS=1024

A rather arcane option is available for this command (primarily for testing purposes): if the inde-
pvars list is followed by a semicolon and a further list of numbers, those numbers are taken as
powers of x to be added to the regression, where x is the last variable in indepvars. These addi-
tional terms are computed and stored in multiple precision. In the following example y is regressed
on x and the second, third and fourth powers of x:

mpols y 0 x ; 2 3 4

Menu path: /Model/Other linear models/High precision OLS

negbin

Arguments: depvar indepvars [; offset]
Options: --model11 (use NegBin 1 model)
--robust (QML covariance matrix)
--cluster=clustvar (see logit for explanation)
--opg (see below)
--vcv (print covariance matrix)
--verbose (print details of iterations)
Example: camtriv.inp
Estimates a Negative Binomial model. The dependent variable is taken to represent a count of the
occurrence of events of some sort, and must have only non-negative integer values. By default the
model NegBin 2 is used, in which the conditional variance of the count is given by u(1 + «u), where

u denotes the conditional mean. But if the --model11 option is given the conditional variance is u(1
+).

The optional offset series works in the same way as for the poisson command. The Poisson model
is a restricted form of the Negative Binomial in which « = 0 by construction.

By default, standard errors are computed using a numerical approximation to the Hessian at con-
vergence. But if the --opg option is given the covariance matrix is based on the Outer Product of

Chapter 1. Gretl commands 54

the Gradient (OPG), or if the --robust option is given QML standard errors are calculated, using a
“sandwich” of the inverse of the Hessian and the OPG.

Menu path: /Model/Limited dependent variable/Count data

nls

Arguments: function [derivatives]

Options: --quiet (don’t show estimated model)
--robust (robust standard errors)
--vcv (print covariance matrix)
--verbose (print details of iterations)
--no-gradient-check (see below)

Examples: wg_nls.inp, ects_nls.inp

Performs Nonlinear Least Squares (NLS) estimation using a modified version of the Levenberg-
Marquardt algorithm. You must supply a function specification. The parameters of this function
must be declared and given starting values prior to estimation. Optionally, you may specify the
derivatives of the regression function with respect to each of the parameters. If you do not supply
derivatives you should instead give a list of the parameters to be estimated (separated by spaces
or commas), preceded by the keyword params. In the latter case a numerical approximation to the
Jacobian is computed.

It is easiest to show what is required by example. The following is a complete script to estimate the
nonlinear consumption function set out in William Greene’s Econometric Analysis (Chapter 11 of
the 4th edition, or Chapter 9 of the 5th). The numbers to the left of the lines are for reference and
are not part of the commands. Note that any option flags, such as --vcv for printing the covariance
matrix of the parameter estimates, should be appended to the final command, end nls.

open greenell_3.gdt
ols COY
scalar a = $coeff(0)
scalar b $coeff(Y)
scalar g = 1.0

1
2
3
4
5
6 nlsC=a+b * YAg
7
8
9
1

deriv a =1

deriv b = YAg

deriv g = b * YAg * Tog(Y)
0 end nls --vcv

It is often convenient to initialize the parameters by reference to a related linear model; that is
accomplished here on lines 2 to 5. The parameters alpha, beta and gamma could be set to any
initial values (not necessarily based on a model estimated with OLS), although convergence of the
NLS procedure is not guaranteed for an arbitrary starting point.

The actual NLS commands occupy lines 6 to 10. On line 6 the n1s command is given: a dependent
variable is specified, followed by an equals sign, followed by a function specification. The syntax for
the expression on the right is the same as that for the genr command. The next three lines specify
the derivatives of the regression function with respect to each of the parameters in turn. Each line
begins with the keyword deriv, gives the name of a parameter, an equals sign, and an expression
whereby the derivative can be calculated. As an alternative to supplying analytical derivatives, you
could substitute the following for lines 7 to 9:

params a b g

Line 10, end nls, completes the command and calls for estimation. Any options should be ap-
pended to this line.

Chapter 1. Gretl commands 55

If you supply analytical derivatives, by default gretl runs a numerical check on their plausibility.
Occasionally this may produce false positives, instances where correct derivatives appear to be
wrong and estimation is refused. To counter this, or to achieve a little extra speed, you can give
the option --no-gradient-check. Obviously, you should do this only if you are confident that the
gradient you have specified is right.

Parameter names

In estimating a nonlinear model it is often convenient to name the parameters tersely. In printing
the results, however, it may be desirable to use more informative labels. This can be achieved via
the additional keyword param_names within the command block. For a model with k parameters
the argument following this keyword should be either a double-quoted string literal holding k
space-separated names or the name of a string variable that holds k such names.

For further details on NLS estimation please see chapter 22 of the Gretl User’s Guide.

Menu path: /Model/Nonlinear Least Squares

normtest

Argument: series
Options: --dhansen (Doornik-Hansen test, the default)
--swi Tk (Shapiro-Wilk test)
--TiT1T1e (Lilliefors test)
--jbera (Jarque-Bera test)
--al1 (do all tests)
--quiet (suppress printed output)
Carries out a test for normality for the given series. The specific test is controlled by the option
flags (but if no flag is given, the Doornik-Hansen test is performed). Note: the Doornik-Hansen and

Shapiro-Wilk tests are recommended over the others, on account of their superior small-sample
properties.

The test statistic and its p-value may be retrieved using the accessors $test and $pvalue. Please
note that if the --al1 option is given, the result recorded is that from the Doornik-Hansen test.

Menu path: /Variable/Normality test

nulldata

Argument: series-length
Option: --preserve (preserve variables other than series)
Example: nulldata 500

Establishes a “blank” data set, containing only a constant and an index variable, with periodicity 1
and the specified number of observations. This may be used for simulation purposes: functions
such as uniform() and normal() will generate artificial series from scratch to fill out the data
set. This command may be useful in conjunction with Toop. See also the “seed” option to the set
command.

By default, this command cleans out all data in gretl’s current workspace: not only series but also
matrices, scalars, strings, etc. If you give the --preserve option, however, any currently defined
variables other than series are retained.

Menu path: /File/New data set

Chapter 1. Gretl commands 56

ols

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)
--robust (robust standard errors)
--cluster=clustvar (clustered standard errors)
--jackknife (see below)
--simple-print (do not print auxiliary statistics)
--quiet (suppress printing of results)
--anova (print an ANOVA table)
--no-df-corr (suppress degrees of freedom correction)
--print-final (see below)

Examples: ols 102 467
ols y 0 x1 x2 x3 --vcv
ols y 0 x1 x2 x3 --quiet

Computes ordinary least squares (OLS) estimates with depvar as the dependent variable and inde-

pvars as the list of independent variables. Variables may be specified by name or number; use the
number zero for a constant term.

Besides coefficient estimates and standard errors, the program also prints p-values for t (two-tailed)
and F-statistics. A p-value below 0.01 indicates statistical significance at the 1 percent level and is
marked with ***, ** indicates significance between 1 and 5 percent and * indicates significance
between the 5 and 10 percent levels. Model selection statistics (the Akaike Information Criterion
or AIC and Schwarz’s Bayesian Information Criterion) are also printed. The formula used for the
AIC is that given by Akaike (1974), namely minus two times the maximized log-likelihood plus two
times the number of parameters estimated.

If the option --no-df-corr is given, the usual degrees of freedom correction is not applied when
calculating the estimated error variance (and hence also the standard errors of the parameter esti-
mates).

The option --print-final is applicable only in the context of a loop. It arranges for the regression
to be run silently on all but the final iteration of the loop. See chapter 12 of the Gretl User’s Guide
for details.

Various internal variables may be retrieved following estimation. For example
series uh = $uhat

saves the residuals under the name uh. See the “accessors” section of the gretl function reference
for details.

The specific formula (“HC” version) used for generating robust standard errors when the --robust
option is given can be adjusted via the set command. The --jackknife option has the effect of
selecting an hc_version of 3a. The --cluster overrides the selection of HC version, and produces
robust standard errors by grouping the observations by the distinct values of clustvar; see chapter
19 of the Gretl User’s Guide for details.

Menu path: /Model/Ordinary Least Squares

Other access: Beta-hat button on toolbar

Chapter 1. Gretl commands 57

omit
Argument: varlist
Options: --test-only (don’t replace the current model)
--chi-square (give chi-square form of Wald test)
--quiet (print only the basic test result)
--silent (don’t print anything)
--vcv (print covariance matrix for reduced model)
--auto[=alpha] (sequential elimination, see below)
Examples: omit 5 7 9
omit seasonals --quiet
omit --auto
omit --auto=0.05
See also restrict.inp, sw_chl2.inp, sw_chl4.inp
This command must follow an estimation command. It calculates a Wald test for the joint signifi-

cance of the variables in varlist, which should be a subset of the independent variables in the model
last estimated. The results of the test may be retrieved using the accessors $test and $pvalue.

By default the restricted model is estimated and it replaces the original as the “current model” for
the purposes of, for example, retrieving the residuals as $uhat or doing further tests. This behavior
may be suppressed via the --test-only option.

By default the F-form of the Wald test is recorded; the --chi-square option may be used to record
the chi-square form instead.

If the restricted model is both estimated and printed, the --vcv option has the effect of printing
its covariance matrix, otherwise this option is ignored.

Alternatively, if the --auto flag is given, sequential elimination is performed: at each step the
variable with the highest p-value is omitted, until all remaining variables have a p-value no greater
than some cutoff. The default cutoff is 10 percent (two-sided); this can be adjusted by appending
“=" and a value between 0 and 1 (with no spaces), as in the fourth example above. If varlist is given
this process is confined to the listed variables, otherwise all variables are treated as candidates for
omission. Note that the --auto and --test-only options cannot be combined.

Menu path: Model window, /Tests/Omit variables

open

Argument: filename
Options: --quiet (don’t print list of series)
--preserve (preserve variables other than series)
--frompkg=pkgname (see below)
--al1-cols (see below)
--www (use a database on the gretl server)
See below for additional specialized options
Examples: open data4-1
open voter.dta
open fedbog --www

Opens a data file or database. If a data file is already open, it is replaced by the newly opened one.
To add data to the current dataset, see append and (for greater flexibility) join.

If a full path is not given, the program will search some relevant paths to try to find the file, with
workdir as a first choice. If no filename suffix is given (as in the first example above), gretl assumes

Chapter 1. Gretl commands 58

a native datafile with suffix .gdt. Based on the name of the file and various heuristics, gretl will try
to detect the format of the data file (native, plain text, CSV, MS Excel, Stata, SPSS, etc.).

If the --frompkg option is used, gretl will look for the specified data file in the subdirectory asso-
ciated with the function package specified by pkgname.

If the filename argument takes the form of a URI starting with http:// or https://, then gretl will
attempt to download the indicated data file before opening it.

By default, opening a new data file clears the current gretl session, which includes deletion of all
named variables, including matrices, scalars and strings. If you wish to keep your currently defined
variables (other than series, which are necessarily cleared out), use the --preserve option.

Opening a database

The open command can also be used to open a database (gretl, RATS 4.0 or PcGive) for reading. In
that case it should be followed by the data command to extract particular series from the database.
If the www option is given, the program will try to access a database of the given name on the gretl
server — for instance the Federal Reserve interest rates database in the third example above.

Spreadsheet files

When opening a spreadsheet file (Gnumeric, Open Document or MS Excel), you may give up to three
additional parameters following the filename. First, you can select a particular worksheet within
the file. This is done either by giving its (1-based) number, using the syntax, e.g., --sheet=2, or, if
you know the name of the sheet, by giving the name in double quotes, as in --sheet="MacroData".
The default is to read the first worksheet. You can also specify a column and/or row offset into the
worksheet via, e.g.,

--coloffset=3 --rowoffset=2

which would cause gretl to ignore the first 3 columns and the first 2 rows. The default is an offset
of 0 in both dimensions, that is, to start reading at the top-left cell.

Delimited text files

With plain text files, gretl generally expects to find the data columns delimited in some standard
manner (generally via comma, tab, space or semicolon). By default gretl looks for observation labels
or dates in the first column if its heading is empty or is a suggestive string such as “year”, “date”
or “obs”. You can prevent gretl from treating the first column specially by giving the --al1-cols
option.

Fixed format text

A “fixed format” text data file is one without column delimiters, but in which the data are laid
out according to a known set of specifications such as “variable k occupies 8 columns starting at
column 24”. To read such files, you should append a string --fixed-cols=colspec, where colspec
is composed of comma-separated integers. These integers are interpreted as a set of pairs. The
first element of each pair denotes a starting column, measured in bytes from the beginning of the
line with 1 indicating the first byte; and the second element indicates how many bytes should be
read for the given field. So, for example, if you say

open fixed.txt --fixed-cols=1,6,20,3

then for variable 1 gretl will read 6 bytes starting at column 1; and for variable 2, 3 bytes starting
at column 20. Lines that are blank, or that begin with #, are ignored, but otherwise the column-
reading template is applied, and if anything other than a valid numerical value is found an error is
flagged. If the data are read successfully, the variables will be named v1, v2, etc. It’s up to the user
to provide meaningful names and/or descriptions using the commands rename and/or setinfo.

Chapter 1. Gretl commands 59

String-valued series

By default, when you import a file that contains string-valued series, a text box will open showing
you the contents of the string_table.txt file, which contains the mapping between strings and
their numeric coding. You can suppress this behavior via the --quiet option.

Menu path: /File/Open data

Other access: Drag a data file onto gretl’s main window

orthdev
Argument: varlist

Applicable with panel data only. A series of forward orthogonal deviations is obtained for each
variable in varlist and stored in a new variable with the prefix o_. Thus orthdev x y creates the
new variables o_x and o_y.

The values are stored one step ahead of their true temporal location (that is, o_x at observation
t holds the deviation that, strictly speaking, belongs at t — 1). This is for compatibility with first
differences: one loses the first observation in each time series, not the last.

outfile

Argument: filename

Options: --append (append to file)
--quiet (see below)
--buffer (see below)

Examples: outfile regress.txt
end outfile

Diverts output to filename. By default a new file is created (or an existing one is overwritten); use
the --append flag if you wish to append output to an existing file. Diversion is ended via “end
outfile”; output then reverts to the default stream.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

In the first example line above, the file regress.txt is opened for writing, and in the second it
is closed. This would make sense as a sequence only if some commands were issued before the
closing. For example if an estimation command intervened, its output would go to regress.txt
rather than the screen.

Three special variants on the above are available. If you give the keyword nul1 in place of a real
filename the effect is to suppress all printed output until redirection is ended. If either of the
keywords stdout or stderr are given in place of a regular filename the effect is to redirect output
to standard output or standard error output respectively.

The effect of the --quiet option is to turn off the echoing of commands and the printing of
auxiliary messages while output is redirected. It is equivalent to doing

set echo off
set messages off

except that when redirection is ended the original values of the echo and messages variables are
restored.

In general only one file can be opened in this way at any given time, so calls to this command cannot
be nested. However, use of this command is permitted inside user-defined functions (provided
the output file is also closed from inside the same function) such that output can be temporarily

Chapter 1. Gretl commands 60

diverted and then given back to an original output file, in case outfile is currently in use by the
caller. For example, the code

function void f (string s)
outfile inner.txt
print s
end outfile
end function

outfile outer.txt --quiet
print "Outside"
f("Inside")
print "Outside again"
end outfile

will produce a file called “outer.txt” containing the two lines

OQutside
Outside again

and a file called “inner.txt” containing the line

Inside

As described above, the primary usage of this command is to divert output to a named file. How-
ever, the --buffer option may be used to achieve a different effect, namely directing output to a
named string variable. This option is incompatible with --append. The position of the filename
argument is occupied by the name of a string variable (which must, of course, conform to the re-
quirements for a valid gretl identifier). If a string variable of the given name already exists, its value
will be over-written; if there is no such variable, it will be created automatically. Here is a simple
example of usage:

open data4-1

outfile mybuf --buffer --quiet
Tlabels

end outfile

printf "mybuf = \n’%s’\n", mybuf

In this case the variable mybuf captures the output of the Tabels command. This facility may be
of use to writers of function packages.

Chapter 1. Gretl commands 61

panel

Arguments: depvar indepvars

Options: --vcv (print covariance matrix)
--fixed-effects (estimate with group fixed effects)
--random-effects (random effects or GLS model)
--nerlove (use the Nerlove transformation)
--pooled (estimate via pooled OLS)
--between (estimate the between-groups model)
--robust (robust standard errors; see below)
--time-dummies (include time dummy variables)
--unit-weights (weighted least squares)
--iterate (iterative estimation)
--matrix-diff (compute Hausman test via matrix difference)
--unbalanced=method (random effects only, see below)
--quiet (less verbose output)
--verbose (more verbose output)

Example: penngrow.inp

Estimates a panel model. By default the fixed effects estimator is used; this is implemented by
subtracting the group or unit means from the original data.

If the --random-effects flag is given, random effects estimates are computed, by default using the
method of Swamy and Arora (1972). In this case (only) the option --matrix-diff forces use of the
matrix-difference method (as opposed to the regression method) for carrying out the Hausman test
for the consistency of the random effects estimator. Also specific to the random effects estimator
is the --nerTove flag, which selects the method of Nerlove (1971) as opposed to Swamy and Arora.

Alternatively, if the --unit-weights flag is given, the model is estimated via weighted least
squares, with the weights based on the residual variance for the respective cross-sectional units
in the sample. In this case (only) the --iterate flag may be added to produce iterative estimates:
if the iteration converges, the resulting estimates are Maximum Likelihood.

As a further alternative, if the --between flag is given, the between-groups model is estimated (that
is, an OLS regression using the group means).

The default means of calculating robust standard errors in panel-data models is the Arellano HAC
estimator, but Beck-Katz “Panel Corrected Standard Errors” can be selected via the command set
pcse on. When the robust option is specified the joint F test on the fixed effects is performed
using the robust method of Welch (1951).

The --unbaTlanced option is available only for random effects models: it can be used to choose an
ANOVA method for use with an unbalanced panel. By default gretl uses the Swamy-Arora method
as for balanced panels, except that the harmonic mean of the individual time-series lengths is used
in place of a common T. Under this option you can specify either bc, to use the method of Baltagi
and Chang (1994), or stata, to emulate the sa option to the xtreg command in Stata.

For more details on panel estimation, please see chapter 20 of the Gretl User’s Guide.
Menu path: /Model/Panel

Chapter 1. Gretl commands 62

panplot

Argument: plotvar
Options: --means (time series, group means)
--overlay (plot per group, overlaid, N <= 130)
--sequence (plot per group, in sequence, N <= 130)
--grid (plot per group, in grid, N <= 16)
--stack (plot per group, stacked, N <= 6)
--boxplots (boxplot per group, in sequence, N <= 150)
--boxplot (single boxplot, all groups)
--output=filename (send output to specified file)
Examples: panplot x --overlay
panplot x --means --output=display

Graphing command specific to panel data: the series plotvar is plotted in a mode specified by one
or other of the options.

Apart from the --means and --boxplot options the plot explicitly represents variation in both
the time-series and cross-sectional dimensions. Such plots are limited in respect of the number of
groups (also known as individuals or units) in the current sample range of the panel. For example,
the --overTlay option, which shows a time series for each group in a single plot, is available only
when the number of groups, N, is 130 or less. (Otherwise the graphic becomes too dense to be
informative.) If a panel is too large to permit the desired plot specification one can select a reduced
range of groups or units temporarily, as in

smpl 1 100 --unit
panplot x --overlay
smp1 full

The --output=filename option can be used to control the form and destination of the output; see
the gnuplot command for details.

Other access: Main window pop-up menu (single selection)

pca

Argument: varlist
Options: --covariance (use the covariance matrix)
--save[=n] (save major components)
--save-all (save all components)
--quiet (don’t print results)
Principal Components Analysis. Unless the --quiet option is given, prints the eigenvalues of the
correlation matrix (or the covariance matrix if the --covariance option is given) for the variables

in varlist, along with the proportion of the joint variance accounted for by each component. Also
prints the corresponding eigenvectors or “component loadings”.

If you give the --save-all option then all components are saved to the dataset as series, with
names PC1, PC2 and so on. These artificial variables are formed as the sum of (component loading)
times (standardized X;), where X; denotes the ith variable in varlist.

If you give the --save option without a parameter value, components with eigenvalues greater
than the mean (which means greater than 1.0 if the analysis is based on the correlation matrix) are
saved to the dataset as described above. If you provide a value for n with this option then the most
important n components are saved.

See also the princomp function.

Chapter 1. Gretl commands 63

Menu path: /View/Principal components

pergm

Arguments: series [bandwidth]
Options: --bartlett (use Bartlett lag window)
--Tlog (use log scale)
--radians (show frequency in radians)
--degrees (show frequency in degrees)
--plot=mode-or-filename (see below)
Computes and displays the spectrum of the specified series. By default the sample periodogram
is given, but optionally a Bartlett lag window is used in estimating the spectrum (see, for example,
Greene’s Econometric Analysis for a discussion of this). The default width of the Bartlett window

is twice the square root of the sample size but this can be set manually using the bandwidth
parameter, up to a maximum of half the sample size.

If the --Tog option is given the spectrum is represented on a logarithmic scale.

The (mutually exclusive) options --radians and --degrees influence the appearance of the fre-
quency axis when the periodogram is graphed. By default the frequency is scaled by the number of
periods in the sample, but these options cause the axis to be labeled from 0 to 1T radians or from 0
to 180°, respectively.

By default, if the program is not in batch mode a plot of the periodogram is shown. This can be
adjusted via the --pTot option. The acceptable parameters to this option are none (to suppress the
plot); display (to display a plot even when in batch mode); or a file name. The effect of providing
a file name is as described for the --output option of the gnuplot command.

Menu path: /Variable/Periodogram

Other access: Main window pop-up menu (single selection)

pkg
Arguments: action pkgname
Option: --Tlocal (install from local file)
Examples: pkg install armax

pkg install /path/to/myfile.gfn --Tocal
pkg unload armax

This command provides a means of installing, unloading, or deleting gretl function packages. The
action argument must be one of install, unload or remove.

install: In the most basic form, with no option flag and the pkgname argument given as the
“plain” name of a gretl function package (as in the first example above), the effect is to download
the specified package from the gretl server (unless pkgname starts with http://) and install it on
the local machine. In this case it is not necessary to supply a filename extension. If the --Tocal
option is given, however, pkgname should be the path to an uninstalled package file on the local
machine, with the correct extension (.gfn or .zip). In this case the effect is to copy the file into
place (gfn), or unzip it into place (zip), “into place” meaning where the include command will find
it.

unTload: pkgname should be given in plain form, without path or suffix as in the last example above.
The effect is to unload the package in question from gretl’s memory, if it is currently loaded, and
also to remove it from the GUI menu to which it is attached, if any.

remove: performs the actions noted for unload and in addition deletes the file(s) associated with
the package from disk.

Chapter 1. Gretl commands 64

Menu path: /File/Function packages/On server

plot

Argument: [data]

Options: --with-Tines[=varspec] (use lines, not points)
--with-1p[=varspec] (use lines and points)
--with-impulses[=varspec] (use vertical lines)
--with-steps[=varspec] (use horizontal and vertical line segments)
--time-series (plot against time)

--single-yaxis (force use of just one y-axis)
--dummy (see below)
--fit=fitspec (see below)
--band=bandspec (see below)
--band-styTe=style (see below)
--output=filename (send output to specified file)
Example: nile.inp
The plot block provides an alternative to the gnuplot command which may be more convenient

when you are producing an elaborate plot (with several options and/or gnuplot commands to be
inserted into the plot file).

A plot block starts with the command-word plot. This is commonly followed by a data argument,
which specifies data to be plotted: this should be the name of a list, a matrix, or a single series. If
no input data are specified the block must contain at least one directive to plot a formula instead;
such directives may be given via Titeral or printf lines (see below).

If a list or matrix is given, the last element (list) or column (matrix) is assumed to be the x-axis
variable and the other(s) the y-axis variable(s), unless the --time-series option is given in which
case all the specified data go on the 7y axis.

The option of supplying a single series name is restricted to time-series data, in which case it is
assumed that a time-series plot is wanted; otherwise an error is flagged.

The starting line may be prefixed with the “savename <-” apparatus to save a plot as an icon in the
GUI program. The block ends with end pTlot.

Inside the block you have zero or more lines of these types, identified by an initial keyword:

e option: specify a single option.
e options: specify multiple options on a single line, separated by spaces.
e Titeral: a command to be passed to gnuplot literally.

e printf: a printf statement whose result will be passed to gnuplot literally.

Note that when you specify an option using the option or options keywords, it is not necessary
to supply the customary double-dash before the option specifier. For details on the effects of the
various options please see gnuplot (but see below for some specifics on using the --band option in
the pTot context).

The intended use of the plot block is best illustrated by example:
string title "My title"

string xname = "My x-variable"
plot plotmat

Chapter 1. Gretl commands 65

options with-Tines fit=none
Titeral set Tinetype 3 1c rgb "#0000ff"
Titeral set nokey
printf "set title \"%s\"", title
printf "set xlabel \"%s\"", xname

end plot --output=display

This example assumes that plotmat is the name of a matrix with at least 2 columns (or a list with
at least two members). Note that it is considered good practice to place the --output option (only)
on the last line of the block.

Plotting a band with matrix data

The --band and --band-style options mostly work as described in the help for gnuplot, with
the following exception: when the data to be plotted are given in the form of a matrix, the first
parameter to --band must be given as the name of a matrix with two columns (holding, respectively,
the center and the width of the band). This parameter takes the place of the two values (series
names or ID numbers, or matrix columns) required by the gnuplot version of this option. An
illustration follows:

scalar n = 100
matrix x = seq(l,n)’
matrix y = x + filter(mnormal(n,1), 1, {1.8, -0.9})

matrix B = y ~ muniform(n,1)
plot y
options time-series with-Tines
options band=B,10 band-style=fill
end plot --output=display

Plotting without data

The following example shows a simple case of specifying a plot without a data source.

plot
Titeral set title ’CRRA utility’
Titeral set xlabel ’c’
Titeral set ylabel ’u(c)’
Titeral set xrange[1l:3]
Titeral set key top left
Titeral crra(x,s) = (x**(1-s) - 1)/(1-s)
printf "plot crra(x, 0) t ’'sigma=0’, \\"
printf " log(x) t ’sigma=1’, \\"
printf " crra(x,3) t ’'sigma=3"
end plot --output=display

poisson

Arguments: depvar indepvars [; offset]
Options: --robust (robust standard errors)
--cluster=clustvar (see logit for explanation)
--vcv (print covariance matrix)
--verbose (print details of iterations)
Examples: poisson y 0 x1 x2
poisson y 0 x1 x2 ; S
See also camtriv.inp

Chapter 1. Gretl commands 66

Estimates a poisson regression. The dependent variable is taken to represent the occurrence of
events of some sort, and must take on only non-negative integer values.

If a discrete random variable Y follows the Poisson distribution, then

e vvY
Pr(Y =y) = Y
for y =0, 1, 2,.... The mean and variance of the distribution are both equal to v. In the Pois-

son regression model, the parameter v is represented as a function of one or more independent
variables. The most common version (and the only one supported by gretl) has

v =exp(Bfo+ Pixi+ Paxo+)

or in other words the log of v is a linear function of the independent variables.

Optionally, you may add an “offset” variable to the specification. This is a scale variable, the log
of which is added to the linear regression function (implicitly, with a coefficient of 1.0). This
makes sense if you expect the number of occurrences of the event in question to be proportional,
other things equal, to some known factor. For example, the number of traffic accidents might be
supposed to be proportional to traffic volume, other things equal, and in that case traffic volume
could be specified as an “offset” in a Poisson model of the accident rate. The offset variable must
be strictly positive.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber-White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient.

See also negbin.

Menu path: /Model/Limited dependent variable/Count data

print

Variants: print varlist
print
print object-names
print string-literal
Options: --byobs (by observations)
--no-dates (use simple observation numbers)
--range=start:stop (see below)
--midas (see below)
--tree (specific to bundles; see below)
Examples: print x1 x2 --byobs
print my_matrix
print "This is a string"
print my_array --range=3:6
print hflist --midas

Please note that print is a rather “basic” command (primarily intended for printing the values of
series); see printf and eval for more advanced, and less restrictive, alternatives.

In the first variant shown above (also see the first example), varlist should be a list of series (either
a named list or a list specified via the names or ID numbers of series, separated by spaces). In
that case this command prints the values of the listed series. By default the data are printed
“by variable”, but if the --byobs flag is added they are printed by observation. When printing
by observation, the default is to show the date (with time-series data) or the observation marker

Chapter 1. Gretl commands 67

string (if any) at the start of each line. The --no-dates option suppresses the printing of dates or
markers; a simple observation number is shown instead. See the final paragraph of this entry for
the effect of the --midas option (which applies only to a named list of series).

If no argument is given (the second variant shown above) then the action is similar to the first case
except that all series in the current dataset are printed. The supported options are as decribed
above.

The third variant (with the object-names argument; see the second example) expects a space-
separated list of names of primary gretl objects other than series (scalars, matrices, strings, bun-
dles, arrays). The value(s) of these objects are displayed.

In the fourth form (third example), string-literal should be a string enclosed in double-quotes (and
there should be nothing else following on the command line). The string in question is printed,
followed by a newline character.

The --range option can be used to control the amount of information printed. The start and stop
(integer) values refer to observations for series and lists, rows for matrices, elements for arrays,
and lines of text for strings. In all cases the minimum start value is 1 and the maximum stop
value is the “row-wise size” of the object in question. Negative values for these indices are taken to
indicate a count back from the end. The indices may be given in numeric form or as the names of
predefined scalar variables. If start is omitted that is taken as an implicit 1 and if stop is omitted
that means go all the way to the end. Note that with series and lists the indices are relative to the
current sample range.

The --tree option is specific to the printing of a gretl bundle: the effect is that if the specified
bundle contains further bundles, or arrays of bundles, their contents are listed. Otherwise only the
top-level members of the bundle are listed.

The --midas option is specific to the printing of a list of series, and moreover it is specific to
datasets that contain one or more high-frequency series, each represented by a MIDAS list. If one
such list is given as argument and this option is appended, the series is printed by observation at
its “native” frequency.

Menu path: /Data/Display values

printf
Arguments: format , args

Prints scalar values, series, matrices, or strings under the control of a format string (providing a
subset of the printf function in the C programming language). Recognized numeric formats are
%e, %E, %f, %g, %G and %d, in each case with the various modifiers available in C. Examples: the
format %.10g prints a value to 10 significant figures; %12.6f prints a value to 6 decimal places,
with a width of 12 characters. Note, however, that in gretl the format %g is a good default choice
for all numerical values; you don’t need to get too complicated. The format %s should be used for
strings.

The format string itself must be enclosed in double quotes. The values to be printed must follow
the format string, separated by commas. These values should take the form of either (a) the names
of variables, (b) expressions that are yield some sort of printable result, or (c) the special functions
varname() or date(). The following example prints the values of two variables plus that of a
calculated expression:

ols 102 3

scalar b = $coeff[2]

scalar se_b = $stderr[2]

printf "b = %.8g, standard error %.8g, t = %.4f\n",
b, se_b, b/se_b

The next lines illustrate the use of the varname and date functions, which respectively print the

Chapter 1. Gretl commands 68

name of a variable, given its ID number, and a date string, given a 1-based observation number.

printf "The name of variable %d is %s\n", i, varname(i)
printf "The date of observation %d is %s\n", j, date(j)

If a matrix argument is given in association with a numeric format, the entire matrix is printed
using the specified format for each element. The same applies to series, except that the range of
values printed is governed by the current sample setting.

The maximum length of a format string is 127 characters. The escape sequences \n (newline), \t
(tab), \v (vertical tab) and \\ (literal backslash) are recognized. To print a literal percent sign, use
%%.

As in C, numerical values that form part of the format (width and or precision) may be given directly
as numbers, as in %10.4f, or they may be given as variables. In the latter case, one puts asterisks
into the format string and supplies corresponding arguments in order. For example,

scalar width = 12
scalar precision = 6
printf "x = %*.*f\n", width, precision, x

probit

Arguments: depvar indepvars
Options: --robust (robust standard errors)
--cluster=clustvar (see logit for explanation)
--vcv (print covariance matrix)
--verbose (print details of iterations)
--p-values (show p-values instead of slopes)
--random-effects (estimates a random effects panel probit model)
--quadpoints=k (number of quadrature points for RE estimation)
Examples: ooballot.inp, oprobit.inp, reprobit.inp

If the dependent variable is a binary variable (all values are 0 or 1) maximum likelihood estimates
of the coefficients on indepvars are obtained via the Newton-Raphson method. As the model is
nonlinear the slopes depend on the values of the independent variables. By default the slopes
with respect to each of the independent variables are calculated (at the means of those variables)
and these slopes replace the usual p-values in the regression output. This behavior can be sup-
pressed by giving the --p-values option. The chi-square statistic tests the null hypothesis that all
coefficients are zero apart from the constant.

By default, standard errors are computed using the negative inverse of the Hessian. If the --robust
flag is given, then QML or Huber-White standard errors are calculated instead. In this case the
estimated covariance matrix is a “sandwich” of the inverse of the estimated Hessian and the outer
product of the gradient. See chapter 10 of Davidson and MacKinnon for details.

If the dependent variable is not binary but is discrete, then Ordered Probit estimates are obtained.
(If the variable selected as dependent is not discrete, an error is flagged.)

Probit for panel data

With the --random-effects option, the error term is assumed to be composed of two normally
distributed components: one time-invariant term that is specific to the cross-sectional unit or “in-
dividual” (and is known as the individual effect); and one term that is specific to the particular
observation.

Chapter 1. Gretl commands 69

Evaluation of the likelihood for this model involves the use of Gauss-Hermite quadrature for ap-
proximating the value of expectations of functions of normal variates. The number of quadrature
points used can be chosen through the --quadpoints option (the default is 32). Using more points
will increase the accuracy of the results, but at the cost of longer compute time; with many quadra-
ture points and a large dataset estimation may be quite time consuming.

Besides the usual parameter estimates (and associated statistics) relating to the included regres-
sors, certain additional information is presented on estimation of this sort of model:
e Tnsigma2: the maximum likelihood estimate of the log of the variance of the individual effect;
e sigma_u: the estimated standard deviation of the individual effect; and
¢ rho: the estimated share of the individual effect in the composite error variance (also known

as the intra-class correlation).

The Likelihood Ratio test of the null hypothesis that rho equals zero provides a means of assessing
whether the random effects specification is needed. If the null is not rejected that suggests that a
simple pooled probit specification is adequate.

Menu path: /Model/Limited dependent variable/Probit

pvalue

Arguments: dist [params] xval

Examples: pvalue z zscore
pvalue t 25 3.0
pvalue X 3 5.6
pvalue F 4 58 fval
pvalue G shape scale x
pvalue B bprob 10 6
pvalue P Tambda x

pvalue W shape scale x
See also mrw.inp, restrict.inp

Computes the area to the right of xval in the specified distribution (z for Gaussian, t for Student’s
t, X for chi-square, F for F, G for gamma, B for binomial, P for Poisson, exp for Exponential, W for
Weibull).

Depending on the distribution, the following information must be given, before the xval: for the
t and chi-square distributions, the degrees of freedom; for F, the numerator and denominator
degrees of freedom; for gamma, the shape and scale parameters; for the binomial distribution, the
“success” probability and the number of trials; for the Poisson distribution, the parameter A (which
is both the mean and the variance); for the Exponential, a scale parameter; and for the Weibull,
shape and scale parameters. As shown in the examples above, the numerical parameters may be
given in numeric form or as the names of variables.

The parameters for the gamma distribution are sometimes given as mean and variance rather than
shape and scale. The mean is the product of the shape and the scale; the variance is the product
of the shape and the square of the scale. So the scale may be found as the variance divided by the
mean, and the shape as the mean divided by the scale.

Menu path: /Tools/P-value finder

Chapter 1. Gretl commands 70

qlrtest

Options: --Timit-to=list (limit test to subset of regressors)
--plot=mode-or-filename (see below)
--quiet (suppress printed output)

For a model estimated on time-series data via OLS, performs the Quandt likelihood ratio (QLR) test
for a structural break at an unknown point in time, with 15 percent trimming at the beginning and
end of the sample period.

For each potential break point within the central 70 percent of the observations, a Chow test is
performed. See chow for details; as with the regular Chow test, this is a robust Wald test if the
original model was estimated with the --robust option, an F-test otherwise. The QLR statistic is
then the maximum of the individual test statistics.

An asymptotic p-value is obtained using the method of Hansen (1997).

Besides the standard hypothesis test accessors $test and $pvalue, $glrbreak can be used to retrieve
the index of the observation at which the test statistic is maximized.

The --T1imit-to option can be used to limit the set of interactions with the split dummy variable
in the Chow tests to a subset of the original regressors. The parameter for this option must be a
named list, all of whose members are among the original regressors. The list should not include
the constant.

When this command is run interactively (only), a plot of the Chow test statistic is displayed by
default. This can be adjusted via the --pTot option. The acceptable parameters to this option are
none (to suppress the plot); display (to display a plot even when not in interactive mode); or a file
name. The effect of providing a file name is as described for the --output option of the gnuplot
command.

Menu path: Model window, /Tests/QLR test

qqgplot
Variants: qqplot y
qgplot vy x
Options: --z-scores (see below)

--raw (see below)
--output=filename (send plot to specified file)

Given just one series argument, displays a plot of the empirical quantiles of the selected series
(given by name or ID number) against the quantiles of the normal distribution. The series must
include at least 20 valid observations in the current sample range. By default the empirical quantiles
are plotted against quantiles of the normal distribution having the same mean and variance as the
sample data, but two alternatives are available: if the --z-scores option is given the data are
standardized, while if the --raw option is given the “raw” empirical quantiles are plotted against
the quantiles of the standard normal distribution.

The option --output has the effect of sending the output to the specified file; use “display” to
force output to the screen. See the gnuplot command for more detail on this option.

Given two series arguments, y and X, displays a plot of the empirical quantiles of y against those
of x. The data values are not standardized.

Menu path: /Variable/Normal Q-Q plot
Menu path: /View/Graph specified vars/Q-Q plot

Chapter 1. Gretl commands 71

quantreg

Arguments: tau depvar indepvars
Options: --robust (robust standard errors)
--intervals[=level] (compute confidence intervals)
--vcv (print covariance matrix)
--quiet (suppress printing of results)
Examples: quantreg 0.25 y 0 xlist
quantreg 0.5 y 0 xTist --intervals
quantreg 0.5 y 0 xlist --intervals=.95
quantreg tauvec y 0 xlist --robust
See also mrw_qgr.inp
Quantile regression. The first argument, tau, is the conditional quantile for which estimates are
wanted. It may be given either as a numerical value or as the name of a pre-defined scalar variable;
the value must be in the range 0.01 to 0.99. (Alternatively, a vector of values may be given for tau;

see below for details.) The second and subsequent arguments compose a regression list on the
same pattern as ols.

Without the --intervals option, standard errors are printed for the quantile estimates. By default,
these are computed according to the asymptotic formula given by Koenker and Bassett (1978), but
if the --robust option is given, standard errors that are robust with respect to heteroskedasticity
are calculated using the method of Koenker and Zhao (1994).

When the --intervals option is chosen, confidence intervals are given for the parameter estimates
instead of standard errors. These intervals are computed using the rank inversion method, and
in general they are asymmetrical about the point estimates. The specifics of the calculation are
inflected by the --robust option: without this, the intervals are computed on the assumption
of IID errors (Koenker, 1994); with it, they use the robust estimator developed by Koenker and
Machado (1999).

By default, 90 percent confidence intervals are produced. You can change this by appending a
confidence level (expressed as a decimal fraction) to the intervals option, as in --intervals=0.95.

Vector-valued tau: instead of supplying a scalar, you may give the name of a pre-defined matrix. In
this case estimates are computed for all the given tau values and the results are printed in a special
format, showing the sequence of quantile estimates for each regressor in turn.

Menu path: /Model/Robust estimation/Quantile regression

quit
Exits from the program, giving you the option of saving the output from the session on the way
out.

Menu path: /File/Exit

rename
Arguments: series newname

Changes the name of series (identified by name or ID number) to newname. The new name must be
of 31 characters maximum, must start with a letter, and must be composed of only letters, digits,
and the underscore character. In addition, it must not be the name of an existing object of any
kind.

Menu path: /Variable/Edit attributes

Other access: Main window pop-up menu (single selection)

Chapter 1. Gretl commands 72

reset

Options: --quiet (don’t print the auxiliary regression)
--silent (don’t print anything)
--squares-only (compute the test using only the squares)
--cubes-only (compute the test using only the cubes)

Must follow the estimation of a model via OLS. Carries out Ramsey’s RESET test for model specifi-
cation (nonlinearity) by adding the squares and/or the cubes of the fitted values to the regression
and calculating the F statistic for the null hypothesis that the coefficients on the added terms are
Zero.

Both the squares and the cubes are added unless one of the options --squares-only or --cubes-only
is given.

The --silent option may be used if one plans to make use of the $test and/or $pvalue accessors
to grab the results of the test.

Menu path: Model window, /Tests/Ramsey’s RESET

restrict

Options: --quiet (don’t print restricted estimates)
--silent (don’t print anything)
--wald (system estimators only - see below)
--bootstrap (bootstrap the test if possible)
--fulT1 (OLS and VECMs only, see below)
Examples: hamilton.inp, restrict.inp

Imposes a set of (usually linear) restrictions on either (a) the model last estimated or (b) a system
of equations previously defined and named. In all cases the set of restrictions should be started
with the keyword “restrict” and terminated with “end restrict”.

In the single equation case the restrictions are always implicitly to be applied to the last model, and
they are evaluated as soon as the restrict block is closed.

In the case of a system of equations (defined via the system command), the initial “restrict” may
be followed by the name of a previously defined system of equations. If this is omitted and the
last model was a system then the restrictions are applied to the last model. By default the restric-
tions are evaluated when the system is next estimated, using the estimate command. But if the
--wald option is given the restriction is tested right away, via a Wald chi-square test on the covari-
ance matrix. Note that this option will produce an error if a system has been defined but not yet
estimated.

Depending on the context, the restrictions to be tested may be expressed in various ways. The
simplest form is as follows: each restriction is given as an equation, with a linear combination of
parameters on the left and a scalar value to the right of the equals sign (either a numerical constant
or the name of a scalar variable).

In the single-equation case, parameters may be referenced in the form b[i], where i represents the
position in the list of regressors (starting at 1), or b[varname], where varname is the name of the
regressor in question. In the system case, parameters are referenced using b plus two numbers in
square brackets. The leading number represents the position of the equation within the system
and the second number indicates position in the list of regressors. For example b[2,1] denotes
the first parameter in the second equation, and b[3, 2] the second parameter in the third equation.
The b terms in the equation representing a restriction may be prefixed with a numeric multiplier,
for example 3.5*%b[4].

Here is an example of a set of restrictions for a previously estimated model:

Chapter 1. Gretl commands 73

restrict

b[1] = 0

b[2] - b[3] =
b[4] + 2*b[5]
end restrict

0
=1

And here is an example of a set of restrictions to be applied to a named system. (If the name of the
system does not contain spaces, the surrounding quotes are not required.)

restrict "System 1"
b[1,1] =0
b[1,2] - b[2,2] =
b[3,4] + 2*b[3,5]
end restrict

0
=1

In the single-equation case the restrictions are by default evaluated via a Wald test, using the
covariance matrix of the model in question. If the original model was estimated via OLS then the
restricted coefficient estimates are printed; to suppress this, append the --quiet option flag to the
initial restrict command. As an alternative to the Wald test, for models estimated via OLS or WLS
only, you can give the --bootstrap option to perform a bootstrapped test of the restriction.

In the system case, the test statistic depends on the estimator chosen: a Likelihood Ratio test if the
system is estimated using a Maximum Likelihood method, or an asymptotic F-test otherwise.

There are two alternatives to the method of expressing restrictions discussed above. First, a set
of g linear restrictions on a k-vector of parameters, 5, may be written compactly as R — q = 0,
where R is an g x k matrix and g is a g-vector. You can specify a restriction by giving the names of
pre-defined, conformable matrices to be used as R and g, as in

restrict
R = Rmat
q = qvec

end restrict

Secondly, if you wish to test a nonlinear restriction (this is currently available for single-equation

models only) you should give the restriction as the name of a function, preceded by “rfunc = ”,
as in

restrict
rfunc = myfunction
end restrict

The constraint function should take a single const matrix argument; this will be automatically
filled out with the parameter vector. And it should return a vector which is zero under the null hy-
pothesis, non-zero otherwise. The length of the vector is the number of restrictions. This function
is used as a “callback” by gretl’s numerical Jacobian routine, which calculates a Wald test statistic
via the delta method.

Here is a simple example of a function suitable for testing one nonlinear restriction, namely that
two pairs of parameter values have a common ratio.

function matrix restr (const matrix b)
matrix v = b[1]/b[2] - b[4]1/b[5]
return v

end function

Chapter 1. Gretl commands 74

On successful completion of the restrict command the accessors $test and $pvalue give the test
statistic and its p-value.

When testing restrictions on a single-equation model estimated via OLS, or on a VECM, the --full
option can be used to set the restricted estimates as the “last model” for the purposes of further
testing or the use of accessors such as $coeff and $vcv. Note that some special considerations
apply in the case of testing restrictions on Vector Error Correction Models. Please see chapter 30
of the Gretl User’s Guide for details.

Menu path: Model window, /Tests/Linear restrictions

rmplot

Argument: series

Options: --trim (see below)
--quiet (suppress printed output)
--output=filename (see below)

Range-mean plot: this command creates a simple graph to help in deciding whether a time series,
(1), has constant variance or not. We take the full sample t=1,...,T and divide it into small sub-
samples of arbitrary size k. The first subsample is formed by y(1),...,(k), the second is y(k+1), ...,
v(2Kk), and so on. For each subsample we calculate the sample mean and range (= maximum minus
minimum), and we construct a graph with the means on the horizontal axis and the ranges on the
vertical. So each subsample is represented by a point in this plane. If the variance of the series is
constant we would expect the subsample range to be independent of the subsample mean; if we see
the points approximate an upward-sloping line this suggests the variance of the series is increasing
in its mean; and if the points approximate a downward sloping line this suggests the variance is
decreasing in the mean.

Besides the graph, gretl displays the means and ranges for each subsample, along with the slope
coefficient for an OLS regression of the range on the mean and the p-value for the null hypothesis
that this slope is zero. If the slope coefficient is significant at the 10 percent significance level then
the fitted line from the regression of range on mean is shown on the graph. The t-statistic for the
null, and the corresponding p-value, are recorded and may be retrieved using the accessors $test
and $pvalue respectively.

If the --trim option is given, the minimum and maximum values in each sub-sample are discarded
before calculating the mean and range. This makes it less likely that outliers will distort the analy-
sis.

If the --quiet option is given, no graph is shown and no output is printed; only the t-statistic and
p-value are recorded. Otherwise the form of the plot can be controlled via the --output option;
this works as described in connection with the gnuplot command.

Menu path: /Variable/Range-mean graph

run
Argument: filename

Executes the commands in filename then returns control to the interactive prompt. This command
is intended for use with the command-line program gretlcli, or at the “gretl console” in the GUI
program.

See also include.

Menu path: Run icon in script window

Chapter 1. Gretl commands 75

runs

Argument: series
Options: --difference (use first difference of variable)
--equal (positive and negative values are equiprobable)
Carries out the nonparametric “runs” test for randomness of the specified series, where runs are
defined as sequences of consecutive positive or negative values. If you want to test for randomness

of deviations from the median, for a variable named x1 with a non-zero median, you can do the
following:

series signxl = x1 - median(x1l)
runs signxl

If the --d1ifference option is given, the variable is differenced prior to the analysis, hence the runs
are interpreted as sequences of consecutive increases or decreases in the value of the variable.

If the --equal option is given, the null hypothesis incorporates the assumption that positive and
negative values are equiprobable, otherwise the test statistic is invariant with respect to the “fair-
ness” of the process generating the sequence, and the test focuses on independence alone.

Menu path: /Tools/Nonparametric tests

scatters

Arguments: yvar ; xvars or yvars ; xvar
Options: --with-Tines (create line graphs)
--matrix=name (plot columns of named matrix)
--output=filename (send output to specified file)
Examples: scatters 1 ; 2 345
scatters 1 2 3456 ; 7
scatters yl y2 y3 ; X --with-Tines
Generates pairwise graphs of yvar against all the variables in xvars, or of all the variables in yvars
against xvar. The first example above puts variable 1 on the y-axis and draws four graphs, the first
having variable 2 on the x-axis, the second variable 3 on the x-axis, and so on. The second example
plots each of variables 1 through 6 against variable 7 on the x-axis. Scanning a set of such plots

can be a useful step in exploratory data analysis. The maximum number of plots is 16; any extra
variable in the list will be ignored.

By default the graphs are scatterplots, but if you give the --with-Tines flag they will be line
graphs.

For details on usage of the --output option, please see the gnuplot command.

If a named matrix is specified as the data source the x and y lists should be given as 1-based
column numbers; or alternatively, if no such numbers are given, all the columns are plotted against
time or an index variable.

If the dataset is time-series, then the second sub-list can be omitted, in which case it will implicitly
be taken as "time", so you can plot multiple time series in separated sub-graphs.

Menu path: /View/Multiple graphs

sdiff
Argument: varlist

The seasonal difference of each variable in varlist is obtained and the result stored in a new variable
with the prefix sd_. This command is available only for seasonal time series.

Chapter 1. Gretl commands 76
Menu path: /Add/Seasonal differences of selected variables

set

Variants: set variable value
set --to-file=filename
set --from-file=filename
set stopwatch
set
Examples: set svd on
set csv_delim tab
set horizon 10
set --to-file=mysettings.inp
The most common use of this command is the first variant shown above, where it is used to set the
value of a selected program parameter. This is discussed in detail below. The other uses are: with
--to-file, to write a script file containing all the current parameter settings; with --from-file
to read a script file containing parameter settings and apply them to the current session; with

stopwatch to zero the gretl “stopwatch” which can be used to measure CPU time (see the entry for
the $stopwatch accessor); or, if the word set is given alone, to print the current settings.

Values set via this comand remain in force for the duration of the gretl session unless they are
changed by a further call to set. The parameters that can be set in this way are enumerated below.
Note that the settings of hc_version, hac_lag and hac_kernel are used when the --robust
option is given to an estimation command.

The available settings are grouped under the following categories: program interaction and be-
havior, numerical methods, random number generation, robust estimation, filtering, time series
estimation, and interaction with GNU R.

Program interaction and behavior

These settings are used for controlling various aspects of the way gretl interacts with the user.

e workdir: path. Sets the default directory for writing and reading files, whenever full paths
are not specified.

e use_cwd: on or off (the default). Governs the setting of workd1ir at start-up: if it’s on, the
working directory is inherited from the shell, otherwise it is set to whatever was selected in
the previous gretl session.

e echo: off or on (the default). Suppress or resume the echoing of commands in gretl’s output.

e messages: off or on (the default). Suppress or resume the printing of non-error messages
associated with various commands, for example when a new variable is generated or when
the sample range is changed.

e verbose: off or on (the default). Acts as a “master switch” for echo and messages (see
above), turning them both off or on simultaneously.

e warnings: off or on (the default). Suppress or resume the printing of warning messages
issued when arithmetical operations produce non-finite values.

e csv_delim: either comma (the default), space, tab or semicolon. Sets the column delimiter
used when saving data to file in CSV format.

e csv_write_na: the string used to represent missing values when writing data to file in CSV
format. Maximum 7 characters; the default is NA.

Chapter 1. Gretl commands 77

e csv_read_na: the string taken to represent missing values (NAs) when reading data in CSV
format. Maximum 7 characters. The default depends on whether a data column is found to
contain numerical data (mostly) or string values. For numerical data the following are taken
as indicating NAs: an empty cell, or any of the strings NA, N.A., na, n.a., N/A, #N/A, NaN,
.NaN, ., .., -999, and -9999. For string-valued data only a blank cell, or a cell containing an
empty string, is counted as NA. These defaults can be reimposed by giving default as the
value for csv_read_na. To specify that only empty cells are read as NAs, give a value of "".
Note that empty cells are always read as NAs regardless of the setting of this variable.

e csv_digits: a positive integer specifying the number of significant digits to use when writ-
ing data in CSV format. By default up to 15 digits are used depending on the precision of
the original data. Note that CSV output employs the C library’s fprintf function with “%g”
conversion, which means that trailing zeros are dropped.

e display_digits: an integer from 3 to 6, specifying the number of significant digits to use
when displaying regression coefficients and standard errors (the default being 6). This setting
can also be used to limit the number of digits shown by the summary command; in this case
the default (and also the maximum) is 5, or 4 when the --simple option is given.

e mwrite_g: on or off (the default). When writing a matrix to file as text, gretl by default
uses scientific notation with 18-digit precision, hence ensuring that the stored values are a
faithful representation of the numbers in memory. When writing primary data with no more
than 6 digits of precision it may be preferable to use %g format for a more compact and
human-readable file; you can make this switch via set mwrite_g on.

e force_decpoint: on or off (the default). Force gretl to use the decimal point character, in a
locale where another character (most likely the comma) is the standard decimal separator.

e Toop_maxiter: one non-negative integer value (default 100000). Sets the maximum number
of iterations that a wh1i1e loop is allowed before halting (see loop). Note that this setting only
affects the while variant; its purpose is to guard against inadvertently infinite loops. Setting
this value to 0 has the effect of disabling the limit; use with caution.

e max_verbose: on or off (the default). Toggles verbose output for the BFGSmax and NRmax
functions; see chapter 34 of the Gretl User’s Guide for details).

e debug: 1, 2 or 0 (the default). This is for use with user-defined functions. Setting debug to 1
is equivalent to turning messages on within all such functions; setting this variable to 2 has
the additional effect of turning on max_verbose within all functions.

e shell_ok: on or off (the default). Enable launching external programs from gretl via the
system shell. This is disabled by default for security reasons, and can only be enabled via
the graphical user interface (Tools/Preferences/General). However, once set to on, this setting
will remain active for future sessions until explicitly disabled.

e bfgs_verbskip: one integer. This setting affects the behavior of the --verbose option to
those commands that use BFGS as an optimization algorithm and is used to compact output.
if bfgs_verbskip is set to, say, 3, then the --verbose switch will only print iterations 3, 6, 9
and so on.

e skip_missing: on (the default) or off. Controls gretl’'s behavior when contructing a matrix
from data series: the default is to skip data rows that contain one or more missing values but
if skip_missing is set off missing values are converted to NaNs.

e matrix_mask: the name of a series, or the keyword nul1. Offers greater control than skip_missing
when constructing matrices from series: the data rows selected for matrices are those with
non-zero (and non-missing) values in the specified series. The selected mask remains in force
until it is replaced, or removed via the nul11 keyword.

e huge: a large positive number (by default, 1.0E100). This setting controls the value returned
by the accessor $huge.

Chapter 1. Gretl commands 78

Numerical methods

These settings are used for controlling the numerical algorithms that gretl uses for estimation.

e optimizer: either auto (the default), BFGS or newton. Sets the optimization algorithm used
for various ML estimators, in cases where both BFGS and Newton-Raphson are applicable. The
default is to use Newton-Raphson where an analytical Hessian is available, otherwise BFGS.

e bhhh_maxiter: one integer, the maximum number of iterations for gretl’s internal BHHH
routine, which is used in the arma command for conditional ML estimation. If convergence is
not achieved after bhhh_maxiter, the program returns an error. The default is set at 500.

e bhhh_toler: one floating point value, or the string default. This is used in gretl’s internal
BHHH routine to check if convergence has occurred. The algorithm stops iterating as soon
as the increment in the log-likelihood between iterations is smaller than bhhh_toler. The
default value is 1.0E—06; this value may be re-established by typing default in place of a
numeric value.

e bfgs_maxiter: one integer, the maximum number of iterations for gretl’s BFGS routine,
which is used for mle, gmm and several specific estimators. If convergence is not achieved
in the specified number of iterations, the program returns an error. The default value de-
pends on the context, but is typically of the order of 500.

e bfgs_toler: one floating point value, or the string default. This is used in gretl’s BFGS
routine to check if convergence has occurred. The algorithm stops as soon as the relative
improvement in the objective function between iterations is smaller than bfgs_toler. The
default value is the machine precision to the power 3/4; this value may be re-established by
typing default in place of a numeric value.

e bfgs_maxgrad: one floating point value. This is used in gretl’s BFGS routine to check if the
norm of the gradient is reasonably close to zero when the bfgs_toler criterion is met. A
warning is printed if the norm of the gradient exceeds 1; an error is flagged if the norm
exceeds bfgs_maxgrad. At present the default is the permissive value of 5.0.

e bfgs_richardson: on or off (the default). Use Richardson extrapolation when computing
numerical derivatives in the context of BFGS maximization.

e initvals: either auto (the default) or the name of a pre-specified matrix. Allows manual
setting of the initial parameter estimates for numerical optimization problems (such as ARMA
estimation). For details see chapter 28 of the Gretl User’s Guide.

e Tbfgs: on or off (the default). Use the limited-memory version of BFGS (L-BFGS-B) instead of
the ordinary algorithm. This may be advantageous when the function to be maximized is not
globally concave.

e 1bfgs_mem: an integer value in the range 3 to 20 (with a default value of 8). This determines
the number of corrections used in the limited memory matrix when L-BFGS-B is employed.

e nls_toler: a floating-point value. Sets the tolerance used in judging whether or not conver-
gence has occurred in nonlinear least squares estimation using the nls command. The default
value is the machine precision to the power 3/4; this value may be re-established by typing
default in place of a numeric value.

e svd: on or off (the default). Use SVD rather than Cholesky or QR decomposition in least
squares calculations. This option applies to the mols function as well as various internal
calculations, but not to the regular ols command.

e force_qgr: on or off (the default). This applies to the ols command. By default this command
computes OLS estimates using Cholesky decomposition (the fastest method), with a fallback
to QR if the data seem too ill-conditioned. You can use force_qr to skip the Cholesky step;
in “doubtful” cases this may ensure greater accuracy.

Chapter 1. Gretl commands 79

fcp: on or off (the default). Use the algorithm of Fiorentini, Calzolari and Panattoni rather
than native gretl code when computing GARCH estimates.

gmm_maxiter: one integer, the maximum number of iterations for gretl’s gmm command
when in iterated mode (as opposed to one- or two-step). The default value is 250.

nadarwat_trim: one integer, the trim parameter used in the nadarwat function.

fdjac_quality: one integer (0, 1 or 2), the algorithm used by the fdjac function; the default
is O.

Random number generation

seed: an unsigned integer. Sets the seed for the pseudo-random number generator. By default
this is set from the system time; if you want to generate repeatable sequences of random
numbers you must set the seed manually.

Robust estimation

bootrep: an integer. Sets the number of replications for the restrict command with the
--bootstrap option.

garch_vcv: unset, hessian, im (information matrix) , op (outer product matrix), gm1 (QML
estimator), bw (Bollerslev-Wooldridge). Specifies the variant that will be used for estimating
the coefficient covariance matrix, for GARCH models. If unset is given (the default) then the
Hessian is used unless the “robust” option is given for the garch command, in which case QML
is used.

arma_vcv: hessian (the default) or op (outer product matrix). Specifies the variant to be used
when computing the covariance matrix for ARIMA models.

force_hc: off (the default) or on. By default, with time-series data and when the --robust
option is given with o1s, the HAC estimator is used. If you set force_hc to “on”, this forces
calculation of the regular Heteroskedasticity Consistent Covariance Matrix (HCCM), which
does not take autocorrelation into account. Note that VARs are treated as a special case: when
the --robust option is given the default method is regular HCCM, but the --robust-hac flag
can be used to force the use of a HAC estimator.

robust_z: off (the default) or on. This controls the distribution used when calculating p-
values based on robust standard errors in the context of least-squares estimators. By default
gretl uses the Student t distribution but if robust_z is turned on the normal distribution is
used.

hac_1lag: nwl (the default), nw2, nw3 or an integer. Sets the maximum lag value or bandwidth,
p, used when calculating HAC (Heteroskedasticity and Autocorrelation Consistent) standard
errors using the Newey-West approach, for time series data. nwl and nw2 represent two variant
automatic calculations based on the sample size, T: for nwl, p = 0.75 x T1/3, and for nw2,
p = 4 x (T/100)?/9. nw3 calls for data-based bandwidth selection. See also qs_bandwidth
and hac_prewhiten below.

hac_kernel: bartlett (the default), parzen, or qs (Quadratic Spectral). Sets the kernel, or
pattern of weights, used when calculating HAC standard errors.

hac_prewhiten: on or off (the default). Use Andrews-Monahan prewhitening and re-coloring
when computing HAC standard errors. This also implies use of data-based bandwidth selec-
tion.

Chapter 1. Gretl commands 80

e hc_version: O (the default), 1, 2, 3 or 3a. Sets the variant used when calculating Heterosked-
asticity Consistent standard errors with cross-sectional data. The first four options corre-
spond to the HCO, HC1, HC2 and HC3 discussed by Davidson and MacKinnon in Econometric
Theory and Methods, chapter 5. HCO produces what are usually called “White’s standard
errors”. Variant 3a is the MacKinnon-White “jackknife” procedure.

e pcse: off (the default) or on. By default, when estimating a model using pooled OLS on panel
data with the --robust option, the Arellano estimator is used for the covariance matrix. If
you set pcse to “on”, this forces use of the Beck and Katz Panel Corrected Standard Errors
(which do not take autocorrelation into account).

e gs_bandwidth: Bandwidth for HAC estimation in the case where the Quadratic Spectral kernel
is selected. (Unlike the Bartlett and Parzen kernels, the QS bandwidth need not be an integer.)

Time series

¢ horizon: one integer (the default is based on the frequency of the data). Sets the horizon for
impulse responses and forecast variance decompositions in the context of vector autoregres-
sions.

e vecm_norm: phillips (the default), diag, first or none. Used in the context of VECM esti-
mation via the vecm command for identifying the cointegration vectors. See the chapter 30
of the Gretl User’s Guide for details.

Interaction with R

e R_Tib: on (the default) or off. When sending instructions to be executed by R, use the R
shared library by preference to the R executable, if the library is available.

e R_functions: off (the default) or on. Recognize functions defined in R as if they were native
functions (the namespace prefix “R.” is required). See chapter 39 of the Gretl User’s Guide for
details on this and the previous item.

setinfo

Argument: series
Options: --description=string (set description)
--graph-name=string (set graph name)
--discrete (mark series as discrete)
--continuous (mark series as continuous)
--coded (mark as an encoding)
--numeric (mark as not an encoding)
--midas (mark as component of high-frequency data)
Examples: setinfo x1 --description="Description of x1"
setinfo y --graph-name="Some string"
setinfo z --discrete
If the options --description or --graph-name are invoked the argument must be a single series,

otherwise it may be a list of series in which case it operates on all members of the list. This
command sets up to four attributes as follows.

If the --description flag is given followed by a string in double quotes, that string is used to set
the variable’s descriptive label. This label is shown in response to the labels command, and is also
shown in the main window of the GUI program.

If the --graph-name flag is given followed by a quoted string, that string will be used in place of
the variable’s name in graphs.

Chapter 1. Gretl commands 81

If one or other of the --discrete or --continuous option flags is given, the variable’s numerical
character is set accordingly. The default is to treat all series as continuous; setting a series as
discrete affects the way the variable is handled in frequency plots.

If one or other of the --coded or --numeric option flags is given, the status of the given series is
set accordingly. The default is to treat all numerical values as meaningful as such, at least in an
ordinal sense; setting a series as coded means that the numerical values are an arbitrary encoding
of qualitative characteristics.

The --midas option sets a flag indicating that a given series holds data of a higher frequency than
the base frequency of the dataset; for example, the dataset is quarterly and the series holds values
for month 1, 2 or 3 of each quarter. (MIDAS = Mixed Data Sampling.)

Menu path: /Variable/Edit attributes

Other access: Main window pop-up menu

setmiss

Arguments: value [varlist]
Examples: setmiss -1
setmiss 100 x2

Get the program to interpret some specific numerical data value (the first parameter to the com-
mand) as a code for “missing”, in the case of imported data. If this value is the only parameter, as
in the first example above, the interpretation will be applied to all series in the data set. If value is
followed by a list of variables, by name or number, the interpretation is confined to the specified
variable(s). Thus in the second example the data value 100 is interpreted as a code for “missing”,
but only for the variable x2.

Menu path: /Data/Set missing value code

setobs

Variants: setobs periodicity startobs
setobs unitvar timevar --panel-vars

Options: --cross-section (interpret as cross section)
--time-series (interpret as time series)
--special-time-series (see below)
--stacked-cross-section (interpret as panel data)
--stacked-time-series (interpret as panel data)
--panel-vars (use index variables, see below)
--panel-time (see below)
--panel-groups (see below)

Examples: setobs 4 1990:1 --time-series
setobs 12 1978:03
setobs 1 1 --cross-section
setobs 20 1:1 --stacked-time-series
setobs unit year --panel-vars

This command forces the program to interpret the current data set as having a specified structure.

In the first form of the command the periodicity, which must be an integer, represents frequency in
the case of time-series data (1 = annual; 4 = quarterly; 12 = monthly; 52 = weekly; 5, 6, or 7 = daily;
24 = hourly). In the case of panel data the periodicity means the number of lines per data block:
this corresponds to the number of cross-sectional units in the case of stacked cross-sections, or

Chapter 1. Gretl commands 82

the number of time periods in the case of stacked time series. In the case of simple cross-sectional
data the periodicity should be set to 1.

The starting observation represents the starting date in the case of time series data. Years may be
given with two or four digits; subperiods (for example, quarters or months) should be separated
from the year with a colon. In the case of panel data the starting observation should be given as
1:1; and in the case of cross-sectional data, as 1. Starting observations for daily or weekly data
should be given in the form YYYY-MM-DD (or simply as 1 for undated data).

Certain time-series periodicities have standard interpretations —for example, 12 = monthly and 4
= quarterly. If you have unusual time-series data to which the standard interpretation does not
apply, you can signal this by giving the --special-time-series option. In that case gretl will not
(for example) report your frequency-12 data as being monthly.

If no explicit option flag is given to indicate the structure of the data the program will attempt to
guess the structure from the information given.

The second form of the command (which requires the --panel-vars flag) may be used to impose a
panel interpretation when the data set contains variables that uniquely identify the cross-sectional
units and the time periods. The data set will be sorted as stacked time series, by ascending values
of the units variable, unitvar.

Panel-specific options

The --panel-time and --panel-groups options can only be used with a dataset which has already
been defined as a panel.

The purpose of --panel-time is to set extra information regarding the time dimension of the
panel. This should be given on the pattern of the first form of setobs noted above. For example,
the following may be used to indicate that the time dimension of a panel is quarterly, starting in
the first quarter of 1990.

setobs 4 1990:1 --panel-time

The purpose of --panel-groups is to create a string-valued series holding names for the groups
(individuals, cross-sectional units) in the panel. (This will be used where appropriate in panel
graphs.) With this option you supply either one or two arguments as follows.

First case: the (single) argument is the name of a string-valued series. If the number of distinct
values equals the number of groups in the panel this series is used to define the group names. If
necessary, the numerical content of the series will be adjusted such that the values are all 1s for
the first group, all 2s for the second, and so on. If the number of string values doesn’t match the
number of groups an error is flagged.

Second case: the first argument is the name of a series and the second is a string literal or variable
holding a name for each group. The series will be created if it does not already exist. If the second
argument is a string literal or string variable the group names should be separated by spaces; if a
name includes spaces it should be wrapped in backslash-escaped double-quotes. Alternatively the
second argument may be an array of strings.

For example, the following will create a series named country in which the names in cstrs are
each repeated T times, T being the time-series length of the panel.

string cstrs = sprintf("France Germany Italy \"United Kingdom\"")
setobs country cstrs --panel-groups

Menu path: /Data/Dataset structure

Chapter 1. Gretl commands 83

setopt

Arguments: command [action] options
Examples: setopt mle --hessian
setopt ols persist --quiet
setopt ols clear
See also gdp_midas.inp

This command enables the pre-setting of options for a specified command. Ordinarily this is not
required, but it may be useful for the writers of hansl functions when they wish to make certain
command options conditional on the value of an argument supplied by the caller.

For example, suppose a function offers a boolean “quiet” switch, whose intended effect is to
suppress the printing of results from a certain regression executed within the function. In that
case one might write:

if quiet

setopt ols --quiet
endif
ols ...

The --quiet option will then be applied to the next o1s command if and only if the variable quiet
has a non-zero value.

By default, options set in this way apply only to the following instance of command; they are not
persistent. However if you give persist as the value for action the options will continue to apply
to the given command until further notice. The antidote to the persist action is clear: this erases
any stored setting for the specified command.

It should be noted that options set via setopt are compounded with any options attached to
the target command directly. So for example one might append the --hessian option to an mle
command unconditionally but use setopt to add --quiet conditionally.

shell
Argument: shellcommand
Examples: ! 1s -al

I notepad
Taunch notepad

An exclamation mark, !, or the keyword Taunch, at the beginning of a command line is interpreted
as an escape to the user’s shell. Thus arbitrary shell commands can be executed from within gretl.
When ! is used, the external command is executed synchronously. That is, gretl waits for it to
complete before proceeding. If you want to start another program from within gretl and not wait
for its completion (asynchronous operation), use Taunch instead.

For reasons of security this facility is not enabled by default. To activate it, check the box titled
“Allow shell commands” under Tools/Preferences/General in the GUI program. This also makes
shell commands available in the command-line program (and is the only way to do so).

Chapter 1. Gretl commands 84

smpl

Variants: smp1 startobs endobs
smpl1 +i -j
smp1 dumvar --dummy
smp1 condition --restrict
smp1 --no-missing [varlist]
smp1 --no-all-missing [varlist]
smp1 --contiguous [varlist]
smpl n --random
smp1 full
Options: --dummy (argument is a dummy variable)
--restrict (apply boolean restriction)
--replace (replace any existing boolean restriction)
--no-missing (restrict to valid observations)
--no-all-missing (omit empty observations (see below))
--contiguous (see below)
--random (form random sub-sample)
--permanent (see below)
--balanced (panel data: try to retain balanced panel)
--unit (panel data: sample in cross-sectional dimension)
--quiet (don’t report sample range)
Examples: smpl 3 10
smpT 1960:2 1982:4
smpl +1 -1
smpl x > 3000 --restrict
smpl y > 3000 --restrict --replace
smpl 100 --random
Resets the sample range. The new range can be defined in several ways. In the first alternate form
(and the first two examples) above, startobs and endobs must be consistent with the periodicity of
the data. Either one may be replaced by a semicolon to leave the value unchanged. In the second
form, the integers i and j (which may be positive or negative, and should be signed) are taken as
offsets relative to the existing sample range. In the third form dummyvar must be an indicator
variable with values 0 or 1 at each observation; the sample will be restricted to observations where

the value is 1. The fourth form, using --restrict, restricts the sample to observations that satisfy
the given Boolean condition (which is specified according to the syntax of the genr command).

The options --no-missing and --no-all-missing may be used to exclude from the sample ob-
servations for which data are missing. The first variant excludes those rows in the dataset for which
at least one variable has a missing value, while the second excludes just those rows on which all
variables have missing values. In each case the test is confined to the variables in varlist if this
argument is given, otherwise it is applied to all series—with the qualification that in the case of
--no-all-missing and no varlist, the generic variables index and time are ignored.

The --contiguous form of smp1 is intended for use with time series data. The effect is to trim any
observations at the start and end of the current sample range that contain missing values (either
for the variables in varlist, or for all data series if no varlist is given). Then a check is performed to
see if there are any missing values in the remaining range; if so, an error is flagged.

With the --random flag, the specified number of cases are selected from the current dataset at
random (without replacement). If you wish to be able to replicate this selection you should set the

Chapter 1. Gretl commands 85

seed for the random number generator first (see the set command).
The final form, smpT ful1l, restores the full data range.

Note that sample restrictions are, by default, cuamulative: the baseline for any smp1 command is
the current sample. If you wish the command to act so as to replace any existing restriction you
can add the option flag --replace to the end of the command. (But this option is not compatible
with the --contiguous option.)

The internal variable obs may be used with the --restrict form of smpl1 to exclude particular
observations from the sample. For example

smpl obs!=4 --restrict
will drop just the fourth observation. If the data points are identified by labels,
smpl obs!="USA" --restrict

will drop the observation with label “USA”.

One point should be noted about the --dummy, --restrict and --no-missing forms of smpl:
“structural” information in the data file (regarding the time series or panel nature of the data)
is likely to be lost when this command is issued. You may reimpose structure with the setobs
command. A related option, for use with panel data, is the --balanced flag: this requests that a
balanced panel is reconstituted after sub-sampling, via the insertion of “missing rows” if need be.
But note that it is not always possible to comply with this request.

The --unit option is specific to panel data: it allows you to specify a range of “individuals” directly.
For example:

1imit the sample to the first 50 individuals
smpl 1 50 --unit

By default, restrictions on the current sample range can be undone: you can restore the full dataset
via smp1 full. However, the --permanent flag can be used to substitute the restricted dataset for
the original. If you give the --permanent option with no other arguments or options the effect is
to shrink the dataset to the current sample range.

Please see chapter 5 of the Gretl User’s Guide for further details.
Menu path: /Sample

spearman
Arguments: seriesl series2
Option: --verbose (print ranked data)

Prints Spearman’s rank correlation coefficient for the series seriesl and series2. The variables do
not have to be ranked manually in advance; the function takes care of this.

The automatic ranking is from largest to smallest (i.e. the largest data value gets rank 1). If you
need to invert this ranking, create a new variable which is the negative of the original. For example:

series altx = -x
spearman altx y

Menu path: /Tools/Nonparametric tests/Correlation

Chapter 1. Gretl commands 86

sprintf

Obsolete command: please use the sprintf function instead.

square

Argument: varlist

Option: --cross (generate cross-products as well as squares)
Generates new series which are squares of the series in varlist (plus cross-products if the --cross
option is given). For example, square x y will generate sq_x = x squared, sq_y =y squared and
(optionally) x_y = x times y. If a particular variable is a dummy variable it is not squared because
we will get the same variable.

Menu path: /Add/Squares of selected variables

store

Arguments: filename [varlist]

Options: --csv (use CSV format)
--omit-obs (see below, on CSV format)
--no-header (see below, on CSV format)
--gnu-octave (use GNU Octave format)
--gnu-R (format friendly for read.table)
--gzipped[=level] (apply gzip compression)
--jmulti (use JMulti ASCII format)
--dat (use PcGive ASCII format)
--decimal-comma (use comma as decimal character)
--database (use gretl database format)
--overwrite (see below, on database format)
--comment=string (see below)

Save data to filename. By default all currently defined series are saved but the optional varlist argu-

ment can be used to select a subset of series. If the dataset is sub-sampled, only the observations
in the current sample range are saved.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification.

The format in which the data are written may be controlled to a degree by the extension or suffix
of filename, as follows:

e .gdt, or no extension: gretl’s native XML data format. (If no extension is provided, “.gdt” is
added automatically.)

e .gtdb: gretl’s native binary data format.

e .csv: comma-separated values (CSV).

e .txt or .asc: space-separated values.

e .m: GNU Octave matrix format.

e .dta: Stata dta format (version 113).

The format-related option flags shown above can be used to force the issue of the save format
independently of the filename (or to get gretl to write in the formats of PcGive or JMulTi). However,

Chapter 1. Gretl commands 87

if filename has extension .gdt or .gdtb this necessarily implies use of native format and the
addition of a conflicting option flag will generate an error.

When data are saved in native format (only), the --gzipped option may be used for data compres-
sion, which can be useful for large datasets. The optional parameter for this flag controls the level
of compression (from 0 to 9): higher levels produce a smaller file, but compression takes longer.
The default level is 1; a level of 0 means that no compression is applied.

The option flags --omit-obs and --no-header are applicable only when saving data in CSV for-
mat. By default, if the data are time series or panel, or if the dataset includes specific observation
markers, the CSV file includes a first column identifying the observations (e.g. by date). If the
--omit-obs flag is given this column is omitted. The --no-header flag suppresses the usual
printing of the names of the variables at the top of the columns.

The option flag --decimal-comma is also confined to the case of saving data in CSV format. The
effect of this option is to replace the decimal point with the decimal comma; in addition the column
separator is forced to be a semicolon.

The option of saving in gretl database format is intended to help with the construction of large sets
of series, possibly having mixed frequencies and ranges of observations. At present this option is
available only for annual, quarterly or monthly time-series data. If you save to a file that already
exists, the default action is to append the newly saved series to the existing content of the database.
In this context it is an error if one or more of the variables to be saved has the same name as a
variable that is already present in the database. The --overwrite flag has the effect that, if there
are variable names in common, the newly saved variable replaces the variable of the same name in
the original dataset.

The --comment option is available when saving data as a database or in CSV format. The required
parameter is a double-quoted one-line string, attached to the option flag with an equals sign. The
string is inserted as a comment into the database index file or at the top of the CSV output.

The store command behaves in a special manner in the context of a “progressive loop”. See chapter
12 of the Gretl User’s Guide for details.

Menu path: /File/Save data; /File/Export data

summary

Variants: summary [varlist]
summary --matrix=matname
Options: --simple (basic statistics only)
--weight=wvar (weighting variable)
--by=byvar (see below)
Example: frontier.inp
In its first form, this command prints summary statistics for the variables in varlist, or for all the
variables in the data set if varlist is omitted. By default, output consists of the mean, standard devi-
ation (sd), coefficient of variation (= sd/mean), median, minimum, maximum, skewness coefficient,

and excess kurtosis. If the --simple option is given, output is restricted to the mean, minimum,
maximum and standard deviation.

If the --by option is given (in which case the parameter byvar should be the name of a discrete
variable), then statistics are printed for sub-samples corresponding to the distinct values taken on
by byvar. For example, if byvar is a (binary) dummy variable, statistics are given for the cases byvar
= 0 and byvar = 1. Note: at present, this option is incompatible with the --weight option.

If the alternative form is given, using a named matrix, then summary statistics are printed for each
column of the matrix. The --by option is not available in this case.

The table of statistics produced by summary can be retrieved in matrix form via the $result accessor.

Chapter 1. Gretl commands 88

Menu path: /View/Summary statistics

Other access: Main window pop-up menu

system

Variants: system method=estimator
sysname <- system
Examples: "Klein Model 1" <- system
system method=sur
system method=3s1s
See also klein.inp, kmenta.inp, greenel4_2.1inp

Starts a system of equations. Either of two forms of the command may be given, depending on
whether you wish to save the system for estimation in more than one way or just estimate the
system once.

To save the system you should assign it a name, as in the first example (if the name contains spaces
it must be surrounded by double quotes). In this case you estimate the system using the estimate
command. With a saved system of equations, you are able to impose restrictions (including cross-
equation restrictions) using the restrict command.

Alternatively you can specify an estimator for the system using method= followed by a string iden-
tifying one of the supported estimators: ols (Ordinary Least Squares), ts1s (Two-Stage Least
Squares) sur (Seemingly Unrelated Regressions), 3s1s (Three-Stage Least Squares), fiml (Full In-
formation Maximum Likelihood) or Tim1 (Limited Information Maximum Likelihood). In this case
the system is estimated once its definition is complete.

An equation system is terminated by the line end system. Within the system four sorts of state-
ment may be given, as follows.

e equation: specify an equation within the system.

e instr: for a system to be estimated via Three-Stage Least Squares, a list of instruments (by
variable name or number). Alternatively, you can put this information into the equation line
using the same syntax as in the tsls command.

¢ endog: for a system of simultaneous equations, a list of endogenous variables. This is primar-
ily intended for use with FIML estimation, but with Three-Stage Least Squares this approach
may be used instead of giving an instr list; then all the variables not identified as endogenous
will be used as instruments.

e identity: for use with FIML, an identity linking two or more of the variables in the system.
This sort of statement is ignored when an estimator other than FIML is used.

After estimation using the system or estimate commands the following accessors can be used to
retrieve additional information:

$uhat: the matrix of residuals, one column per equation.

$yhat: matrix of fitted values, one column per equation.

$coeff: column vector of coefficients (all the coefficients from the first equation, followed by
those from the second equation, and so on).

e $vcv: covariance matrix of the coefficients. If there are k elements in the $coeff vector, this
matrix is k by k.

$sigma: cross-equation residual covariance matrix.

Chapter 1. Gretl commands 89
e $sysGamma, $sysA and $sysB: structural-form coefficient matrices (see below).

If you want to retrieve the residuals or fitted values for a specific equation as a data series, select a
column from the $uhat or $yhat matrix and assign it to a series, as in

series uhl = $uhat[,1]

The structural-form matrices correspond to the following representation of a simultaneous equa-
tions model:
l"yt = Ayt—l + Bx; + €;

If there are n endogenous variables and k exogenous variables, I' is an n X n matrix and B is n x k.
If the system contains no lags of the endogenous variables then the A matrix is not present. If the
maximum lag of an endogenous regressor is p, the A matrix is n x np.

Menu path: /Model/Simultaneous equations

tabprint

Options: --output=filename (send output to specified file)
--format="f1|f2|f3|f4" (Specify custom TeX format)
--complete (TeX-related, see below)

Must follow the estimation of a model. Prints the model in tabular form. The format is governed
by the extension of the specified filename: “.tex” for KIgX, “. rtf” for RTF (Microsoft’s Rich Text
Format), or “. csv” for comma-separated. The file will be written in the currently set workdir, unless
filename contains a full path specification.

If CSV format is selected, values are comma-separated unless the decimal comma is in force, in
which case the separator is the semicolon.

Options specific to BTgX output

If the --compTlete flag is given the KIEX file is a complete document, ready for processing; otherwise
it must be included in a document.

If you wish alter the appearance of the tabular output, you can specify a custom row format using
the --format flag. The format string must be enclosed in double quotes and must be tied to the
flag with an equals sign. The pattern for the format string is as follows. There are four fields,
representing the coefficient, standard error, t-ratio and p-value respectively. These fields should be
separated by vertical bars; they may contain a printf-type specification for the formatting of the
numeric value in question, or may be left blank to suppress the printing of that column (subject to
the constraint that you can’t leave all the columns blank). Here are a few examples:

--format="%.4f1%.41|%.4F|%.4f"
-—format="%.4f|%.4f|%.3f|"
--format="%.5f|%.4f| |%.4f"
--format="%.8g|%.8g| |%.4f"

The first of these specifications prints the values in all columns using 4 decimal places. The second
suppresses the p-value and prints the t-ratio to 3 places. The third omits the t-ratio. The last one
again omits the t, and prints both coefficient and standard error to 8 significant figures.

Once you set a custom format in this way, it is remembered and used for the duration of the gretl
session. To revert to the default format you can use the special variant --format=default.

Menu path: Model window, /LaTeX

Chapter 1. Gretl commands 90

textplot

Argument: varlist
Options: --time-series (plot by observation)
--one-scale (force a single scale)
--tall (use 40 rows)
Quick and simple ASCII graphics. Without the --time-series flag, varlist must contain at least
two series, the last of which is taken as the variable for the x axis, and a scatter plot is produced.

In this case the --tal1 option may be used to produce a graph in which the y axis is represented
by 40 rows of characters (the default is 20 rows).

With the --time-series, a plot by observation is produced. In this case the option --one-scale
may be used to force the use of a single scale; otherwise if varlist contains more than one series the
data may be scaled. Each line represents an observation, with the data values plotted horizontally.

See also gnuplot.

tobit

Arguments: depvar indepvars
Options: --1T11im1it=Ival (specify left bound)
--rTimit=rval (specify right bound)
--vcv (print covariance matrix)
--robust (robust standard errors)
--opg (see below)
--cluster=clustvar (see logit for explanation)
--verbose (print details of iterations)
Estimates a Tobit model, which may be appropriate when the dependent variable is “censored”.
For example, positive and zero values of purchases of durable goods on the part of individual
households are observed, and no negative values, yet decisions on such purchases may be thought

of as outcomes of an underlying, unobserved disposition to purchase that may be negative in some
cases.

By default it is assumed that the dependent variable is censored at zero on the left and is uncen-
sored on the right. However you can use the options --11imit and --r1imit to specify a different
pattern of censoring. Note that if you specify a right bound only, the assumption is then that the
dependent variable is uncensored on the left.

The Tobit model is a special case of interval regression. Please see the intreg command for further
details, including an account of the --robust and --opg options.

Menu path: /Model/Limited dependent variable/Tobit

Chapter 1. Gretl commands 91

tsls

Arguments: depvar indepvars ; instruments

Options: --no-tests (don’t do diagnostic tests)
--vcv (print covariance matrix)
--no-df-corr (no degrees-of-freedom correction)
--robust (robust standard errors)
--cluster=clustvar (clustered standard errors)
--Tim1 (use Limited Information Maximum Likelihood)
--gmm (use the Generalized Method of Moments)

Example: tsls y1 0 y2 y3 x1 x2 ; 0 x1 x2 x3 x4 x5 x6
penngrow.inp

Computes Instrumental Variables (IV) estimates, by default using two-stage least squares (TSLS) but
see below for further options. The dependent variable is depvar, indepvars is the list of regressors
(which is presumed to include at least one endogenous variable); and instruments is the list of
instruments (exogenous and/or predetermined variables). If the instruments list is not at least as
long as indepvars, the model is not identified.

In the above example, the ys are endogenous and the xs are the exogenous variables. Note that
exogenous regressors should appear in both lists.

Output for two-stage least squares estimates includes the Hausman test and, if the model is over-
identified, the Sargan over-identification test. In the Hausman test, the null hypothesis is that OLS
estimates are consistent, or in other words estimation by means of instrumental variables is not
really required. A model of this sort is over-identified if there are more instruments than are strictly
required. The Sargan test is based on an auxiliary regression of the residuals from the two-stage
least squares model on the full list of instruments. The null hypothesis is that all the instruments
are valid, and suspicion is thrown on this hypothesis if the auxiliary regression has a significant
degree of explanatory power. For a good explanation of both tests see chapter 8 of Davidson and
MacKinnon (2004).

For both TSLS and LIML estimation, an additional test result is shown provided that the model
is estimated under the assumption of ii.d. errors (that is, the --robust option is not selected).
This is a test for weakness of the instruments. Weak instruments can lead to serious problems in
IV regression: biased estimates and/or incorrect size of hypothesis tests based on the covariance
matrix, with rejection rates well in excess of the nominal significance level (Stock et al., 2002). The
test statistic is the first-stage F-test if the model contains just one endogenous regressor, otherwise
it is the smallest eigenvalue of the matrix counterpart of the first stage F. Critical values based on
the Monte Carlo analysis of Stock and Yogo (2003) are shown when available.

The R-squared value printed for models estimated via two-stage least squares is the square of the
correlation between the dependent variable and the fitted values.

For details on the effects of the --robust and --cTuster options, please see the help for ols.

As alternatives to TSLS, the model may be estimated via Limited Information Maximum Likelihood
(the --1im1 option) or via the Generalized Method of Moments (--gmm option). Note that if the
model is just identified these methods should produce the same results as TSLS, but if it is over-
identified the results will differ in general.

If GMM estimation is selected, the following additional options become available:

e ——two-step: perform two-step GMM rather than the default of one-step.
e --iterate: [terate GMM to convergence.

e —-weights=Wmat: specify a square matrix of weights to be used when computing the GMM
criterion function. The dimension of this matrix must equal the number of instruments. The

Chapter 1. Gretl commands 92
default is an appropriately sized identity matrix.

Menu path: /Model/Instrumental variables

var

Arguments: order ylist [; xlist]
Options: --nc (do not include a constant)
--trend (include a linear trend)
--seasonals (include seasonal dummy variables)
--robust (robust standard errors)
--robust-hac (HAC standard errors)
--quiet (skip output of individual equations)
--silent (don’t print anything)
--impulse-responses (print impulse responses)
--variance-decomp (print variance decompositions)
--Tagselect (show criteria for lag selection)
Examples: var 4 x1 x2 x3 ; time mydum
var 4 x1 x2 x3 --seasonals
var 12 x1 x2 x3 --lagselect
See also sw_ch14.1inp

Sets up and estimates (using OLS) a vector autoregression (VAR). The first argument specifies the
lag order — or the maximum lag order in case the --Tagselect option is given (see below). The
order may be given numerically, or as the name of a pre-existing scalar variable. Then follows
the setup for the first equation. Do not include lags among the elements of ylist — they will be
added automatically. The semi-colon separates the stochastic variables, for which order lags will
be included, from any exogenous variables in xlist. Note that a constant is included automatically
unless you give the --nc flag, a trend can be added with the --trend flag, and seasonal dummy
variables may be added using the --seasonals flag.

While a VAR specification usually includes all lags from 1 to a given maximum, it is possible to
select a specific set of lags. To do this, substitute for the regular (scalar) order argument either the
name of a predefined vector or a comma-separated list of lags, enclosed in braces. We show below
two ways of specifying that a VAR should include lags 1, 2 and 4 (but not lag 3):

var {1,2,4} ylist
matrix p = {1,2,4}
var p ylist

A separate regression is reported for each variable in ylist. Output for each equation includes F-
tests for zero restrictions on all lags of each of the variables, an F-test for the significance of the
maximum lag, and, if the --impulse-responses flag is given, forecast variance decompositions
and impulse responses.

Forecast variance decompositions and impulse responses are based on the Cholesky decomposition
of the contemporaneous covariance matrix, and in this context the order in which the (stochastic)
variables are given matters. The first variable in the list is assumed to be “most exogenous” within-
period. The horizon for variance decompositions and impulse responses can be set using the
set command. For retrieval of a specified impulse response function in matrix form, see the irf
function.

If the --robust option is given, standard errors are corrected for heteroskedasticity. Alternatively,
the --robust-hac option can be given to produce standard errors that are robust with respect to

Chapter 1. Gretl commands 93

both heteroskedasticity and autocorrelation (HAC). In general the latter correction should not be
needed if the VAR includes sufficient lags.

If the --Tagselect option is given, the first parameter to the var command is taken as the max-
imum lag order. Output consists of a table showing the values of the Akaike (AIC), Schwarz (BIC)
and Hannan-Quinn (HQC) information criteria computed from VARs of order 1 to the given maxi-
mum. This is intended to help with the selection of the optimal lag order. The usual VAR output is
not presented. The table of information criteria may be retrieved as a matrix via the $test accessor.

Menu path: /Model/Time series/Multivariate

varlist

Option: --type=typename (scope of listing)
By default, prints a listing of the series in the current dataset (if any); 1s may be used as an alias.
If the --type option is given, it should be followed (after an equals sign) by one of the following

typenames: series, scalar, matrix, 1ist, string, bundle or accessor. The effect is to print the
names of all currently defined objects of the named type.

As a special case, if the typename is accessor, the names printed are those of the internal variables
currently available as “accessors,” such as $nobs and $uhat (regardless of their specific type).

vartest
Arguments: seriesl series?

Calculates the F statistic for the null hypothesis that the population variances for the variables
series] and series?2 are equal, and shows its p-value.

Menu path: /Tools/Test statistic calculator

vecm

Arguments: order rank ylist [; xlist] [; rxlist]
Options: --nc (no constant)
--rc (restricted constant)
--uc (unrestricted constant)
--crt (constant and restricted trend)
--ct (constant and unrestricted trend)
--seasonals (include centered seasonal dummies)
--quiet (skip output of individual equations)
--silent (don’t print anything)
--impulse-responses (print impulse responses)
--variance-decomp (print variance decompositions)
Examples: vecm 4 1 Y1 Y2 Y3
vecm 3 2 Y1 Y2 Y3 --rc
vecm 3 2 Y1 Y2 Y3 ; X1 --rc
See also denmark.inp, hamilton.inp
A VECM is a form of vector autoregression or VAR (see var), applicable where the variables in the
model are individually integrated of order 1 (that is, are random walks, with or without drift), but

exhibit cointegration. This command is closely related to the Johansen test for cointegration (see
coint?2).

The order parameter to this command represents the lag order of the VAR system. The number of

Chapter 1. Gretl commands 94

lags in the VECM itself (where the dependent variable is given as a first difference) is one less than
order.

The rank parameter represents the cointegration rank, or in other words the number of cointe-
grating vectors. This must be greater than zero and less than or equal to (generally, less than) the
number of endogenous variables given in ylist.

ylist supplies the list of endogenous variables, in levels. The inclusion of deterministic terms in
the model is controlled by the option flags. The default if no option is specified is to include an
“unrestricted constant”, which allows for the presence of a non-zero intercept in the cointegrating
relations as well as a trend in the levels of the endogenous variables. In the literature stemming
from the work of Johansen (see for example his 1995 book) this is often referred to as “case 3”.
The first four options given above, which are mutually exclusive, produce cases 1, 2, 4 and 5
respectively. The meaning of these cases and the criteria for selecting a case are explained in
chapter 30 of the Gretl User’s Guide.

The optional lists xlist and rxlist allow you to specify sets of exogenous variables which enter the
model either unrestrictedly (xlist) or restricted to the cointegration space (rxlist). These lists are
separated from ylist and from each other by semicolons.

The --seasonals option, which may be combined with any of the other options, specifies the
inclusion of a set of centered seasonal dummy variables. This option is available only for quarterly
or monthly data.

The first example above specifies a VECM with lag order 4 and a single cointegrating vector. The
endogenous variables are Y1, Y2 and Y3. The second example uses the same variables but specifies
a lag order of 3 and two cointegrating vectors; it also specifies a “restricted constant”, which is
appropriate if the cointegrating vectors may have a non-zero intercept but the Y variables have no
trend.

Following estimation of a VECM some special accessors are available: $jalpha, $jbeta and $jvbeta
retrieve, respectively, the « and 8 matrices and the estimated variance of . For retrieval of a spec-
ified impulse response function in matrix form, see the irf function.

Menu path: /Model/Time series/Multivariate

vif
Option: --quiet (don’t print anything)
Example: Tlongley.inp

Must follow the estimation of a model which includes at least two independent variables. Calculates
and displays diagnostic information pertaining to collinearity.

The Variance Inflation Factor or VIF for regressor j is defined as

1
2

where R; is the coefficient of multiple correlation between regressor j and the other regressors. The
factor has a minimum value of 1.0 when the variable in question is orthogonal to the other indepen-
dent variables. Neter et al. (1990) suggest inspecting the largest VIF as a diagnostic for collinearity;
a value greater than 10 is sometimes taken as indicating a problematic degree of collinearity.

Following this command the $result accessor may be used to retrieve a column vector holding the
VIFs. For a more sophisticated approach to diagnosing collinearity, see the bkw command.

Menu path: Model window, /Analysis/Collinearity

Chapter 1. Gretl commands 95

wls

Arguments: wtvar depvar indepvars
Options: --vcv (print covariance matrix)
--robust (robust standard errors)
--quiet (suppress printing of results)
Computes weighted least squares (WLS) estimates using wtvar as the weight, depvar as the de-
pendent variable, and indepvars as the list of independent variables. Let w denote the positive

square root of wtvar; then WLS is basically equivalent to an OLS regression of w * depvar on w *
indepvars. The R-squared, however, is calculated in a special manner, namely as

ESS
RP=1-—
WTSS

where ESS is the error sum of squares (sum of squared residuals) from the weighted regression
and WTSS denotes the “weighted total sum of squares”, which equals the sum of squared residuals
from a regression of the weighted dependent variable on the weighted constant alone.

If wtvar is a dummy variable, WLS estimation is equivalent to eliminating all observations with
value zero for wtvar.

For weighted least squares estimation applied to panel data and based on the unit specific error
variances please see the panel command with the --unit-weights option.

Menu path: /Model/Other linear models/Weighted Least Squares

xcorrgm

Arguments: seriesl series? [order]
Option: --plot=mode-or-filename (see below)
Example: xcorrgm x y 12

Prints and graphs the cross-correlogram for seriesl and series2, which may be specified by name
or number. The values are the sample correlation coefficients between the current value of series1
and successive leads and lags of series?2.

If an order value is specified the length of the cross-correlogram is limited to at most that number
of leads and lags, otherwise the length is determined automatically, as a function of the frequency
of the data and the number of observations.

By default, a plot of the cross-correlogram is produced: a gnuplot graph in interactive mode or
an ASCII graphic in batch mode. This can be adjusted via the --plot option. The acceptable
parameters to this option are none (to suppress the plot); ascii (to produce a text graphic even
when in interactive mode); display (to produce a gnuplot graph even when in batch mode); or a file
name. The effect of providing a file name is as described for the --output option of the gnuplot
command.

Menu path: /View/Cross-correlogram

Other access: Main window pop-up menu (multiple selection)

Chapter 1. Gretl commands 96

xtab

Arguments: ylist [; xlist]
Options: --row (display row percentages)
--column (display column percentages)
--zeros (display zero entries)
--no-totals (suppress printing of marginal counts)
--matrix=matname (use frequencies from named matrix)
--quiet (see the bivariate case below)
--tex[=filename] (output as KTEX)
--equal (see the KTEX case below)
Examples: xtab 1 2
xtab 1 ; 2 3 4
xtab --matrix=A
xtab 1 2 --tex="xtab.tex"
See also ooballot.inp

Displays a contingency table or cross-tabulation for each combination of the variables included in
ylist; if a second list xlist is given, each variable in ylist is cross-tabulated by row against each
variable in xlist (by column). Variables in these lists can be referenced by name or by number. Note
that all the variables must have been marked as discrete. Alternatively, if the --matrix option
is given, the named matrix is treated as a precomputed set of frequencies, to be displayed as a
cross-tabulation (see also the mxtab function). In this case the list argument(s) should be omitted.

By default the cell entries are given as frequency counts. The --row and --column options (which
are mutually exclusive), replace the counts with the percentages for each row or column, respec-
tively. By default, cells with a zero count are left blank; the --zeros option, which has the effect of
showing zero counts explicitly, may be useful for importing the table into another program, such
as a spreadsheet.

Pearson’s chi-square test for independence is displayed if the expected frequency under indepen-
dence is at least 1.0e-7 for all cells. A common rule of thumb for the validity of this statistic is that
at least 80 percent of cells should have expected frequencies of 5 or greater; if this criterion is not
met a warning is printed.

If the contingency table is 2 by 2, Fisher’s Exact Test for independence is computed. Note that this
test is based on the assumption that the row and column totals are fixed, which may or may not
be appropriate depending on how the data were generated. The left p-value should be used when
the alternative to independence is negative association (values tend to cluster in the lower left and
upper right cells); the right p-value should be used if the alternative is positive association. The
two-tailed p-value for this test is calculated by method (b) in section 2.1 of Agresti (1992): it is the
sum of the probabilities of all possible tables having the given row and column totals and having a
probability less than or equal to that of the observed table.

The bivariate case

In the simple case of a bivariate cross-tabulation the accessors $test and $pvalue may be used to re-
trieve the Pearson chi-square test and its p-value, provided the minimum expected value condition
is met. In that context the --quiet option may be used to suppress printing of the table.

BTEX output

If the --tex option is given the cross-tabulation is printed in the form of a KIgX tabular envi-
ronment, either inline (from where it may be copied and pasted) or, if the filename parameter is
appended, to the specified file. (If filename does not specify a full path the file is written in the
currently set workdir.) No test statistic is computed. The additional option --equal can be used

Chapter 1. Gretl commands

97

to flag, by printing in boldface, the count or percentage for cells in which the row and column
variables have the same numerical value. This option is ignored unless the --tex option is given,
and also when one or both of the cross-tabulated variables are string-valued.

The table as a matrix

When a single list argument is given, the contingency table may be retrieved in matrix form via the

$result accessor.

1.3 Commands by topic

The following sections show the available commands grouped by topic.

Estimation

ar
arbond
arima
biprobit
duration
estimate
gmm

hsk

Tad

Togit
mle
negbin
ols
poisson
quantreg
tobit
var

wls

Tests

add

bkw
coeffsum
coint2
difftest

kpss
Tevinlin
modtest
omit
reset
runs

vif

Autoregressive estimation
Arellano-Bond

ARIMA model

Bivariate probit

Duration models

Estimate system of equations
GMM estimation

Heteroskedasticity-corrected esti-
mates

Least Absolute Deviation estima-
tion

Logit regression

Maximum likelihood estimation
Negative Binomial regression
Ordinary Least Squares

Poisson estimation

Quantile regression

Tobit model

Vector Autoregression
Weighted Least Squares

Add variables to model
Collinearity Diagnostics
Sum of coefficients
Johansen cointegration test

Nonparametric tests for differ-
ences

KPSS stationarity test
Levin-Lin-Chu test

Model tests

Omit variables

Ramsey’s RESET

Runs test

Variance Inflation Factors

arl

arch
arma
dpanel
equation
garch
heckit
intreg

Togistic

midasreg
mpols
nls
panel
probit
system
tsls
vecm

adf
chow
coint
cusum
hausman

Tleverage
meantest
normtest
glrtest
restrict
vartest

AR(1) estimation

ARCH model

ARMA model

Dynamic panel models

Define equation within a system
GARCH model

Heckman selection model
Interval regression model

Logistic regression

MIDAS regression
Multiple-precision OLS

Nonlinear Least Squares

Panel models

Probit model

Systems of equations
Instrumental variables regression
Vector Error Correction Model

Augmented Dickey-Fuller test
Chow test

Engle-Granger cointegration test
CUSUM test

Panel diagnostics

Influential observations
Difference of means
Normality test

Quandt likelihood ratio test
Testing restrictions
Difference of variances

Chapter 1. Gretl commands 98

Transformations
diff First differences discrete Mark variables as discrete
dummify Create sets of dummies Tags Create lags
1diff Log-differences logs Create logs
orthdev Orthogonal deviations sdiff Seasonal differencing

square Create squares of variables

Statistics
anova ANOVA corr Correlation coefficients
corrgm Correlogram fractint Fractional integration
freq Frequency distribution hurst Hurst exponent
mahal Mahalanobis distances pca Principal Components Analysis
pergm Periodogram pvalue Compute p-values
spearman Spearmans’s rank correlation summary Descriptive statistics
xcorrgm Cross-correlogram xtab Cross-tabulate variables
Dataset
append Append data data Import from database
dataset Manipulate the dataset delete Delete variables
genr Generate a new variable info Information on data set
join Manage data sources Tabels Labels for variables
markers Observation markers nulldata Creating a blank dataset
open Open a data file rename Rename variables
setinfo Edit attributes of variable setmiss Missing value code
setobs Set frequency and starting obser- smpl Set the sample range
vation
store Save data varlist Listing of variables
Graphs
boxplot Boxplots gnuplot Create a gnuplot graph
graphpg Gretl graph page hfplot Create a MIDAS plot
panplot plot a panel series plot
qgplot Q-Q plot rmplot Range-mean plot
scatters Multiple pairwise graphs textplot ASCII plot
Printing
egnprint Print model as equation modprint Print a user-defined model
outfile Direct printing to file print Print data or strings
printf Formatted printing sprintf

tabprint Print model in tabular form

Prediction

fcast Generate forecasts

Chapter 1. Gretl commands 99

Programming
break Break from loop catch Catch errors
clear debug Debugging
elif Flow control else Flow control
end End block of commands endif Flow control
endloop End a command loop flush
foreign Non-native script funcerr Exit on error
function Define a function if Flow control
include Include function definitions Toop Start a command loop
makepkg Make function package run Execute a script
set Set program parameters setopt Set options for next command
Utilities
eval help Help on commands
modeltab The model table pkg
quit Exit the program shell Execute shell commands

1.4 Short-form command options

As can be seen from section 1.2, the behavior of many gretl commands can be modified via the
use of option flags. These take the form of two dashes followed by a string which is somewhat
descriptive of the effect of the option.

Some options require a parameter, which must be joined to the option “flag” with an equals sign.
Among the options that do not require a parameter, certain common ones have a short form—a
single dash followed by a single letter —and it is considered idiomatic to use the short forms in
hansl scripts. The table below shows the relevant mapping: for any command which supports the
long-form option in the first column, the short form in the second column is also supported.

long form short form

--verbose Y
--quiet -q
--robust -r
--hessian -h

--window -w

Chapter 2

Gretl functions

2.1 Introduction

This chapter presents two alphabetical listings: first, the “accessors” which enable the user to
retrieve the values of internal variables; and second, the functions proper that are available in the
context of the genr command.

2.2 Accessors
$ahat

Output: series

Must follow the estimation of a fixed-effects or random-effects panel data model. Returns a series
containing the estimates of the individual effects.

$aic
Output: scalar

Returns the Akaike Information Criterion for the last estimated model, if available. See chapter 25
of the Gretl User’s Guide for details of the calculation.

$bic
Output: scalar

Returns Schwarz’s Bayesian Information Criterion for the last estimated model, if available. See
chapter 25 of the Gretl User’s Guide for details of the calculation.

$chisq
Output: scalar

Returns the overall chi-square statistic from the last estimated model, if available.

$coeff

Output: matrix or scalar
Argument: s (name of coefficient, optional)

With no arguments, $coeff returns a column vector containing the estimated coefficients for the
last model. With the optional string argument it returns a scalar, namely the estimated parameter
named s. See also $stderr, $vev.

Example:

open bjg
arimm 011 ;011; 1g
b = $coeff # gets a vector

100

Chapter 2. Gretl functions 101

macoef = $coeff(theta_l) # gets a scalar

If the “model” in question is actually a system, the result depends on the characteristics of the sys-
tem: for VARs and VECMs the value returned is a matrix with one column per equation, otherwise
it is a column vector containing the coefficients from the first equation followed by those from the
second equation, and so on.

$command
Output: string

Must follow the estimation of a model; returns the command word, for example ols or probit.

$compan
Output: matrix

Must follow the estimation of a VAR or a VECM; returns the companion matrix.

$datatype
Output: scalar

Returns an integer value representing the sort of dataset that is currently loaded: 0 = no data; 1 =
cross-sectional (undated) data; 2 = time-series data; 3 = panel data.

$depvar
Output: string

Must follow the estimation of a single-equation model; returns the name of the dependent variable.

$df
Output: scalar

Returns the degrees of freedom of the last estimated model. If the last model was in fact a system
of equations, the value returned is the degrees of freedom per equation; if this differs across the
equations then the value given is the number of observations minus the mean number of coeffi-
cients per equation (rounded up to the nearest integer).

$diagpval
Output: scalar

Must follow estimation of a system of equations. Returns the P-value associated with the $diagtest
statistic.

$diagtest
Output: scalar

Must follow estimation of a system of equations. Returns the test statistic for the null hypothesis
that the cross-equation covariance matrix is diagonal. This is the Breusch-Pagan test except when
the estimator is (unrestricted) iterated SUR, in which case it is a Likelihood Ratio test. See chapter
31 of the Gretl User’s Guide for details; see also $diagpval.

Chapter 2. Gretl functions 102

$dw
Output: scalar

Returns the Durbin-Watson statistic for first-order serial correlation from the model last estimated
(if available).

$dwpval
Output: scalar

Returns the p-value for the Durbin-Watson statistic for the model last estimated (if available),
computed using the Imhof procedure.

Due to the limited precision of computer arithmetic, the Imhof integral can go negative when the
Durbin-Watson statistic is close to its lower bound. In that case the accessor returns NA. Since any
other failure mode results in an error being flagged it is probably safe to assume that an NA value
means the true p-value is “very small”, although we are unable to quantify it.

$ec
Output: matrix

Must follow the estimation of a VECM; returns a matrix containing the error correction terms. The
number of rows equals the number of observations used and the number of columns equals the
cointegration rank of the system.

$error
Output: scalar

Returns the program’s internal error code, which will be non-zero in case an error has occurred
but has been trapped using catch. Note that using this accessor causes the internal error code to
be reset to zero. If you want to get the error message associated with a given $error you need to
store the value in a temporary variable, as in

err = $error
if (err)

printf "Got error %d (%s)\n", err, errmsg(err);
endif

See also catch, errmsg.

$ess
Output: scalar

Returns the error sum of squares of the last estimated model, if available.

$evals
Output: matrix

Must follow the estimation of a VECM; returns a vector containing the eigenvalues that are used in
computing the trace test for cointegration.

Chapter 2. Gretl functions 103

$fcast
Output: matrix

Must follow the fcast forecasting command; returns the forecast values as a matrix. If the model
on which the forecast was based is a system of equations the returned matrix will have one column
per equation, otherwise it is a column vector.

$fcse
Output: matrix

Must follow the fcast forecasting command; returns the standard errors of the forecasts, if avail-
able, as a matrix. If the model on which the forecast was based is a system of equations the returned
matrix will have one column per equation, otherwise it is a column vector.

$fevd
Output: matrix

Must follow estimation of a VAR. Returns a matrix containing the forecast error variance decompo-
sition (FEVD). This matrix has h rows where h is the forecast horizon, which can be chosen using
set horizon or otherwise is set automatically based on the frequency of the data.

For a VAR with p variables, the matrix has p? columns: the first p columns contain the FEVD for
the first variable in the VAR; the second p columns the FEVD for the second variable; and so on.
The (decimal) fraction of the forecast error for variable i attributable to innovation in variable j is
therefore found in column (i — 1)p + j.

For a more flexible variant of this functionality, see the fevd function.

$Fstat
Output: scalar

Returns the overall F-statistic from the last estimated model, if available.

$gmmcrit

Output: scalar

Must follow a gmm block. Returns the value of the GMM objective function at its minimum.

$h
Output: series

Must follow a garch command. Returns the estimated conditional variance series.

$hausman
Output: row vector

Must follow estimation of a model via either ts1s or panel with the random effects option. Returns
a 1 x 3 vector containing the value of the Hausman test statistic, the corresponding degrees of
freedom and the p-value for the test, in that order.

Chapter 2. Gretl functions 104

$hqc
Output: scalar

Returns the Hannan-Quinn Information Criterion for the last estimated model, if available. See
chapter 25 of the Gretl User’s Guide for details of the calculation.

$huge
Output: scalar

Returns a very large positive number. By default this is 1.0E100, but the value can be changed using
the set command.

$jalpha
Output: matrix

Must follow the estimation of a VECM, and returns the loadings matrix. It has as many rows as
variables in the VECM and as many columns as the cointegration rank.

$jbeta

Output: matrix

Must follow the estimation of a VECM, and returns the cointegration matrix. It has as many rows
as variables in the VECM (plus the number of exogenous variables that are restricted to the cointe-
gration space, if any), and as many columns as the cointegration rank.

$jvbeta

Output: square matrix

Must follow the estimation of a VECM, and returns the estimated covariance matrix for the elements
of the cointegration vectors.

In the case of unrestricted estimation, this matrix has a number of rows equal to the unrestricted
elements of the cointegration space after the Phillips normalization. If, however, a restricted system
is estimated via the restrict command with the --fulT1 option, a singular matrix with (n + m)v
rows will be returned (n being the number of endogenous variables, m the number of exogenous
variables that are restricted to the cointegration space, and 7 the cointegration rank).

Example: the code

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals -q
s0 = $jvbeta

restrict --full
b[1,1] 1
b[1,2] = -1
b[1,3] + b[1,4] =0
end restrict
sl = $jvbeta

print sO
print sl

produces the following output.

Chapter 2. Gretl functions 105

sO (4 x 4)

0.019751 0.029816 -0.00044837 -0.12227

0.029816 0.31005 -0.45823 -0.18526

-0.00044837 -0.45823 1.2169 -0.035437

-0.12227 -0.18526 -0.035437 0.76062

sl (5 x 5)

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.27398 -0.27398 -0.019059
0.0000 0.0000 -0.27398 0.27398 0.019059
0.0000 0.0000 -0.019059 0.019059 0.0014180

$lang

Output: string

Returns a string representing the national language in force currently, if this can be determined.
The string is composed of a two-letter ISO 639-1 language code (for example, en for English, jp for
Japanese, el for Greek) followed by an underscore plus a two-letter ISO 3166-1 country code. Thus
for example Portuguese in Portugal gives pt_PT while Portuguese in Brazil gives pt_BR.

If the national language cannot be determined, the string “unknown” is returned.

$lit
Output: series

For selected models estimated via Maximum Likelihood, returns the series of per-observation log-
likelihood values. At present this is supported only for binary logit and probit, tobit and heckit.

$Inl
Output: scalar

Returns the log-likelihood for the last estimated model (where applicable).

$macheps
Output: scalar

Returns the value of “machine epsilon”, which gives an upper bound on the relative error due to
rounding in double-precision floating point arithmetic.

$mnlprobs
Output: matrix

Following estimation of a multinomial logit model (only), retrieves a matrix holding the estimated
probabilities of each possible outcome at each observation in the model’s sample range. Each row
represents an observation and each column an outcome.

$model
Output: bundle

Chapter 2. Gretl functions 106

Must follow estimation of a single-equation model; returns a bundle containing many items of data
pertaining to the model. All the regular model accessors are included: these are referenced by keys
that are the same as the regular accessor names, minus the leading dollar sign. So for example the
residuals appear under the key uhat and the error sum of squares under ess.

Depending on the estimator, additional information may be available; the keys for such information
should hopefully be fairly self-explanatory. To see what’s available you can get a copy of the bundle
and print its content, as in

ols y 0 x
bundle b = $model
print b

$ncoeff
Output: integer

Returns the total number of coefficients estimated in the last model.

$nobs
Output: integer

Returns the number of observations in the currently selected sample. Related: $tmax.

$now
Output: vector

Returns a 2-vector: its first element is the number of seconds elapsed since 1970-01-01 00:00:00
+0000 (UTC, or Coordinated Universal Time), which is widely used in the computing world to repre-
sent the current time, and the second is the current date in ISO 8601 “basic” format, YYYYMMDD. The
strftime function may be used to process the first element, and epochday may be used to process
the second.

$nvars
Output: integer

Returns the number of variables in the dataset (including the constant).

$obsdate
Output: series

Applicable when the current dataset is time-series with annual, quarterly, monthly or decennial
frequency, or is dated daily or weekly, or when the dataset is a panel with time-series information
set appropriately (see the setobs command). The returned series holds 8-digit numbers on the
pattern YYYYMMDD (ISO 8601 “basic” date format), which correspond to the day of the observation,
or the first day of the observation period in case of a time-series frequency less than daily.

Such a series can be helpful when using the join command.

$obsmajor

Output: series

Applicable when the observations in the current dataset have a major:minor structure, as in quar-
terly time series (year:quarter), monthly time series (year:month), hourly data (day:hour) and panel

Chapter 2. Gretl functions 107

data (individual:period). Returns a series holding the major or low-frequency component of each
observation (for example, the year).

See also $obsminor, $obsmicro.

$obsmicro
Output: series

Applicable when the observations in the current dataset have a major:minor:micro structure, as in
dated daily time series (year:month:day). Returns a series holding the micro or highest-frequency
component of each observation (for example, the day).

See also $obsmajor, $obsminor.

$obsminor
Output: series

Applicable when the observations in the current dataset have a major:minor structure, as in quar-
terly time series (year:quarter), monthly time series (year:month), hourly data (day:hour) and panel
data (individual:period). Returns a series holding the minor or high-frequency component of each
observation (for example, the month).

In the case of dated daily data, $obsminor gets the month of each observation.

See also $obsmajor, $obsmicro.

$parnames
Output: array of strings

Following estimation of a single-equation model, returns an array of strings holding the names
of the model’s parameters. The number of names matches the number of elements in the $coeff
vector.

For models specified via a list of regressors the result will be the same as that of

varnames ($xTist)

(see varnames), but $parnames is more general; it also works for models with no regressor list (nls,
mle, gmm).

$pd
Output: integer

Returns the frequency or periodicity of the data (e.g. 4 for quarterly data). In the case of panel data
the value returned is the time-series length.

$pi
Output: scalar

Returns the value of 1t in double precision.

Chapter 2. Gretl functions 108

$pvalue
Output: scalar or matrix

Returns the p-value of the test statistic that was generated by the last explicit hypothesis-testing
command, if any (for example, chow). See chapter 9 of the Gretl User’s Guide for details.

In most cases the return value is a scalar but sometimes it is a matrix (for example, the trace and
lambda-max p-values from the Johansen cointegration test); in that case the values in the matrix
are laid out in the same pattern as the printed results.

See also $test.

$qglrbreak
Output: scalar

Must follow an invocation of the glrtest command (the QLR test for a structural break at an un-
known point). The value returned is the 1-based index of the observation at which the test statistic
is maximized.

$result
Output: matrix or bundle

Provides stored information following certain commands that do not have specific accessors. The
commands in question include corr, freq, summary and xtab (in which cases the result is a matrix)
plus vif (in which case the result is a bundle).

$rho

Output: scalar
Argument: n (scalar, optional)

Without arguments, returns the first-order autoregressive coefficient for the residuals of the last
model. After estimating a model via the ar command, the syntax $rho(n) returns the correspond-
ing estimate of p(n).

$rsq
Output: scalar

Returns the unadjusted R? from the last estimated model, if available.

$sample
Output: series

Must follow estimation of a single-equation model. Returns a dummy series with value 1 for ob-
servations used in estimation, O for observations within the currently defined sample range but
not used (presumably because of missing values), and NA for observations outside of the current
range.

If you wish to compute statistics based on the sample that was used for a given model, you can do,
for example:

ols y 0 xlist
series sdum = $sample
smp1 sdum --dummy

Chapter 2. Gretl functions 109

$sargan

Output: row vector

Must follow a ts1s command. Returns a 1 x 3 vector, containing the value of the Sargan over-
identification test statistic, the corresponding degrees of freedom and p-value, in that order. If the
model is exactly identified, the statistic is unavailable, and trying to access it provokes an error.

$sigma
Output: scalar or matrix

Requires that a model has been estimated. If the last model was a single equation, returns the
(scalar) Standard Error of the Regression (or in other words, the standard deviation of the residuals,
with an appropriate degrees of freedom correction). If the last model was a system of equations,
returns the cross-equation covariance matrix of the residuals.

$stderr

Output: matrix or scalar
Argument: s (name of coefficient, optional)

With no arguments, $stderr returns a column vector containing the standard error of the coeffi-
cients for the last model. With the optional string argument it returns a scalar, namely the standard
error of the parameter named s.

If the “model” in question is actually a system, the result depends on the characteristics of the sys-
tem: for VARs and VECMs the value returned is a matrix with one column per equation, otherwise
it is a column vector containing the coefficients from the first equation followed by those from the
second equation, and so on.

See also $coeff, $vcv.

$stopwatch
Output: scalar

Must be preceded by set stopwatch, which activates the measurement of CPU time. The first
use of this accessor yields the seconds of CPU time that have elapsed since the set stopwatch
command. At each access the clock is reset, so subsequent uses of $stopwatch yield the seconds
of CPU time since the previous access.

$sysA
Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients
on the lagged endogenous variables, if any, in the structural form of the system. See the system
command.

$sysB
Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients on
the exogenous variables in the structural form of the system. See the system command.

Chapter 2. Gretl functions 110

$sysGamma
Output: matrix

Must follow estimation of a simultaneous equations system. Returns the matrix of coefficients on
the contemporaneous endogenous variables in the structural form of the system. See the system
command.

$sysinfo
Output: bundle

Returns a bundle containing information on the capabilities of the gretl build and the system on
which gretl is running. The members of the bundle are as follows:

e mpi: integer, equals 1 if the system supports MPI (Message Passing Interface), otherwise 0.

e omp: integer, equals 1 if gretl is built with support for Open MP, otherwise 0.

e ncores: integer, the number of physical processor cores available.

e nproc: integer, the number of processors available, which will be greater than ncores if
hyper-threading is enabled.

e mpimax: integer, the maximum number of MPI processes that can be run in parallel. This is
zero if MPI is not supported, otherwise it equals the local nproc value unless an MPI hosts file
has been specified, in which case it is the sum of the number of processors or “slots” across
all the machines referenced in that file.

e wordlen: integer, either 32 or 64 for 32- and 64-bit systems respectively.
e 0s: string representing the operating system, either 1inux, osx, windows or other.
¢ hostname: the name of the host machine on which the current gretl process is running (with

a fallback of TocaTlhost in case the name cannot be determined).

Note that individual elements in the bundle can be accessed using “dot” notation without any need
to copy the whole bundle under a user-specified name. For example,

if $sysinfo.os == "Tinux"
do something Tinux-specific
endif

$system
Output: bundle

Must follow estimation of a system of equations via one of the commands system, var or vecm;
returns a bundle containing many items of data pertaining to the system. All the relevant regular
system accessors are included: these are referenced by keys that are the same as the regular acces-
sor names, minus the leading dollar sign. So for example the residuals appear under the key uhat
and the coefficients under coeff. The keys for additional information should hopefully be fairly
self-explanatory. To see what’s available you can get a copy of the bundle and print its content, as
in

var 4 yl y2 y2
bundle b = $system
print b

Chapter 2. Gretl functions 111

A bundle obtained in this way can be passed as the final, optional argument to the functions fevd
and irf.

$T
Output: integer

Returns the number of observations used in estimating the last model.

$t1
Output: integer

Returns the 1-based index of the first observation in the currently selected sample.

$t2
Output: integer

Returns the 1-based index of the last observation in the currently selected sample.

$test
Output: scalar or matrix

Returns the value of the test statistic that was generated by the last explicit hypothesis-testing
command, if any (e.g. chow). See chapter 9 of the Gretl User’s Guide for details.

In most cases the return value is a scalar but sometimes it is a matrix (for example, the trace and
lambda-max statistics from the Johansen cointegration test); in that case the values in the matrix
are laid out in the same pattern as the printed results.

See also $pvalue.

$tmax
Output: integer

Returns the maximum legal setting for the end of the sample range via the smpl command. In most
cases this will equal the number of observations in the dataset but within a hansl function the
$tmax value may be smaller, since in general data access within functions is limited to the sample
range set by the caller.

Note that $tmax does not in general equal $nobs, which gives the number of observations in the
current sample range.

$trsq
Output: scalar

Returns TR? (sample size times R-squared) from the last model, if available.

$uhat
Output: series

Returns the residuals from the last model. This may have different meanings for different estima-
tors. For example, after an ARMA estimation $uhat will contain the one-step-ahead forecast error;
after a probit model, it will contain the generalized residuals.

If the “model” in question is actually a system (a VAR or VECM, or system of simultaneous equa-
tions), $uhat retrieves the matrix of residuals, one column per equation.

Chapter 2. Gretl functions 112

$unit
Output: series

Valid for panel datasets only. Returns a series with value 1 for all observations on the first unit or
group, 2 for observations on the second unit, and so on.

$vev

Output: matrix or scalar
Arguments: sl (name of coefficient, optional)
s2 (name of coefficient, optional)

With no arguments, $vcv returns a square matrix containing the estimated covariance matrix for
the coefficients of the last model. If the last model was a single equation, then you may supply
the names of two parameters in parentheses to retrieve the estimated covariance between the
parameters named s1 and s2. See also $coeff, $stderr.

This accessor is not available for VARs or VECMs; for models of that sort see $sigma and $xtxinv.

$vecGamma
Output: matrix

Must follow the estimation of a VECM; returns a matrix in which the Gamma matrices (coefficients
on the lagged differences of the cointegrated variables) are stacked side by side. Each row repre-
sents an equation; for a VECM of lag order p there are p — 1 sub-matrices.

$version
Output: scalar

Returns an integer value that codes for the program version. The current gretl version string takes
the form of a 4-digit year followed by a letter from a to j representing the sequence of releases
within the year (for example, 2015d). The return value from this accessor is formed as 10 times the
year plus the zero-based lexical order of the letter, so 2015d translates to 20153.

Prior to gretl 2015d, version identifiers took the form x.y.z (three integers separated by dots), and
in that case the accessor value was calculated as 10000*x + 100*y + z, so that for example 1.10.2
(the last release under the old scheme) translates as 11002. Numerical order of $version values is
therefore preserved across the change in versioning scheme.

$vma
Output: matrix

Must follow the estimation of a VAR or a VECM; returns a matrix containing the VMA representation
up to the order specified via the set horizon command. See chapter 29 of the Gretl User’s Guide
for details.

$windows
Output: integer

Returns 1 if gretl is running on MS Windows, otherwise 0. By conditioning on the value of this
variable you can write shell calls that are portable across different operating systems.

Also see the shell command.

Chapter 2. Gretl functions 113

$xlist
Output: list

If the last model was a single equation, returns the list of regressors. If the last model was a system
of equations, returns the “global” list of exogenous and predetermined variables (in the same order
in which they appear in $sysB). If the last model was a VAR, returns the list of exogenous regressors,
if any.

$xtxinv
Output: matrix

Following estimation of a VAR or VECM (only), returns X’ X~!, where X is the common matrix of
regressors used in each of the equations. This accessor is not available for a VECM estimated with
a restriction imposed on «, the “loadings” matrix.

$yhat
Output: series

Returns the fitted values from the last regression.

$ylist
Output: list

If the last model estimated was a VAR, VECM or simultaneous system, returns the associated list
of endogenous variables. If the last model was a single equation, this accessor gives a list with a
single element, the dependent variable. In the special case of the biprobit model the list contains
two elements.

2.3 Functions proper

abs

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the absolute value of x.

acos

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the arc cosine of x, that is, the value whose cosine is x. The result is in radians; the input
should be in the range —1 to 1.

acosh

Output: same type as input
Argument: x (scalar, series or matrix)

Returns the inverse hyperbolic cosine of x (positive solution). x should be greater than 1; otherwise,
NA is returned. See also cosh.

Chapter 2. Gretl functions 114

aggregate

Output: matrix

Arguments: X (series or list)
byvar (series or list)
funcname (string, optional)

In the most minimal usage, x is set to null, byvar is a single series and the third argument is
omitted. In that case the return value is a matrix with two columns holding, respectively, the
distinct values of byvar, sorted in ascending order, and the count of observations at which byvar
takes on each of these values. For example,

open data4-1
eval aggregate(null, bedrms)

will show that the series bedrms has values 3 (with count 5) and 4 (with count 9).

If x and byvar are both individual series and the third argument is given, the return value is a
matrix with three columns holding, respectively, the distinct values of byvar, sorted in ascending
order; the count of observations at which byvar takes on each of these values; and the values of
the statistic specified by funcname calculated on series x, using only those observations at which
byvar takes on the value given in the first column.

More generally, if byvar is a list with n members then the left-hand n columns hold the combi-
nations of the distinct values of each of the n series and the count column holds the number
of observations at which each combination is realized. If x is a list with m members then the
rightmost m columns hold the values of the specified statistic for each of the x variables, again
calculated on the sub-sample indicated in the first column(s).

The following values of funcname are supported “natively”: sum, sumall, mean, sd, var, sst, skew-
ness, kurtosis, min, max, median, nobs and gini. Each of these functions takes a series argument
and returns a scalar value, and in that sense can be said to “aggregate” the series in some way. You
may give the name of a user-defined function as the aggregator; like the built-ins, such a function
must take a single series argument and return a scalar value.

Note that although a count of cases is provided automatically the nobs function is not redundant
as an aggregator, since it gives the number of valid (non-missing) observations on x at each byvar
combination.

For a simple example, suppose that region represents a coding of geographical region using integer
values 1 to n, and income represents household income. Then the following would produce an n.x3
matrix holding the region codes, the count of observations in each region, and mean household
income for each of the regions:

matrix m = aggregate(income, region, mean)
For an example using lists, let gender be a male/female dummy variable, let race be a categorical
variable with three values, and consider the following:

Tist BY = gender race
Tist X = income age
matrix m = aggregate(X, BY, sd)

The aggregate call here will produce a 6 x 5 matrix. The first two columns hold the 6 distinct
combinations of gender and race values; the middle column holds the count for each of these

Chapter 2. Gretl functions 115

combinations; and the rightmost two columns contain the sample standard deviations of income
and age.

Note that if byvar is a list, some combinations of the byvar values may not be present in the data
(giving a count of zero). In that case the value of the statistics for x are recorded as NaN (not a
number). If you want to ignore such cases you can use the selifr function to select only those rows
that have a non-zero count. The column to test is one place to the right of the number of byvar
variables, so we can do:

matrix m = aggregate(X, BY, sd)
scalar c = nelem(BY)
m = selifr(m, m[,c+1])

argname

Output: string
Arguments: s (string)
default (string, optional)

For s the name of a parameter to a user-defined function, returns the name of the corresponding
argument, if the argument had a name at the caller level. If the argument was anonymous, an empty
string is returned unless the optional default argument is provided, in which case its value is used
as a fallback.

array

Output: see below
Argument: n (integer)

The basic “constructor” function for a new array variable. In using this function you must specify
a type (in plural form) for the array: strings, matrices, bundles or 1ists. The return value is an
array of the specified type with n elements, each of which is initialized as “empty” (e.g. zero-length
string, null matrix). Examples of usage:

strings S = array(5)
matrices M = array(3)

See also defarray.

asin
Output: same type as input

Argument: x (scalar, series or matrix)

Returns the arc sine of x, that is, the value whose sine is x. The result is in radians; the input should
be in the range —1 to 1.

asinh

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the inverse hyperbolic sine of x. See also sinh.

Chapter 2. Gretl functions 116

atan

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the arc tangent of x, that is, the value whose tangent is x. The result is in radians.

See also tan, atan2.

atan2

Output: same type as input
Arguments: y (scalar, series or matrix)
X (scalar, series or matrix)

Returns the principal value of the arc tangent of y/x, using the signs of the two arguments to
determine the quadrant of the result. The return value is in radians, in the range [T, 77].

If the two arguments differ in type, the type of the result is the “higher” of the two, where the
ordering is matrix > series > scalar. For example, if y is a scalar and x an n-vector (or vice versa)
the result is an n-vector. Note that matrix arguments must be vectors, and if neither argument is a
scalar the two arguments must be of the same length.

See also tan, tanh.

atanh

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the inverse hyperbolic tangent of x. See also tanh.

atof

Output: scalar
Argument: s (string)

Closely related to the C library function of the same name. Returns the result of converting the
string s (or the leading portion thereof, after discarding any initial white space) to a floating-point
number. Unlike C’s atof, however, the decimal character is always assumed (for reasons of porta-
bility) to be “.”. Any characters that follow the portion of s that converts to a floating-point number
under this assumption are ignored.

If none of s (following any discarded white space) is convertible under the stated assumption, NA is
returned.

examples

x = atof("1.234") # gives x = 1.234
x = atof("1,234") # gives x =1

x = atof("1.2y") # gives x = 1.2

x = atof("y") # gives x = NA

x = atof(",234") # gives x = NA

See also sscanf for more flexible string to numeric conversion.

Chapter 2. Gretl functions 117

bessel
Output: same type as input
Arguments: type (character)

v (scalar)

X (scalar, series or matrix)
Computes one of the Bessel function variants for order v and argument x. The return value is of
the same type as x. The specific function is selected by the first argument, which must be J, Y, I,

or K. A good discussion of the Bessel functions can be found on Wikipedia; here we give a brief
account.

case J: Bessel function of the first kind. Resembles a damped sine wave. Defined for real v and x,
but if x is negative then v must be an integer.

case Y: Bessel function of the second kind. Defined for real v and x but has a singularity at x = 0.

case I. Modified Bessel function of the first kind. An exponentially growing function. Acceptable
arguments are as for case J.

case K: Modified Bessel function of the second kind. An exponentially decaying function. Diverges
at x = 0 and is not defined for negative x. Symmetric around v = 0.

BFGSmax

Output: scalar
Arguments: &b (reference to matrix)
f (function call)
g (function call, optional)
Numerical maximization via the method of Broyden, Fletcher, Goldfarb and Shanno. On input the
vector b should hold the initial values of a set of parameters, and the argument f should specify a
call to a function that calculates the (scalar) criterion to be maximized, given the current parameter
values and any other relevant data. If the object is in fact minimization, this function should return

the negative of the criterion. On successful completion, BFGSmax returns the maximized value of
the criterion, and b holds the parameter values which produce the maximum.

The optional third argument provides a means of supplying analytical derivatives (otherwise the
gradient is computed numerically). The gradient function call g must have as its first argument a
predefined matrix that is of the correct size to contain the gradient, given in pointer form. It also
must take the parameter vector as an argument (in pointer form or otherwise). Other arguments
are optional.

For more details and examples see chapter 34 of the Gretl User’s Guide. See also BEGScmax, NRmax,
fdjac, simann.

BFGSmin
Output: scalar

An alias for BFGSmax; if called under this name the function acts as a minimizer.

BFGScmax

Output: scalar

Arguments: &b (reference to matrix)
bounds (matrix)
f (function call)
g (function call, optional)

Chapter 2. Gretl functions 118

Constrained numerical maximization using L-BFGS-B (limited memory BFGS, see Byrd et al. (1995)).
On input the vector b should hold the initial values of a set of parameters, bounds should hold
bounds on the parameter values (see below), and f should specify a call to a function that calculates
the (scalar) criterion to be maximized, given the current parameter values and any other relevant
data. If the object is in fact minimization, this function should return the negative of the criterion.
On successful completion, BFGScmax returns the maximized value of the criterion, subject to the
constraints in bounds, and b holds the parameter values which produce the maximum.

The bounds matrix must have 3 columns and as many rows as there are constrained elements in
the parameter vector. The first element on a given row is the (1-based) index of the constrained
parameter; the second and third are the lower and upper bounds, respectively. The values -$huge
and $huge should be used to indicate that the parameter is unconstrained downward or upward,
respectively. For example, the following is the way to specify that the second element of the pa-
rameter vector must be non-negative:

matrix bounds = {2, 0, $huge}

The optional fourth argument provides a means of supplying analytical derivatives (otherwise the
gradient is computed numerically). The gradient function call g must have as its first argument a
predefined matrix that is of the correct size to contain the gradient, given in pointer form. It also
must take the parameter vector as an argument (in pointer form or otherwise). Other arguments
are optional.

For more details and examples see chapter 34 of the Gretl User’s Guide. See also BFGSmax, NRmax,
fdjac, simann.

BFGScmin
Output: scalar

An alias for BFGScmax; if called under this name the function acts as a minimizer.

bkfilt

Output: series

Arguments: y (series)
f1 (integer, optional)
f2 (integer, optional)
k (integer, optional)

Returns the result from application of the Baxter-King bandpass filter to the series y. The op-
tional parameters f1 and f2 represent, respectively, the lower and upper bounds of the range of
frequencies to extract, while k is the approximation order to be used.

If these arguments are not supplied then the default values depend on the periodicity of the dataset.
For yearly data the defaults for f1, f2 and k are 2, 8 and 3, respectively; for quarterly data, 6, 32
and 12; for monthly data, 18, 96 and 36. These values are chosen to match the most common
choice among practitioners, that is to use this filter for extracting the “business cycle” frequency
component; this, in turn, is commonly defined as being between 18 months and 8 years. The filter,
per default choice, spans 3 years of data.

If f2 is greater than or equal to the number of available observations, then the “low-pass” version of
the filter will be run and the resulting series should be taken as an estimate of the trend component,
rather than the cycle. See also bwfilt, hpfilt.

Chapter 2. Gretl functions 119

bkw

Output: matrix
Arguments: V (matrix)
parnames (array of strings, optional)
verbose (boolean, optional)
Computes BKW collinearity diagnostics (see Belsley et al. (1980)) given a covariance matrix of pa-
rameter estimates, V. The optional second argument, which can be an array of strings or a string
containing comma-separated names, is used to label the columns showing the variance propor-

tions; the number of names should match the dimension of V. After estimation of a model in gretl,
suitable arguments can be obtained via the $vcv and $parnames accessors.

By default this function operates silently, just returning the BKW table as a matrix, but if a non-zero
value is given for the third argument the table is printed along with some analysis.

There is also a command form of this facility, bkw, which automatically references the last model
and requires no arguments.

boxcox
Output: same type as input
Arguments: y (series or matrix)

d (scalar)

Returns the Box-Cox transformation with parameter d for the positive series y (or the columns of
matrix y).

d
(d):{yldl if d+0

e log(y,) if d=0

bread

Output: bundle
Arguments: fname (string)
import (boolean, optional)

Reads a bundle from a text file. The string fname must contain the name of the file from which
the bundle is to be read. If this name has the suffix “.gz” it is assumed that gzip compression has
been applied in writing the file.

The file in question should be an appropriately defined XML file: it should contain a gretT1-bundle
element, which is used to store zero or more bundled-1item elements. For example,

<?xml version="1.0" encoding="UTF-8"7>
<gretT-bundle name="temp">

<bundled-item key="s" type="string">moo</bundled-item>

<bundled-item key="x" type="scalar">3</bundled-item>
</gretl-bundle>

As you may expect, such files are generated automatically by the companion function bwrite.

If the file name does not contain a full path specification, it will be looked for in several “likely”
locations, beginning with the currently set workdir. However, if a non-zero value is given for the
optional import argument, the input file is looked for in the user’s “dot” directory. In this case the
fname argument should be a plain filename, without any path component.

Chapter 2. Gretl functions 120

Should an error occur (such as the file being badly formatted or inaccessible), an error is returned
via the $error accessor.

See also mread, bwrite.

brename
Output: scalar
Arguments: B (bundle)

oldkey (string)
newkey (string)

If the bundle B contains a member under the key oldkey, its key is changed to newkey, otherwise
an error is flagged. Returns 0 on successful renaming.

Changing the key of a bundle member is not a common task but it can arise in the context of
functions that work with bundles, and brename is an efficient tool for the job. Example:

set up a bundle holding a big matrix
bundle b
b.X = mnormal (1000, 1000)
if 0
change the key manually
Xcopy = b.X
delete b.X
b.Y = Xcopy
delete Xcopy
else
versus: change it efficiently
brename(b, "X", "Y'")
endif

The first method requires that the big matrix be copied twice, out of the bundle then back into it
under a different key; the efficient method changes the key directly.

bwfilt

Output: series
Arguments: y (series)
n (integer)
omega (scalar)
Returns the result from application of a low-pass Butterworth filter with order n and frequency
cutoff omega to the series y. The cutoff is expressed in degrees and must be greater than 0 and
less than 180. Smaller cutoff values restrict the pass-band to lower frequencies and hence produce

a smoother trend. Higher values of n produce a sharper cutoff, at the cost of possible numerical
instability.

Inspecting the periodogram of the target series is a useful preliminary when you wish to apply this
function. See chapter 27 of the Gretl User’s Guide for details. See also bkfilt, hpfilt.

bwrite
Output: integer
Arguments: B (bundle)
fname (string)
export (boolean, optional)

Chapter 2. Gretl functions 121

Writes the bundle B to an XML file named fname. For a summary description of its format, see
bread. If file fname already exists, it will be overwritten. The return value is 0 on successful
completion; if an error occurs, such as the file being unwritable, the return value will be non-zero.

The output file will be written in the currently set workdir, unless the filename string contains a
full path specification. However, if a non-zero value is given for the export argument, the output
file will be written into the user’s “dot” directory. In this case a plain filename, without any path
component, should be given for the second argument.

By default, the XML file is written uncompressed, but if fname has the extension .gz then gzip
compression is applied.

See also bread, mwrite.

cdemean

Output: matrix
Arguments: X (matrix)
standardize (boolean, optional)
Centers the columns of matrix X around their means. If the optional second argument has a non-

zero value then in addition the centered values are divided by the column standard deviations
(which are calculated using n — 1 as divisor, where n is the number of rows of X).

cdf

Output: same type as input
Arguments: d (string)
... (see below)
X (scalar, series or matrix)
Examples: pl cdf(N, -2.5)
p2 cdf(X, 3, 5.67)
p3 = cdf(D, 0.25, -1, 1D
Cumulative distribution function calculator. Returns P(X < x), where the distribution of X is
determined by the string d. Between the arguments d and x, zero or more additional scalar ar-

guments are required to specify the parameters of the distribution, as follows (but note that the
normal distribution has its own convenience function, cnorm).

Chapter 2. Gretl functions 122

Distribution d Arg 2 Arg 3 Arg 4
Standard normal z,norN - - -
Bivariate normal D p - -
Logistic Tgt - - -
Student’s t (central) t df - -

Chi square ¢, xor X df - -
Snedecor’s F forF df (num.) df (den.) -
Gamma gorG shape scale -
Binomial b or B probability trials -
Poisson p or P mean - -
Exponential exp scale - -
Weibull wor W shape scale -
Laplace TorlL mean scale -
Generalized Error E shape - -
Non-central 2 ncX df non-centrality -
Non-central F ncF df mum.) df (den.) non-centrality
Non-central t nct df non-centrality -

Note that most cases have aliases to help memorizing the codes. The bivariate normal case is spe-
cial: the syntax is x = cdf(D, rho, zl, z2) where rho is the correlation between the variables
z1 and z2.

The parametrization gretl uses for the Gamma random variate implies that its density function can

be written as
xk—l e—x/@

ok T(k)
where k > 0 is the shape parameter and 6 > 0 is the scale parameter.

f(x;k, 0) =

See also pdf, critical, invcdf, pvalue.

cdiv
Output: matrix
Arguments: X (matrix)

Y (matrix)

Complex division. The two arguments must have the same number of rows, n, and either one or
two columns. The first column contains the real part and the second (if present) the imaginary part.
The return value is an n X 2 matrix or, if the result has no imaginary part, an n-vector. See also
cmult.

cdummify

Output: list
Argument: L (list)

This function returns a list in which each series in L that has the “coded” attribute is replaced by
a set of dummy variables representing each of its coded values, with the least value omitted. If L
contains no coded series the return value will be identical to L.

The generated dummy variables, if any, are named on the pattern Dvarname_vi where vi is the jt"
represented value of the coded variable. In case any values are negative, “m” is inserted before the
(absolute) value of vi.

Chapter 2. Gretl functions 123

For example, suppose L contains a coded series named C1 with values -9, —7, 0, 1 and 2. Then the
generated dummies will be DC1_m7 (coding for C1 = —7), DC1_0 (coding for C1 = 0), and so on.

See also dummify, getinfo.

ceil
Output: same type as input
Argument: x (scalar, series or matrix)

Ceiling function: returns the smallest integer greater than or equal to x. See also floor, int.

cholesky

Output: square matrix
Argument: A (positive definite matrix)
Performs a Cholesky decomposition of the matrix A, which is assumed to be symmetric and positive

definite. The result is a lower-triangular matrix L which satisfies A = LL’. The function will fail if A
is not symmetric or not positive definite. See also psdroot, Lsolve.

chowlin

Output: matrix
Arguments: Y (matrix)
xfac (integer)
X (matrix, optional)

Expands the input data, Y, to a higher frequency, using the interpolation method of Chow and Lin
(1971). It is assumed that the columns of Y represent data series; the returned matrix has as many
columns as Y and xfac times as many rows.

The second argument represents the expansion factor: it should be 3 for expansion from quarterly
to monthly or 4 for expansion from annual to quarterly, these being the only supported factors.
The optional third argument may be used to provide a matrix of covariates at the higher (target)
frequency.

The regressors used by default are a constant and quadratic trend. If X is provided, its columns are
used as additional regressors; it is an error if the number of rows in X does not equal xfac times
the number of rows in Y.

cmult
Output: matrix
Arguments: X (matrix)

Y (matrix)

Complex multiplication. The two arguments must have the same number of rows, n, and either one
or two columns. The first column contains the real part and the second (if present) the imaginary
part. The return value is an 7 X 2 matrix, or, if the result has no imaginary part, an n-vector. See
also cdiv.

cnorm

Output: same type as input
Argument: x (scalar, series or matrix)

Returns the cumulative distribution function for a standard normal. See also dnorm, gnorm.

Chapter 2. Gretl functions 124

cnumber

Output: scalar

Argument: X (matrix)
Returns the condition number of the n x k matrix X, as defined in Belsley et al. (1980). If the columns
of X are mutually orthogonal the condition number of X is unity. Conversely, a large value of the

condition number is an indicator of multicollinearity; “large” is often taken to mean 50 or greater
(sometimes 30 or greater).

The steps in the calculation are: (1) form a matrix Z whose columns are the columns of X divided
by their respective Euclidean norms; (2) form Z’Z and obtain its eigenvalues; and (3) compute the
square root of the ratio of the largest to the smallest eigenvalue.

See also rcond.

cnameget

Output: string or array of strings
Arguments: M (matrix)
col (integer, optional)
If the col argument is given, retrieves the name for column col of matrix M. If M has no column

names attached the value returned is an empty string; if col is out of bounds for the given matrix
an error is flagged.

If no second argument is given, retrieves an array of strings holding the column names from M, or
an empty array if M does not have column names attached.

Example:

matrix A = { 11, 23, 13 ; 54, 15, 46 }
cnameset(A, "Col_A Col_B Col_C")
string name = cnameget(A, 3)

print name

See also cnameset.

cnameset

Output: scalar
Arguments: M (matrix)
S (array of strings or list)

Attaches names to the columns of the T x k matrix M. If S is a named list, the names are taken from
the names of the listed series; the list must have k members. If S is an array of strings, it should
contain k elements. For backward compatibility, a single string may also be given as the second
argument; in that case it should contain k space-separated substrings.

The return value is 0 on successful completion, non-zero on error. See also rnameset.

Example:

matrix M = {1, 2; 2, 1; 4, 1}
strings S = array(2)

S[1] = "Col1"

S[2] = "Col2"

cnameset(M, S)

print M

Chapter 2. Gretl functions 125

cols
Output: integer
Argument: X (matrix)

Returns the number of columns of X. See also mshape, rows, unvech, vec, vech.

conv2d
Output: matrix
Arguments: A (matrix)

B (matrix)

Computes the 2-dimensional convolution of the matrices A and B. If Ais v X ¢ and B is m X n then
the returned matrix will have » + m — 1 rows and ¢ + n — 1 columns.

The 2-D convolution of A and B is defined as
v

Cij= .

k=1

where the summations include just those values of k and I for which the subscripts of B are within
bounds.

See also fft, filter.

M=

AkiBi—k+1,j-1+1,

=1

corr

Output: scalar
Arguments: Yyl (series or vector)
y2 (series or vector)

Computes the correlation coefficient between y1 and y2. The arguments should be either two series,
or two vectors of the same length. See also cov, mcov, mcorr, npcorr.

corrgm
Output: matrix
Arguments: Xx (series, matrix or list)

p (integer)
y (series or vector, optional)

If only the first two arguments are given, computes the correlogram for x for lags 1 to p. Let k
represent the number of elements in x (1 if x is a series, the number of columns if x is a matrix, or
the number of list-members if x is a list). The return value is a matrix with p rows and 2k columns,
the first k columns holding the respective autocorrelations and the remainder the respective partial
autocorrelations.

If a third argument is given, this function computes the cross-correlogram for each of the k ele-
ments in x and y, from lead p to lag p. The returned matrix has 2p + 1 rows and k columns. If x is
series or list and y is a vector, the vector must have just as many rows as there are observations in
the current sample range.

cos

Output: same type as input
Argument: x (scalar, series or matrix)

Returns the cosine of x. See also sin, tan, atan.

Chapter 2. Gretl functions 126

cosh

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the hyperbolic cosine of x.

eX +e X
coshx = ——

See also acosh, sinh, tanh.

cov

Output: scalar
Arguments: Yyl (series or vector)
y2 (series or vector)

Returns the covariance between yI and y2. The arguments should be either two series, or two
vectors of the same length. See also corr, mcov, mcorr.

critical

Output: same type as input
Arguments: c (character)
... (see below)
p (scalar, series or matrix)
Examples: cl critical(t, 20, 0.025)
c2 critical(F, 4, 48, 0.05)

Critical value calculator. Returns x such that P(X > x) = p, where the distribution X is determined
by the character c. Between the arguments ¢ and p, zero or more additional scalar arguments are
required to specify the parameters of the distribution, as follows.

Distribution c Arg 2 Arg 3
Standard normal z,norN - -
Student’s t (central) t degrees of freedom -

Chi square ¢, xor X degrees of freedom -
Snedecor’s F forF df mum.) df (den.)
Binomial b or B 12 n
Poisson p or P A -
Laplace TorlL mean scale
Standardized GED E shape -

See also cdf, invedf, pvalue.

cum
Output: same type as input
Argument: x (series or matrix)

Cumulates x. When x is a series, produces a series y; = Z§=m X,; the starting point of the sum-
mation, m, is the first non-missing observation of the currently selected sample. If any missing

Chapter 2. Gretl functions 127

values are encountered in x, subsequent values of y will be set to missing. When x is a matrix, its
elements are cumulated by columns.

See also diff.

curl

Output: scalar
Argument: &b (reference to bundle)

Provides a somewhat flexible means of obtaining a text buffer containing data from an internet
server, using libcurl. On input the bundle b must contain a string named URL which gives the full
address of the resource on the target host. Other optional elements are as follows.

e “header”: a string specifying an HTTP header to be sent to the host.

e “postdata”: a string holding data to be sent to the host.

The header and postdata fields are intended for use with an HTTP POST request; if postdata
is present the POST method is implicit, otherwise the GET method is implicit. (But note that for
straightforward GET requests readfile offers a simpler interface.)

One other optional bundle element is recognized: if a scalar named include is present and has
a non-zero value, this is taken as a request to include the header received from the host with the
output body.

On completion of the request, the text received from the server is added to the bundle under the
key “output”.

If an error occurs in formulating the request (for example there’s no URL on input) the function
fails, otherwise it returns O if the request succeeds or non-zero if it fails, in which case the error
message from the curl library is added to the bundle under the key “errmsg”. Note, however, that
“success” in this sense does not necessarily mean you got the data you wanted; all it means is that
some response was received from the server. You must check the content of the output buffer
(which may in fact be a message such as “Page not found”).

Here is an example of use: downloading some data from the US Bureau of Labor Statistics site,
which requires sending a JSON query. Note the use of sprintf to embed double-quotes in the POST
data.

bundle req
req.URL = "http://api.bls.gov/publicAPI/v1l/timeseries/data/"
reg.include = 1
req.header = "Content-Type: application/json"
string s = sprintf("{\"seriesid\":[\"LEU0254555900\"]1}")
reqg.postdata = s
err = curl(&req)
if err ==

s = req.output

string line

Toop while getline(s, line) --quiet

printf "%s\n", line

endloop

endif

See also the functions jsonget and xmlget for means of processing JSON and XML data received,
respectively.

Chapter 2. Gretl functions 128

dayspan
Output: integer
Arguments: edlI (integer)

ed?2 (integer)
weeklen (integer)

Returns the number of (relevant) days between the epoch days ed1 and ed?2, inclusive. The weeklen,
which must equal 5, 6 or 7, gives the number of days in the week that should be counted (a value
of 6 omits Sundays, and a value of 5 omits both Saturdays and Sundays).

To obtain epoch days from the more familiar form of dates, see epochday. Related: see smplspan.

defarray
Output: see below
Argument: ... (see below)

Enables the definition of an array variable in extenso, by providing one or more elements. In using
this function you must specify a type (in plural form) for the array: strings, matrices, bundles
or lists. Each of the arguments must evaluate to an object of the specified type. On successful
completion, the return value is an array of n elements, where n is the number of arguments.

strings S = defarray("foo", "bar", "baz")
matrices M = defarray(I(3), X’X, A*B, P[1:])

See also array.

defbundle
Output: bundle
Argument: ... (see below)

Enables the initialization of a bundle variable in extenso, by providing zero or more pairs of the form
key, member. If we count the arguments from 1, every odd-numbered argument must evaluate to
a string (key) and every even-numbered argument must evaluate to an object of a type that can be
included in a bundle.

A couple of simple examples:

bundle bl defbundle("s", "Sample string", "m", I(3))
bundle b2 = defbundle("yn", normal(), "x", 5)

The first example creates a bundle with members a string and a matrix; the second, a bundle with
a series member and a scalar member. Note that you cannot specify a type for each argument
when using this function, so you must accept the “natural” type of the argument in question. If
you wanted to add a series with constant value 5 to a bundle named b1 it would be necessary to do
something like the following (after declaring b1):

series bl.s5 =5
If no arguments are given to this function it is equivalent to creating an empty bundle (or to emp-
tying an existing bundle of its content), as could also be done via

bundle b = null

Chapter 2. Gretl functions 129

deflist

Output: list
Argument: ... (see below)
Defines a list (of named series), given one or more suitable arguments. Each argument must be a

named series (given by name or integer ID number), an existing named list, or an expression which
evaluates to a list (including a vector which can be interpreted as a set of series ID numbers).

One point to note: this function simply concatenates its arguments to produce the list that it
returns. If the intent is that the return value does not contain duplicates (does not reference any
given series more than once), it is up to the caller to ensure that requirement is satisfied.

deseas

Output: series
Arguments: X (series)
¢ (character, optional)
Depends on having TRAMO/SEATS or X-12-ARIMA installed. Returns a deseasonalized (seasonally
adjusted) version of the input series x, which must be a quarterly or monthly time series. To use

X-12-ARIMA give X as the second argument; to use TRAMO give T. If the second argument is omitted
then X-12-ARIMA is used.

Note that if the input series has no detectable seasonal component this function will fail. Also
note that both TRAMO/SEATS and X-12-ARIMA offer numerous options; deseas calls them with
all options at their default settings. For both programs, the seasonal factors are calculated on the
basis of an automatically selected ARIMA model. One difference between the programs which can
sometimes make a substantial difference to the results is that by default TRAMO performs a prior
adjustment for outliers while X-12-ARIMA does not.

det

Output: scalar
Argument: A (square matrix)

Returns the determinant of A, computed via the LU factorization. See also ldet, rcond, cnumber.

diag
Output: matrix
Argument: X (matrix)

Returns the principal diagonal of X in a column vector. Note: if X is an m x n matrix, the number
of elements of the output vector is min(m, n). See also tr.

diagcat
Output: matrix
Arguments: A (matrix)

B (matrix)

Returns the direct sum of A and B, that is a matrix holding A in its north-west corner and B in its
south-east corner. If both A and B are square, the resulting matrix is block-diagonal.

Chapter 2. Gretl functions 130

diff
Output: same type as input

Argument: Yy (series, matrix or list)

Computes first differences. If y is a series, or a list of series, starting values are set to NA. If y is a
matrix, differencing is done by columns and starting values are set to 0.

When a list is returned, the individual variables are automatically named according to the template
d_ varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also cum, 1diff, sdiff.

digamma

Output: same type as input
Argument: x (scalar, series or matrix)

Returns the digamma (or Psi) function of x, that is % InT(x).

dnorm

Output: same type as input
Argument: X (scalar, series or matrix)
Returns the density of the standard normal distribution at x. To get the density for a non-standard

normal distribution at x, pass the z-score of x to the dnorm function and multiply the result by the
Jacobian of the z transformation, namely 1 over o, as illustrated below:

mu = 100
sigma = 5
x = 109

fx = (1/sigma) * dnorm((x-mu)/sigma)

See also cnorm, gnorm.

dropcoll

Output: list
Arguments: X (list)
epsilon (scalar, optional)

Returns a list with the same elements as X, but for the collinear series. Therefore, if all the series
in X are linearly independent, the output list is just a copy of X.

The algorithm uses the QR decomposition (Householder transformation), so it is subject to finite
precision error. In order to gauge the sensitivity of the algorithm, a second optional parameter
epsilon may be specified to make the collinearity test more or less strict, as desired. The default
value for epsilon is 1.0e-8. Setting epsilon to a larger value increases the probability of a series to
be dropped.

Example:

nulldata 20

set seed 9876

series foo = normal()
series bar = normal()

Chapter 2. Gretl functions 131

series foobar = foo + bar

1ist X = foo bar foobar

Tist Y = dropcoll1(X)

Tist print X

Tist print Y

set epsilon to a ridiculously small value
Tist Y = dropcol1(X, 1.0e-30)

Tist print Y

produces

? Tist print X

foo bar foobar

? 1ist print Y

foo bar

? 1ist Y = dropcoll1(X, 1.0e-30)
Replaced 1list Y

? Tist print Y

foo bar foobar

dsort
Output: same type as input
Argument: x (series, vector or string array)

Sorts x in descending order, skipping observations with missing values when x is a series. See also
sort, values.

dummify

Output: list
Arguments: X (series)
omitval (scalar, optional)
The argument x should be a discrete series. This function creates a set of dummy variables coding

for the distinct values in the series. By default the smallest value is taken as the omitted category
and is not explicitly represented.

The optional second argument represents the value of x which should be treated as the omitted
category. The effect when a single argument is given is equivalent to dummify(x, min(x)). To
produce a full set of dummies, with no omitted category, use dummify(x, NA).

The generated variables are automatically named according to the template Dvarname_i where
varname is the name of the original series and i is a 1-based index. The original portion of the
name is truncated if necessary, and may be adjusted in case of non-uniqueness in the set of names
thus constructed.

easterday

Output: same type as input
Argument: x (scalar, series or matrix)
Given the year in argument x, returns the date of Easter in the Gregorian calendar as month +

day /100. Note that April the 10th, is, under this convention, 4.1; hence, 4.2 is April the 20th, not
April the 2nd (which would be 4.02).

Chapter 2. Gretl functions 132

scalar e = easterday(2014)
scalar m = floor(e)
scalar d = 100*(e-m)
ecdf
Output: matrix

Argument: y (series or vector)

Calculates the empirical CDF of y. This is returned in a matrix with two columns: the first holds
the sorted unique values of y and the second holds the cumulative relative frequency,

F(y) = = DIyi<y)
nia

where n is total number of observations and I() denotes the indicator function.

eigengen

Output: matrix
Arguments: A (square matrix)
&U (reference to matrix, or null)
Computes the eigenvalues, and optionally the right eigenvectors, of the n X n matrix A. If all
the eigenvalues are real an n X 1 matrix is returned; otherwise the result is an n x 2 matrix, the

first column holding the real components and the second column the imaginary components. The
eigenvalues are not guaranteed to be sorted in any particular order.

The second argument must be either the name of an existing matrix preceded by & (to indicate the
“address” of the matrix in question), in which case an auxiliary result is written to that matrix, or
the keyword nu11, in which case the auxiliary result is not produced.

If a non-null second argument is given, the specified matrix will be over-written with the auxiliary
result. (It is not required that the existing matrix be of the right dimensions to receive the result.)
The output is organized as follows:

o If the i-th eigenvalue is real, the i-th column of U will contain the corresponding eigenvector;

o If the i-th eigenvalue is complex, the i-th column of U will contain the real part of the cor-
responding eigenvector and the next column the imaginary part. The eigenvector for the
conjugate eigenvalue is the conjugate of the eigenvector.

In other words, the eigenvectors are stored in the same order as the eigenvalues, but the real
eigenvectors occupy one column, whereas complex eigenvectors take two (the real part comes first);
the total number of columns is still n, because the conjugate eigenvector is skipped.

See also eigensym, eigsolve, grdecomp, svd.

eigensym

Output: matrix
Arguments: A (symmeftric matrix)
&U (reference to matrix, or null)
Works mostly as eigengen except that the argument A must be symmetric (in which case less
calculation is required), and the eigenvalues are returned in ascending order. If you want to get the

eigenvalues in descending order (and have the eigenvectors reordered correspondingly) you can do
the following:

Chapter 2. Gretl functions 133

matrix U

e = eigensym(A, &U)

Tmp = msortby((-e’ | U)’,1)’

e = -Tmp[1,]’

U= Tmp[2:,]

now Targest to smallest eigenvalues
print e U

Note: if you're interested in the eigen-decomposition of a matrix of the form X’ X it’s preferable to
compute the argument via the prime operator X’ X rather than using the more general syntax X’ *X.
The former expression uses a specialized algorithm which offers greater computational efficiency
as well as ensuring that the result is exactly symmetric.

eigsolve

Output: matrix
Arguments: A (symmetric matrix)
B (symmetric matrix)
&U (reference to matrix, or null)
Solves the generalized eigenvalue problem |A — AB| = 0, where both A and B are symmetric and
B is positive definite. The eigenvalues are returned directly, arranged in ascending order. If the

optional third argument is given it should be the name of an existing matrix preceded by &; in that
case the generalized eigenvectors are written to the named matrix.

epochday

Output: scalar or series
Arguments: year (scalar or series)
month (scalar or series)
day (scalar or series)
Returns the number of the day in the current epoch specified by year, month and day. The epoch
day equals 1 for the first of January in the year AD 1 on the proleptic Gregorian calendar; it stood

at 733786 on 2010-01-01. If any of the arguments are given as series the value returned is a series,
otherwise it is a scalar.

By default the year, month and day values are assumed to be given relative to the Gregorian calen-
dar, but if the year is a negative value the interpretation switches to the Julian calendar.

An alternative call is also supported: if a single argument is given, it is taken to be a date (or series
of dates) in ISO 8601 “basic” numeric format, YYYYMMDD. So the following two calls produce the
same result, namely 700115.

eval epochday(1917, 11, 7)
eval epochday(19171107)

For the inverse function, see isodate and also (for the Julian calendar) juldate.

errmsg

Output: string
Argument: errno (integer)

Retrieves the gretl error message associated with errno. See also $error.

Chapter 2. Gretl functions 134

exists
Output: integer
Argument: name (string)

Returns non-zero if name is the identifier for a currently defined object, be it a scalar, a series, a
matrix, list, string, bundle or array; otherwise returns 0. See also typeof.

exp

Output: same type as input
Argument: X (scalar, series or matrix)

Returns e*. Note that in case of matrices the function acts element by element. For the matrix
exponential function, see mexp.

fcstats

Output: matrix
Arguments: Yy (series or vector)
f (series, list or matrix)

Produces a matrix holding several statistics which serve to evaluate f as a forecast of the observed
data y.

If f is a series or vector the output is a column vector; if f is a list with k members or a T X k matrix
the output has k columns, each of which holds statistics for the corresponding element (series or
column) of the input as a forecast of y.

In all cases the “vertical” dimension of the input (for a series or list the length of the current sample
range, for a matrix the number of rows) must match across the two arguments.

The rows of the returned matrix are as follows:

Mean Error (ME)

Root Mean Squared Error (RMSE)

Mean Absolute Error (MAE)

Mean Percentage Error (MPE)

Mean Absolute Percentage Error (MAPE)
Theil’s U

Bias proportion, UM

Regression proportion, UR
Disturbance proportion, UD

OCoONOOUVIA WNR

For details on the calculation of these statistics, and the interpretation of the U values, please see
chapter 32 of the Gretl User’s Guide.

fdjac

Output: matrix
Arguments: b (column vector)
fcall (function call)
h (scalar, optional)
Calculates a numerical approximation to the Jacobian associated with the n-vector b and the trans-

formation function specified by the argument fcall. The function call should take b as its first
argument (either straight or in pointer form), followed by any additional arguments that may be

Chapter 2. Gretl functions 135

needed, and it should return an m x 1 matrix. On successful completion fdjac returns an m x n
matrix holding the Jacobian.

The optional third argument can be used to set the step size h used in the approximation mecha-
nism (see below); if this argument is omitted the step size is determined automatically.

Here is an example of usage:
matrix J = fdjac(theta, myfunc(&theta, X))

The function can use three different methods: simple forward-difference, bilateral difference or
4-nodes Richardson extrapolation. Respectively:

_flx+h) - f(x)
B h

Jo

_fx+h)-f(x-h)
B 2h

J1

_8(fx+h) - fx—-h)) - (f(x+2h) - f(x = 2h))
12h

J2

The three alternatives above provide, generally, a trade-off between accuracy and speed. You can
choose among methods via the set command: specify a value of 0, 1 or 2 for the fdjac_quality
variable. The default is O.

For more details and examples chapter 34 of the Gretl User’s Guide.

See also BFGSmax, numhess, set.

feval

Output: see below
Arguments: funcname (string)
. . . (see below)

Primarily useful for writers of functions. The first argument should be the name of a function, and
the remaining one or more arguments should be the arguments to be passed to the function in
question. This permits treating the function identified by funcname as itself a variable. The return
value is whatever the named function returns given the specified arguments.

The example below illustrates some possible uses.

function scalar utility (scalar c, scalar sigma)
return (cA(1l-sigma)-1)/(1l-sigma)
end function

strings S = defarray("log", "utility")

call a l-argument built-in function
x = feval(S[1], 2.5)

call a user-defined function

x = feval(S[2], 5, 0.5)

a 2-argument built-in function

func = "zeros"

m = feval(func, 5-2, sqrt(4))

print m

a 3-argument built-in

Chapter 2. Gretl functions 136

x = feval("monthlen", 12, 1980, 5)

There’s a weak analogy between feval and genseries: both functions render variable a syntactic
element that is usually fixed at the time a script is composed.

fevd

Output: matrix

Arguments: target (integer)
shock (integer)
sys (bundle, optional)

This function provides a more flexible alternative to the accessor $fevd for obtaining a forecast
error variance decomposition (FEVD) matrix following estimation of a VAR or VECM. Without the
final optional argument, it is available only when the last model estimated was a VAR or VECM.
Alternatively, information on such a system can be stored in a bundle via the $system accessor and
subsequently passed to fevd.

The target and shock argument take the form of 1-based indices of endogenous variables in the
system, with 0 taken to mean “all”. The following code fragment illustrates usage. In the first
example the matrix fel holds the shares of the FEVD for y1 due to each of y1, y2 and y3 (the
rows therefore summing to 1). In the second, fe2 holds the contribution of y2 to the forecast error
variance of all three variables (so the rows do not sum to 1). In the third case the return value is a
column vector showing the “own share” of the FEVD for y1.

var 4 yl y2 y3

bundle vb = $system

matrix fel = fevd(l, 0, vb)
matrix fe2 fevd(0, 2, vb)
matrix fe3 fevd(1l, 1, vb)

The number of periods (rows) over which the decomposition is traced is determined automatically
based on the frequency of the data, but this can be overridden via the horizon argument to the set
command, as in set horizon 10.

See also irf.

fft

Output: matrix
Argument: X (matrix)

Discrete real Fourier transform. If the input matrix X has n columns, the output has 2n columns,
where the real parts are stored in the odd columns and the complex parts in the even ones.

Should it be necessary to compute the Fourier transform on several vectors with the same number
of elements, it is numerically more efficient to group them into a matrix rather than invoking fft
for each vector separately. See also ffti.

ffti

Output: matrix
Argument: X (matrix)

Chapter 2. Gretl functions 137

Inverse discrete real Fourier transform. It is assumed that X contains n complex column vectors,
with the real part in the odd columns and the imaginary part in the even ones, so the total number
of columns should be 2n. A matrix with n columns is returned.

Should it be necessary to compute the inverse Fourier transform on several vectors with the same
number of elements, it is numerically more efficient to group them into a matrix rather than invok-
ing ffti for each vector separately. See also fft.

filter

Output: see below

Arguments: Xx (series or matrix)
a (scalar or vector, optional)
b (scalar or vector, optional)
y0 (scalar, optional)

Computes an ARMA-like filtering of the argument x. The transformation can be written as

q p
Ve = Z aixe—i + Z biyi—i
i=0 i=1

If argument X is a series, the result will be itself a series. Otherwise, if x is a matrix with T rows and
k columns, the result will be a matrix of the same size, in which the filtering is performed column
by column.

The two arguments a and b are optional. They may be scalars, vectors or the keyword nulT.

If ais a scalar, this is used as ag and implies g = 0; if it is a vector of q + 1 elements, they contain
the coefficients from ag to a4. If ais nul1 or omitted, this is equivalent to setting ap = 1 and q = 0.

If b is a scalar, this is used as b, and implies p = 1; if it is a vector of p elements, they contain the
coefficients from b to by. If bis nul1 or omitted, this is equivalent to setting B(L) = 1.

The optional scalar argument y0 is taken to represent all values of y prior to the beginning of
sample (used only when p > 0). If omitted, it is understood to be 0. Pre-sample values of x are
always assumed zero.

See also bkfilt, bwfilt, fracdiff, hpfilt, movavg, varsimul.

Example:
nulldata 5
y = filter(index, 0.5, -0.9, 1)
print index y --byobs
x = seq(l,5)’ ~ (1 | zeros(4,1))
w = filter(x, 0.5, -0.9, 1)
print x w
produces
index y
1 1 -0.40000
2 2 1.36000
3 3 0.27600
4 4 1.75160
5 5 0.92356

Chapter 2. Gretl functions 138

x (5 x 2)

U WN R
OO OOR

w (5 x 2)
-0.40000 -0.40000
1.3600 0.36000
0.27600 -0.32400
1.7516 0.29160
0.92356 -0.26244
firstobs
Output: integer

Arguments: Y (series)
insample (boolean, optional)
Returns the 1-based index of the first non-missing observation for the series y. By default the
whole data range is examined, so if subsampling is in effect the value returned may be smaller than

the accessor $t1. But if a non-zero value is given for insample only the current sample range is
considered. See also lastobs.

fixname
Output: string
Arguments: rawname (string)
underscore (boolean, optional)
Primarily intended for use in connection with the join command. Returns the result of converting
rawname to a valid gretl identifier, which must start with a letter, contain nothing but (ASCII)

letters, digits and the underscore character, and must not exceed 31 characters. The rules used in
conversion are:

1. Skip any leading non-letters.

2. Until the 31-character limit is reached or the input is exhausted: transcribe “legal” characters;
skip “illegal” characters apart from spaces; and replace one or more consecutive spaces with an
underscore, unless the previous character transcribed is an underscore in which case space is
skipped.

If you are confident that the input is not too long (and hence subject to truncation), you may wish to
have sequences of one or more illegal characters replaced with an underscore rather than just being
deleted; this may produce a more readable identifier. To get this effect, supply a nonzero value for
the optional second argument. But this is not advisable in the context of the join command, since
the automatically “fixed” name will not use underscores in this way.

flatten

Output: see below
Arguments: A (array of matrices or strings)
vcat (boolean, optional)

“Flattens” either an array of matrices into a single matrix or an array of strings into a single string.

Chapter 2. Gretl functions 139

In the matrix case the matrices in A are by default concatented horizontally, but if a non-zero value
is supplied for vcat the concatenation is vertical. In either case an error is flagged if the matrices
are not conformable for the operation. See msplitby for the inverse operation.

In the string case vcat is ignored and the result holds the strings in A arranged one per line.

floor

Output: same type as input
Argument: y (scalar, series or matrix)

Returns the greatest integer less than or equal to x. Note: int and floor differ in their effect for
negative arguments: int(-3.5) gives —3, while floor(-3.5) gives —4.

fracdiff
Output: series
Arguments: y (series)
d (scalar)
Ay =y = > Wiy
i=1
where

 Ti-d)
Vi rCaria+)

Note that in theory fractional differentiation is an infinitely long filter. In practice, presample values
of y; are assumed to be zero.

A negative value of d can be given, in which case fractional integration is performed.

fzero

Output: scalar

Arguments: fcall (function call)
init (scalar or vector, optional)
toler (scalar, optional)

Attempts to find a single root of a continuous (typically nonlinear) function f —that is, a value of
the scalar variable x such that f(x) = 0. The fcall argument should provide a call to the function in
question; fcall may include an arbitrary number of arguments but the first one must be the scalar
playing the role of x. On successful completion the value of the root is returned.

The method used is that of Ridders (1979). This requires an initial bracket {x(, x;} such that both
x values lie in the domain of the function and the respective function values are of opposite sign.
Best results are likely to be obtained if the user can supply, via the second argument, a 2-vector
holding suitable end-points for the bracket. Failing that, one can supply a single scalar value and
fzero will try to find a counterpart. If the second argument is omitted, x is initialized to a small
positive value and we search for a suitable x;.

The optional toler argument can be used to adjust the maximum acceptable absolute difference of
f(x) from zero, the default being 1.0e—14.

By default this function operates silently, but the progress of the iterative method can be exposed
by executing the command “set max_verbose on” before calling fzero.

Some simple examples follow.

Chapter 2. Gretl functions 140

Approximate pi by finding a zero for sin() in the
bracket 2.8 to 3.2

x = fzero(sin(x), {2.8, 3.2})

printf "\nx = %.12f vs pi = %.12f\n\n", x, $pi

Approximate the ’Omega constant’ starting from x = 0.5
function scalar f(scalar x)
return log(x) + x
end function
x = fzero(f(x), 0.5)
printf "x = %.12f f(x) = %.15f\n", x, f(x)

gammafun

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the gamma function of x.

genseries

Output: scalar
Arguments: varname (string)
rhs (series)

Provides the script writer with a convenient means of generating series whose names are not known
in advance, and/or creating a series and appending it to a list in a single operation.

The first argument gives the name of the series to create (or modify); this can be a string literal, a
string variable, or an expression that evaluates to a string. The second argument, rhs (“right-hand
side”), defines the source series: this can be the name of an existing series or an expression that
evaluates to a series, as would appear to the right of the equals sign when defining a series in the
usual way.

The return value from this function is the ID number of the series in the dataset, a value suitable
for inclusion in a list (or —1 on failure).

For example, suppose you want to add n random normal series to the dataset and put them all into
a named list. The following will do the job:

Tist Normals = null
loop i=1..n --quiet

Normals += genseries(sprintf("norm%d", i), normal())
endTloop

On completion Normals will contain the series norml, norm2 and so on.

Those who find genseries useful may also like to explore feval.

getenv

Output: string
Argument: s (string)

If an environment variable by the name of s is defined, returns the string value of that variable,
otherwise returns an empty string. See also ngetenv.

Chapter 2. Gretl functions 141

getinfo

Output: bundle
Argument: Yy (series)

Returns information on the specified series, which may be given by name or ID number. The
returned bundle contains all the attributes which can be set via the setinfo command. It also
contains additional information relevant for series that have been created as transformations of
primary data (lags, logs, etc.): this includes the gretl command word for the transformation under
the key “transform” and the name of the associated primary series under “parent”. For lagged
series, the specific lag number can be found under the key “lag”.

Here is an example of usage:

open data9-7

Tags QNC

bundle b = getinfo(QNC_2)
print b

On executing the above we see:

has_string_table = 0

lag = 2

parent = QNC

name = QNC_2

graph_name =

coded = 0

discrete = 0

transform = Tags
description = = QNC(t - 2)

To test whether series 5 in a dataset is a lagged term one can do this sort of thing:

if getinfo(5).lag !'= 0
printf "series 5 is a lag of %s\n", getinfo(5).parent
endif

Note that the dot notation to access bundle members can be used even when the bundle is “anony-
mous” (not saved under its own name).

getkeys

Output: array of strings
Argument: b (bundle)

Returns an array of strings holding the keys identifying the contents of b. If the bundle is empty
an empty array is returned.

getline

Output: scalar
Arguments: source (string)
target (string)

Chapter 2. Gretl functions 142

This function is used to read successive lines from source, which should be a named string variable.
On each call a line from the source is written to target (which must also be a named string variable),
with the newline character stripped off. The valued returned is 1 if there was anything to be read
(including blank lines), O if the source has been exhausted.

Here is an example in which the content of a text file is broken into lines:

string s = readfile("data.txt")
string Tine
scalar i =1
loop while getline(s, Tine)
printf "line %d = '%s’\n", i++, Tine
endloop

In this example we can be sure that the source is exhausted when the loop terminates. If the source
might not be exhausted you should follow your regular call(s) to get1ine with a “clean up” call, in
which target is replaced by nul1 (or omitted altogether) as in

getline(s, Tine) # get a single line
getline(s, null) # clean up

Note that although the reading position advances at each call to get1ine, source is not modified
by this function, only target.

ghk
Output: matrix
Arguments: C (matrix)
A (matrix)
B (matrix)
U (matrix)

&dP (reference to matrix, or null)

Computes the GHK (Geweke, Hajivassiliou, Keane) approximation to the multivariate normal distri-
bution function; see for example Geweke (1991). The value returned is an n x 1 vector of probabil-
ities.

The argument C (m x m) should give the Cholesky factor (lower triangular) of the covariance matrix
of m normal variates. The arguments A and B should both be n x m, giving respectively the
lower and upper bounds applying to the variates at each of n observations. Where variates are
unbounded, this should be indicated using the built-in constant $huge or its negative.

The matrix U should be m X ¥, with » the number of pseudo-random draws from the uniform
distribution; suitable functions for creating U are muniform and halton.

We illustrate below with a relatively simple case where the multivariate probabilities can be calcu-
lated analytically. The series P and Q should be numerically very similar to one another, P being the
“true” probability and Q its GHK approximation:

nulldata 20

series infl -2*uniform()
series supl 2*uniformQ)
series inf2 = -2*uniform()
series sup2 2*uniform()

Chapter 2. Gretl functions 143

scalar rho = 0.25
matrix V = {1, rho; rho, 1}

series P = cdf(D, rho, infl, inf2) - cdf(D, rho, supl, inf2) \
- cdf(D, rho, infl, sup2) + cdf(D, rho, supl, sup2)

C
u

cholesky (V)
halton(2, 100)

series Q = ghk(C, {infl, inf2}, {supl, sup2}, U)

The optional dP argument can be used to retrieve the n x k matrix of derivatives of the probabil-
ities, where k equals 2m + m(m + 1)/2. The first m columns hold the derivatives with respect
to the lower bounds, the next m those with respect to the upper bounds, and the remainder the
derivatives with respect to the unique elements of the C matrix in “vech” order.

gini

Output: scalar

Argument: Yy (series or vector)
Returns Gini's inequality index for the (non-negative) series or vector y. A Gini value of zero indi-
cates perfect equality. The maximum Gini value for a series with n members is (n — 1)/n, occurring

when only one member has a positive value; a Gini of 1.0 is therefore the limit approached by a
large series with maximal inequality.

ginv
Output: maftrix
Argument: A (matrix)

Returns A", the Moore-Penrose or generalized inverse of A, computed via the singular value de-
composition.

This matrix has the properties

AATA = A
ATAAT = AT

Moreover, the products A*A and AA* are symmetric by construction.

See also inv, svd.

GSSmax

Output: scalar

Arguments: &b (reference to matrix)
f (function call)
toler (scalar, optional)

One-dimensional maximization via the Golden Section Search method. The matrix b should be a 3-
vector. On input the first element is ignored while the second and third elements set the lower and
upper bounds on the search. The fncall argument should specify a call to a function that returns
the value of the maximand; element 1 of b, which will hold the current value of the adjustable
parameter when the function is called, should be given as its first argument; any other required
arguments may then follow. The function in question should be unimodal (should have no local

Chapter 2. Gretl functions 144

maxima other than the global maximum) over the stipulated range, or GSS is not sure to find the
maximum.

On successful completion GSSmax returns the optimum value of the maximand, while b holds the
optimal parameter value along with the limits of its bracket.

The optional third argument may be used to set the tolerance for convergence, that is, the maximum
acceptable width of the final bracket for the parameter. If this argument is not given a value of
0.0001 is used.

If the object is in fact minimization, either the function call should return the negative of the
criterion or alternatively GSSmax may be called under the alias GSSmin.

Here is a simple example of usage:

function scalar trigfunc (scalar theta)
return 4 * sin(theta) * (1 + cos(theta))
end function

matrix m = {0, 0, $pi/2}
eval GSSmax(&m, trigfunc(m[1]))
printf "\n%10.7f", m

GSSmin
Output: scalar

An alias for GSSmax; if called under this name the function acts as a minimizer.

halton

Output: matrix
Arguments: m (integer)
r (integer)
offset (integer, optional)
Returns an m X ¥ matrix containing m Halton sequences of length v; m is limited to a maximum
of 40. The sequences are constructed using the first m primes. By default the first 10 elements

of each sequence are discarded, but this figure can be adjusted via the optional offset argument,
which should be a non-negative integer. See Halton and Smith (1964).

hdprod
Output: matrix
Arguments: X (matrix)

Y (matrix)

Horizontal direct product. The two arguments must have the same number of rows, . The return
value is a matrix with 7 rows, in which the i-th row is the Kronecker product of the corresponding
rows of X and Y.

In other words, if X is an » X k matrix, Y is an » X m matrix and Z is the result matrix of the
horizontal direct product of X times Y, then Z will have ¥ rows and k - m columns; moreover,

Zin = XijYil

wheren = (j— 1)m + L.

Chapter 2. Gretl functions 145

This operation is called “horizontal direct product” in conformity to its implementation in the
GAUSS programming language. Its equivalent in standard matrix algebra would be called the row-
wise Khatri-Rao product.

Example: the code

A={1,2,3; 4,5,6}
B ={0,1; -1,1}
C = hdprod(A, B)

produces the following matrix:

hfdiff

Output: list
Arguments: hfvars (list)
multiplier (scalar)
Given a MIDAS list, produces a list of the same length holding high-frequency first differences. The

second argument is optional and defaults to unity: it can be used to multiply the differences by
some constant.

hfldiff

Output: list
Arguments: hfvars (list)
multiplier (scalar)
Given a MIDAS list, produces a list of the same length holding high-frequency log-differences. The
second argument is optional and defaults to unity: it can be used to multiply the differences by

some constant, for example one might give a value of 100 to produce (approximate) percentage
changes.

hflags

Output: list
Arguments: minlag (integer)
maxlag (integer)
hfvars (list)
Given a MIDAS list, hfvars, produces a list holding high-frequency lags minlag to maxlag. Use

positive values for actual lags, negative for leads. For example, if minlag is —3 and maxlag is 5
then the returned list will hold 9 series: 3 leads, the contemporary value, and 5 lags.

Note that high-frequency lag 0 corresponds to the first high frequency period within a low fre-
quency period, for example the first month of a quarter or the first day of a month.

Chapter 2. Gretl functions 146

hflist

Output: list
Arguments: Xx (vector)
m (integer)
prefix (string)
Produces from the vector x a MIDAS list of m series, where m is the ratio of the frequency of

observation for the variable in x to the base frequency of the current dataset. The value of m must
be at least 3 and the length of x must be m times the length of the current sample range.

The names of the series in the returned list are constructed from the given prefix (which must be
an ASCII string of 24 characters or less, and valid as a gretl identifier), plus one or more digits
representing the sub-period of the observation. An error is flagged if any of these names duplicate
names of existing objects.

hpfilt

Output: series
Arguments: y (series)
lambda (scalar, optional)
one-sided (boolean, optional)
Returns the cycle component from application of the Hodrick-Prescott filter to series y. If the

smoothing parameter, lambda, is not supplied then a data-based default is used, namely 100 times
the square of the periodicity (100 for annual data, 1600 for quarterly data, and so on).

By default the filter is the usual two-sided version, but if the optional third argument is given with
a non-zero value a one-sided variant (with no look-ahead) is computed in the manner of Stock and
Watson (1999).

The most common use of the HP filter is detrending, but if it’s the trend you are interested in that
is easily obtained by subtraction, as in

series hptrend =y - hfilt(y)

See also bkfilt, bwfilt.

hyp2f1
Output: scalar or matrix
Arguments: a (scalar)
b (scalar)
c (scalar)

X (scalar or matrix)

(@W)n(b)n 2™
(e)n nl-

If x is a scalar, the return value will be scalar; otherwise, it will be a matrix the same size as x.

Returns the Gauss hypergeometric function 2 F; (a, b;c;z) = >y for real argument x.

I

Output: square matrix
Argument: n (integer)

Returns an identity matrix with n rows and columns.

Chapter 2. Gretl functions 147

imaxc
Output: row vector
Argument: X (matrix)
Returns the row indices of the maxima of the columns of X.

See also imaxr, iminc, maxc.

imaxr
Output: column vector
Argument: X (matrix)
Returns the column indices of the maxima of the rows of X.

See also imaxc, iminr, maxr.

imhof
Output: scalar
Arguments: M (matrix)

X (scalar)

Computes Prob(u’Au < x) for a quadratic form in standard normal variates, u, using the proce-
dure developed by Imhof (1961).

If the first argument, M, is a square matrix it is taken to specify A, otherwise if it’s a column vector
it is taken to be the precomputed eigenvalues of A, otherwise an error is flagged.

See also pvalue.

iminc
Output: row vector
Argument: X (matrix)
Returns the row indices of the minima of the columns of X.

See also iminr, imaxc, minc.

iminr
Output: column vector
Argument: X (matrix)
Returns the column indices of the minima of the rows of X.

See also iminc, imaxr, minr.

inbundle
Output: integer
Arguments: b (bundle)

key (string)

Checks whether bundle b contains a data-item with name key. The value returned is an integer code
for the type of the item: O for no match, 1 for scalar, 2 for series, 3 for matrix, 4 for string, 5 for
bundle, 6 for array and 7 for list. The function typestr may be used to get the string corresponding
to this code.

Chapter 2. Gretl functions 148

infnorm

Output: scalar
Argument: X (matrix)

Returns the co-norm of the r x ¢ matrix X, namely,

[
XNl = max > 1Xijl
j=1

See also onenorm.

inlist
Output: integer
Arguments: L (list)

y (series)
Returns the (1-based) position of y in list L, or 0 if y is not present in L.

The second argument may be given as the name of a series or alternatively as an integer ID number.
If you know that a series of a certain name (say foo) exists, then you can call this function as, for
example,

pos = inlist(L, foo)
Here you are, in effect, asking “Give me the position of series foo in list L (or 0 if it is not included

in L).” However, if you are unsure whether a series of the given name exists, you should place the
name in quotes:

pos = inlist(L, "foo™)

In this case you are asking, “If there’s a series named foo in L give me its position, otherwise return
0-”

instring

Output: integer
Arguments: sl (string)
s2 (string)

This is a boolean relative of strstr: it returns 1 if sI contains s2, 0 otherwise. So the conditional
expression

if instring("cattle", "cat")

is logically equivalent to, but more efficient than,

if strlen(strstr("cattle", "cat")) > 0

Chapter 2. Gretl functions 149
int

Output: same type as input

Argument: X (scalar, series or matrix)

Returns the integer part of x, truncating the fractional part. Note: int and floor differ in their effect
for negative arguments: int(-3.5) gives —3, while f1loor (-3.5) gives —4. See also ceil.

inv
Output: matrix
Argument: A (square matrix)

Returns the inverse of A. If A is singular or not square, an error message is produced and nothing
is returned. Note that gretl checks automatically the structure of A and uses the most efficient
numerical procedure to perform the inversion.

The matrix types gretl checks for are: identity; diagonal; symmetric and positive definite; symmetric
but not positive definite; and triangular.

Note: it makes sense to use this function only if you plan to use the inverse of A more than once.
If you just need to compute an expression of the form A~!B, you’ll be much better off using the
“division” operators \ and /. See chapter 16 of the Gretl User’s Guide for details.

See also ginv, invpd.

invedf
Output: same type as input
Arguments: d (string)

... (see below)
p (scalar, series or matrix)
Inverse cumulative distribution function calculator. Returns x such that P(X < x) = p, where the

distribution of X is determined by the string d. Between the arguments d and p, zero or more
additional scalar arguments are required to specify the parameters of the distribution, as follows.

Distribution d Arg 2 Arg 3 Arg 4
Standard normal z,norN - - -
Gamma gorG shape scale -
Student’s t (central) t degrees of freedom - -

Chi square ¢, xor X degrees of freedom - -
Snedecor’s F forF df (num.) df (den.) -
Binomial b or B 14 n -
Poisson p or P A - -
Laplace TorlL mean scale -
Standardized GED E shape - -
Non-central x2 ncX df non-centrality -
Non-central F ncF df (mum.) df (den.) non-centrality
Non-central t nct df non-centrality -

See also cdf, critical, pvalue.

Chapter 2. Gretl functions 150

invmills
Output: same type as input
Argument: X (scalar, series or matrix)

Returns the inverse Mills ratio at X, that is the ratio between the standard normal density and the
complement to the standard normal distribution function, both evaluated at x.

This function uses a dedicated algorithm which yields greater accuracy compared to calculation
using dnorm and cnorm, but the difference between the two methods is appreciable only for very
large negative values of x.

See also cdf, cnorm, dnorm.

invpd
Output: square matrix
Argument: A (positive definite matrix)

Returns the inverse of the symmetric, positive definite matrix A. This function is slightly faster
than inv for large matrices, since no check for symmetry is performed; for that reason it should be
used with care.

Note: if you're interested in the inversion of a matrix of the form X’X, where X is a large matrix, it is
preferable to compute it via the prime operator X’ X rather than using the more general syntax X’ *X.
The former expression uses a specialized algorithm which has the double advantage of being more
efficient computationally and of ensuring that the result will be free by construction of machine
precision artifacts that may render it numerically non-symmetric.

irf
Output: matrix
Arguments: target (integer)
shock (integer)
alpha (scalar between 0 and 1, optional)
sys (bundle, optional)

Without the final optional argument, this function is available only when the last model estimated
was a VAR or VECM. Alternatively, information on a VAR or VECM can be stored in a bundle via the
$system accessor and subsequently passed to irf.

The return value is a matrix containing the estimated response of the target variable to an impulse
of one standard deviation in the shock variable. These variables are identified by their position
in the model specification: for example, if target and shock are given as 1 and 3 respectively,
the returned matrix gives the response of the first variable in the system for a shock to the third
variable.

If the optional alpha argument is given, the returned matrix has three columns: the point estimate
of the responses, followed by the lower and upper limits of a 1 — « confidence interval obtained
via bootstrapping. (So alpha = 0.1 corresponds to 90 percent confidence.) If alpha is omitted or set
to zero, only the point estimate is provided.

The number of periods (rows) over which the response is traced is determined automatically based
on the frequency of the data, but this can be overridden via the set command, as in set horizon
10.

See also fevd.

Chapter 2. Gretl functions 151

irr
Output: scalar

Argument: X (series or vector)

Returns the Internal Rate of Return for x, considered as a sequence of payments (negative) and
receipts (positive). See also npv.

isconst
Output: integer
Arguments: y (series or vector)
panel-code (integer, optional)
Without the optional second argument, returns 1 if y has a constant value over the current sample
range (or over its entire length if y is a vector), otherwise 0.

The second argument is accepted only if the current dataset is a panel and y is a series. In that
case a panel-code value of 0 calls for a check for time-invariance, while a value of 1 means check
for cross-sectional invariance (that is, in each time period the value of y is the same for all groups).

If y is a series, missing values are ignored in checking for constancy.

isdiscrete
Output: integer
Argument: name (string)

If name is the identifier for a currently defined series, returns 1 if the series is marked as discrete-
valued, otherwise 0. If name does not identify a series, returns NA.

isdummy

Output: integer
Argument: x (series or vector)

If all the values contained in x are O or 1 (or missing), returns the number of ones, otherwise 0.

isnan

Output: same type as input
Argument: X (scalar or matrix)
Given a scalar argument, returns 1 if x is “Not a Number” (NaN), otherwise 0. Given a matrix

argument, returns a matrix of the same dimensions with 1s in positions where the corresponding
element of the input is NaN and Os elsewhere.

isoconv

Output: scalar
Arguments: date (series)
&year (reference to series)
&month (reference to series)
&day (reference to series, optional)
Given a series date holding dates in ISO 8601 “basic” format (YYYYMMDD), this function writes the

year, month and (optionally) day components into the series named by the second and subsequent
arguments. An example call, assuming the series dates contains suitable 8-digit values:

Chapter 2. Gretl functions 152

series y, m, d
isoconv(dates, &y, &m, &d)

The return value from this function is 0 on successful completion, non-zero on error.

isocountry

Output: same type as input
Arguments: source (string or array of strings)
output (integer, optional)

This function maps between the four designations for countries present in ISO 3166, namely

1. Country name
2. Alpha-2 code (two uppercase letters)
3. Alpha-3 code (three uppercase letters)

4. Numeric code (3 digits)

Given a country’s designation in one form, the return value is its designation in the form (1 to 4)
selected by the optional output argument or, if this argument is omitted, a default conversion as
follows: when source is a country name the return value is the country’s 2-letter code; otherwise
the return value is the country name. Various valid calls are illustrated below in interactive form.

? eval isocountry("BoTlivia")

BO

? eval isocountry("Bolivia", 3)

BOL

? eval isocountry("GB™)

United Kingdom of Great Britain and Northern Ireland
? eval isocountry("GB", 3)

GBR

? strings S
? strings C
? print C
Array of strings, length 3

[1] "Spain"

[2] "Germany"

[3] "Sudan"

? matrix m = {4, 840}

? C = isocountry(m)

? print C

Array of strings, length 2

[1] "Afghanistan"

[2] "United States of America"

defarray("ES", "DE", "SD")
isocountry(S)

When source is in form 4 (numeric code) this can be given as a string or array of strings (for
example, “032” for Argentina) or in numeric form. In the latter case source may be given as a series
or vector, though an error will be flagged if any of the numbers are out of the range 0 to 999.

In all cases (even when output form 4 is selected) a string, or array of strings, is returned; if numeric
values are required these may be obtained using atof. If source is not matched by any entry in the
ISO 3166 table the return value is an empty string, in which case a warning is printed.

Chapter 2. Gretl functions 153

isodate

Output: see below
Arguments: ed (scalar or series)
as-string (boolean, optional)
The argument ed is interpreted as an epoch day, which equals 1 for the first of January in the year
AD 1 on the proleptic Gregorian calendar. The default return value —of the same type as ed—is an

8-digit number, or a series of such numbers, on the pattern YYYYMMDD (ISO 8601 “basic” format),
giving the Gregorian calendar date corresponding to the epoch day.

If ed is a scalar (only) and the optional second argument as-string is non-zero, the return value is
not numeric but rather a string on the pattern YYYY-MM-DD (ISO 8601 “extended” format).

For the inverse function, see epochday; also see juldate.

isoweek

Output: see below
Arguments: year (scalar or series)
month (scalar or series)
day (scalar or series)
Returns the ISO 8601 week number corresponding to the date(s) specified by the three arguments,

or NA if the date is invalid. Note that all three arguments must be of the same type, either scalars
(integers) or series.

ISO weeks are numbered from 01 to 53; most years have 52 weeks but on average 71 out of 400
years have 53 weeks. The ISO 8601 definition for week 01 is the week containing the year’s first
Thursday on the Gregorian calendar. For a full account see https://en.wikipedia.org/wiki/
ISO_week_date.

iwishart
Output: matrix
Arguments: S (symmetric matrix)
v (integer)
Given S (a positive definite p X p scale matrix), returns a drawing from the Inverse Wishart distri-

bution with v degrees of freedom. The returned matrix is also p X p. The algorithm of Odell and
Feiveson (1966) is used.

jsonget
Output: string
Arguments: buf (string)

path (string)
nread (reference to scalar, optional)

The argument buf should be a JSON buffer, as may be retrieved from a suitable website via the curl
function, and the path argument should be a JsonPath specification.

This function returns a string representing the data found in the buffer at the specified path. Data
types of double (floating-point), int (integer) and string are supported. In the case of doubles or
ints, their string representation is returned (using the “C” locale for doubles). If the object to which
path refers is an array, the members are printed one per line in the returned string.

https://en.wikipedia.org/wiki/ISO_week_date
https://en.wikipedia.org/wiki/ISO_week_date

Chapter 2. Gretl functions 154

By default an error is flagged if path is not matched in the JSON buffer, but this behavior is modified
if you pass the third, optional argument: in that case the argument retrieves a count of the matches
and an empty string is returned if there are none. Example call:

ngot = 0
ret = jsonget(jbuf, "$.some.thing", &ngot)

However, an error is still flagged in case of a malformed query.

An accurate account of JsonPath syntax can be found at http://goessner.net/articles/JsonPath/.
However, please note that the back-end for jsonget is provided by json-g1ib, which does not
necessarily support all elements of JsonPath. Moreover, the exact functionality of json-g1ib may
differ depending on the version you have on your system. See http://developer.gnome.org/
json-glib/ if you need details.

That said, the following operators should be available to jsonget:

e ToOot node, via the $ character

e recursive descent operator: ..

e wildcard operator: *

e subscript operator: []

e set notation operator, for example [1i,j]

¢ slice operator: [start:end:step]

jsongetb

Output: bundle
Arguments: buf (string)
path (string, optional)

The argument buf should be a JSON buffer, as may be retrieved from a suitable website via the curl
function. The specification and effect of the optional path argument are described below.

The return value is a bundle whose stucture basically mirrors that of the input: JSON objects
become gretl bundles and JSON arrays become gretl arrays, each of which holds either strings or
bundles. JSON “value” nodes become either members of bundles or elements of arrays; in the latter
case numerical values are converted to strings using sprintf. Since gretl arrays cannot be nested,
the input accepted by this function is somewhat more restrictive than the JSON specification, which
permits nesting of arrays.

The path argument can be used to limit the JSON elements included in the returned bundle. This
is not a “JsonPath” as described in the help for jsonget; it is a simple construct subject to the
following specification.

e path is a slash-separated array of elements where slash (“/”) indicates moving to one level
“deeper” in the JSON tree represented by buf. A leading slash is allowed but not required;
implicitly the path always starts at the root. No extraneous white-space characters should be
included.

e Each slash-separated element must take one of the following forms: (a) a single name, in
which case only a JSON element whose name matches at the given structural level will be
included; or (b) “*” (asterisk), in which case all elements at the given level are included; or (c)
an array of comma-separated names, enclosed in braces (“” and “”), in which case only JSON
elements whose names match one of the given names will be included.

http://goessner.net/articles/JsonPath/
http://developer.gnome.org/json-glib/
http://developer.gnome.org/json-glib/

Chapter 2. Gretl functions 155

See also the string-oriented jsonget; depending on your purpose one of these functions may be
more helpful than the other.

juldate

Output: see below
Arguments: ed (scalar or series)
as-string (boolean, optional)
The argument ed is interpreted as an epoch day, which equals 1 for the first of January in the year
AD 1 on the proleptic Gregorian calendar. The default return value —of the same type as ed—is an

8-digit number, or a series of such numbers, on the pattern YYYYMMDD (ISO 8601 “basic” format),
giving the Julian calendar date corresponding to the epoch day.

If ed is a scalar (only) and the optional second argument as-string is non-zero, the return value is
not numeric but rather a string on the pattern YYYY-MM-DD (ISO 8601 “extended” format).

See also isodate.

kdensity

Output: matrix
Arguments: X (series or vector)
scale (scalar, optional)
control (boolean, optional)
Computes a kernel density estimate for the series or vector x. The returned matrix has two columns,

the first holding a set of evenly spaced abscissae and the second the estimated density at each of
these points.

The optional scale parameter can be used to adjust the degree of smoothing relative to the default
of 1.0 (higher values produce a smoother result). The control parameter acts as a boolean: 0 (the
default) means that the Gaussian kernel is used; a non-zero value switches to the Epanechnikov
kernel.

A plot of the results may be obtained using the gnuplot command, as in

matrix d = kdensity(x)
gnuplot 2 1 --matrix=d --with-1lines --fit=none

kdsmooth

Output: scalar
Arguments: &Mod (reference to bundle)
MSE (boolean, optional)

Performs disturbance smoothing for a Kalman bundle previously set up by means of ksetup and
returns 0 on successful completion or 1 if numerical problems are encountered.

On successful completion, the smoothed disturbances will be available as Mod.smdist.

The optional MSE argument determines the contents of the Mod.smdisterr key. If 0 or omitted,
this matrix will contain the unconditional standard errors of the smoothed disturbances, which are
normally used to compute the so-called auxiliary residuals. Otherwise, Mod. smdisterr will contain
the estimated root mean square deviations of the auxiliary residuals from their true value.

For more details see chapter 33 of the Gretl User’s Guide.

See also ksetup, kfilter, ksmooth, ksimul.

Chapter 2. Gretl functions 156

kfilter
Output: scalar
Argument: &Mod (reference to bundle)

Performs a forward, filtering pass on a Kalman bundle previously set up by means of ksetup and
returns 0 on successful completion or 1 if numerical problems are encountered.

On successful completion, the one-step-ahead prediction errors will be available as Mod.prederr
and the sequence of their covariance matrices as Mod.pevar. Moreover, the key Mod. 1Tt gives
access to a T-vector containing the log-likelihood by observation.

For more details see chapter 33 of the Gretl User’s Guide.

See also kdsmooth, ksetup, ksmooth, ksimul.

kmeier

Output: matrix
Arguments: d (series or vector)
cens (series or vector, optional)
Given a sample of duration data, d, possibly accompanied by a record of censoring status, cens,
computes the Kaplan-Meier nonparametric estimator of the survival function (Kaplan and Meier
(1958)). The returned matrix has three columns holding, respectively, the sorted unique values in

d, the estimated survival function corresponding to the duration value in column 1 and the (large
sample) standard error of the estimator, calculated via the method of Greenwood (1926).

If the cens series is given, the value 0O is taken to indicate an uncensored observation while a value
of 1 indicates a right-censored observation (that is, the period of observation of the individual in
question has ended before the duration or spell has been recorded as terminated). If cens is not
given, it is assumed that all observations are uncensored. (Note: the semantics of cens may be
extended at some point to cover other types of censoring.)

See also naalen.

kpsscrit

Output: matrix
Arguments: T (scalar)
trend (boolean)
Returns a row vector containing critical values at the 10, 5 and 1 percent levels for the KPSS test

for stationarity of a time series. T should give the number of observations and trend should be 1
if the test includes a trend, O otherwise.

The critical values given are based on response surfaces estimated in the manner set out by Sephton
(1995). See also the kpss command.

ksetup

Output: bundle
Arguments: Y (series, matrix or list)
H (scalar or matrix)
F (scalar or matrix)
Q (scalar or matrix)
C (matrix, optional)

Chapter 2. Gretl functions 157

Sets up a Kalman bundle, that is an object which contains all the information needed to define a
linear state space model of the form
v =H o
and state transition equation
K1 = Foy +ug
where Var(u) = Q.

Objects created via this function can be later used via the dedicated functions kfilter for filtering,
ksmooth and kdsmooth for smoothing and ksimul for performing simulations.

The class of models that gretl can handle is in fact much wider than the one implied by the represen-
tation above: it is possible to have time-varying models, models with diffuse priors and exogenous
variable in the measurement equation and models with cross-correlated innovations. For further
details, see chapter 33 of the Gretl User’s Guide.

See also kdsmooth, kfilter, ksmooth, ksimul.

ksimul

Output: scalar
Argument: &Mod (reference to bundle)

Uses a Kalman bundle previously set up by means of ksetup to simulate data.
For details see chapter 33 of the Gretl User’s Guide.
See also ksetup, kfilter, ksmooth.

ksmooth

Output: matrix
Argument: &Mod (reference to bundle)

Performs a fixed-point smoothing (backward) pass on a Kalman bundle previously set up by means
of ksetup and returns 0 on successful completion or 1 if numerical problems are encountered.

On successful completion, the smoothed states will be available as Mod. state and the sequence of
their covariance matrices as Mod.stvar. For more details see chapter 33 of the Gretl User’s Guide.

See also ksetup, kdsmooth, kfilter, ksimul.

kurtosis

Output: scalar
Argument: x (series)

Returns the excess kurtosis of the series x, skipping any missing observations.

lags

Output: list or matrix
Arguments: p (scalar or vector)
y (series, list or matrix)
bylag (boolean, optional)
If the first argument is a scalar, generates lags 1 to p of the series y, or if y is a list, of all series

in the list, or if y is a matrix, of all columns in the matrix. If p = 0 and y is a series or list, the
maximum lag defaults to the periodicity of the data; otherwise p must be positive.

Chapter 2. Gretl functions 158

If a vector is given as the first argument, the lags generated are those specified in the vector.
Common usage in this case would be to give p as, for example, seq(3,7), hence omitting the first
and second lags. However, it is OK to give a vector with gaps, as in {3,5,7}, although the lags
should always be given in ascending order.

In the case of list output, the generated variables are automatically named according to the template
varname _ i where varname is the name of the original series and i is the specific lag. The original
portion of the name is truncated if necessary, and may be adjusted in case of non-uniqueness in
the set of names thus constructed.

When y is a list, or a matrix with more than one column, and the lag order is greater than 1, the
default ordering of the terms in the return value is by variable: all lags of the first input series or
column followed by all lags of the second, and so on. The optional third argument can be used to
change this: if bylag is non-zero then the terms are ordered by lag: lag 1 of all the input series or
columns, then lag 2 of all the series or columns, and so on.

See also mlag for use with matrices.

lastobs

Output: integer
Arguments: y (series)
insample (boolean, optional)
Returns the 1-based index of the last non-missing observation for the series y. By default the
whole data range is examined, so if subsampling is in effect the value returned may be larger than

the accessor $t2. But if a non-zero value is given for insample only the current sample range is
considered. See also firstobs.

Idet

Output: scalar
Argument: A (square matrix)

Returns the natural log of the determinant of A, computed via the LU factorization. See also det,
rcond, cnumber.

1diff
Output: same type as input
Argument: y (series or list)
Computes log differences; starting values are set to NA.

When a list is returned, the individual variables are automatically named according to the template
1d_varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also diff, sdiff.

lincomb
Output: series
Arguments: L (list)

b (vector)

Computes a new series as a linear combination of the series in the list L. The coefficients are given
by the vector b, which must have length equal to the number of series in L.

See also wmean.

Chapter 2. Gretl functions 159

linearize
Output: series

Argument: x (series)

Depends on having TRAMO installed. Returns a “linearized” version of the input series; that is, a
series in which any missing values are replaced by interpolated values and outliers are adjusted.
TRAMO'’s fully automatic mechanism is used; consult the TRAMO documentation for details.

Note that if the input series has no missing values and no values that TRAMO regards as outliers,
this function will return a copy of the original series.

ljungbox
Output: scalar
Arguments: Yy (series)

p (integer)

Computes the Ljung-Box Q’ statistic for the series y using lag order p, over the currently defined
sample range. The lag order must be greater than or equal to 1 and less than the number of
available observations.

This statistic may be referred to the chi-square distribution with p degrees of freedom as a test of
the null hypothesis that the series y is not serially correlated. See also pvalue.

Ingamma

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the log of the gamma function of x.

loess
Output: series
Arguments: Yy (series)

X (series)

d (integer, optional)

g (scalar, optional)
robust (boolean, optional)

Performs locally-weighted polynomial regression and returns a series holding predicted values of y
for each non-missing value of x. The method is as described by Cleveland (1979).

The optional arguments d and g specify the order of the polynomial in x and the proportion of
the data points to be used in local estimation, respectively. The default values are d =1 and g =
0.5. The other acceptable values for d are 0 and 2. Setting d = 0 reduces the local regression to a
form of moving average. The value of g must be greater than 0 and cannot exceed 1; larger values
produce a smoother outcome.

If a non-zero value is given for the robust argument the local regressions are iterated twice, with
the weights being modified based on the residuals from the previous iteration so as to give less
influence to outliers.

See also nadarwat, and in addition see chapter 37 of the Gretl User’s Guide for details on nonpara-
metric methods.

Chapter 2. Gretl functions 160

log
Output: same type as input
Argument: x (scalar, series, matrix or list)

Returns the natural logarithm of x; produces NA for non-positive values. Note: 1n is an acceptable
alias for 1og.

When a list is returned, the individual variables are automatically named according to the template
1_varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

log10
Output: same type as input
Argument: X (scalar, series or matrix)

Returns the base-10 logarithm of x; produces NA for non-positive values.

log2
Output: same type as input
Argument: x (scalar, series or matrix)

Returns the base-2 logarithm of x; produces NA for non-positive values.

logistic
Output: same type as input
Argument: X (scalar, series or matrix)

Returns the logistic CDF of the argument x, thatis, A(x) = 1/(1+e~). If x is a matrix, the function
is applied element by element.

lower
Output: square matrix
Argument: A (matrix)
Returns an n x n lower triangular matrix B for which B;; = A;; if i = j, and 0 otherwise.

See also upper.

Ircovar

Output: matrix
Arguments: A (matrix)
demean (boolean, optional)
Returns the long-run variance-covariance matrix of the columns of A. The data are first demeaned
unless the second (optional) argument is set to zero. The kernel type and lag truncation parameter
(window size) can be chosen before calling this function with the HAC-related options that the set

command offers, such as hac_kernel, hac_lag, hac_prewhiten. See also the section on Time
series data and HAC covariance matrices in chapter 19 of the Gretl User’s Guide.

See also Irvar.

Chapter 2. Gretl functions 161

Irvar

Output: scalar
Arguments: y (series or vector)
k (integer, optional)
mu (scalar, optional)
Returns the long-run variance of y, calculated using a Bartlett kernel with window size k. If the

second argument is omitted, or given a negative value, the window size defaults to the integer part
of the cube root of the sample size.

In formulae:
] Tk K i
@?(k) = T Do > wilye —) (Vi - Y)]
t=k Li=—k
with)
il
k+1

wi=1

For the variance calculation, the series y is centered around the optional parameter mu; if this is
omitted or NA, the sample mean is used.

For a multivariate counterpart, see Ircovar.

Lsolve
Output: matrix
Arguments: L (matrix)

b (matrix)

Solves for x in Ax = b, where L is the lower triangular Cholesky factor of the positive definite
matrix A, satisfying LI’ = A. Suitable L can be obtained using the cholesky function with A as
argument.

The following two calculations should produce the same result (up to machine precision), but the
first variant allows for reuse of a precomputed Cholesky factor and so should be substantially faster
if you are solving repeatedly for given A and several values of b. The speed-up will be greater, the
greater the column dimension of A.

variant 1

matrix L = cholesky(A)
matrix x = Lsolve(L, b)
variant 2

matrix x = A\ b

max

Output: scalar or series
Argument: y (series or list)

If the argument y is a series, returns the (scalar) maximum of the non-missing observations in the
series. If the argument is a list, returns a series each of whose elements is the maximum of the
values of the listed variables at the given observation.

See also min, xmax, Xmin.

Chapter 2. Gretl functions 162

maxc

Output: row vector
Argument: X (matrix)

Returns a row vector containing the maxima of the columns of X.

See also imaxc, maxr, minc.

maxr

Output: column vector
Argument: X (matrix)

Returns a column vector containing the maxima of the rows of X.

See also imaxr, maxc, minr.

mcorr

Output: matrix
Argument: X (matrix)

Computes a (Pearson) correlation matrix treating each column of X as a variable. See also corr, cov,
mcov.

mcov
Output: matrix
Arguments: X (matrix)
dfcorr (integer, optional)
Computes a covariance matrix treating each column of X as a variable. The divisor is n — 1, where
n is the number of rows of X, unless the optional argument dfcorr is 0, in which case n is used.

See also corr, cov, mcorr.

mcovg

Output: matrix
Arguments: X (matrix)
u (vector, optional)
w (vector, optional)
p (integer)
Returns the matrix covariogram for a T X k matrix X (typically containing regressors), an (optional)

T-vector u (typically containing residuals), an (optional) (p+1)-vector of weights w, and a lag order
p, which must be greater than or equal to O.

The returned matrix is given by
p
D, Dwii (Xewsue— X)
J=-pr J
If uis given as nul1 the u terms are omitted, and if w is given as nul11 all the weights are taken to
be 1.0.

For example, the following piece of code

Chapter 2. Gretl functions

set seed 123

X
Lag
Lead

mnormal(6,2)
mlag(X,1)
mlag(X,-1)

print X Lag Lead

eval
eval
eval
eval

X’ X

mcovg(X, , , 0)

X’ (X + Lag + Lead)
mcovg(X, , , 1D

produces this output:

? print X Lag Lead

X (6 x 2)
-0.76587 -1.0600
-0.43188 0.30687
-0.82656 0.40681
0.39246 0.75479
0.36875 2.5498
0.28855 -0.55251

Lag (6 x 2)

0.0000 0.0000
-0.76587 -1.0600
-0.43188 0.30687
-0.82656 0.40681

0.39246 0.75479
0.36875 2.5498
Lead (6 x 2)
-0.43188 0.30687
-0.82656 0.40681
0.39246 0.75479
0.36875 2.5498
0.28855 -0.55251
0.0000 0.0000
? eval X’'X
1.8295 1.4201
1.4201 8.7596
? eval mcovg(X,,, 0)
1.8295 1.4201
1.4201 8.7596

? eval X’ (X + Lag + Lead)

3.0585 2.5603

2.5603 10.004
? eval mcovg(X,,, 1)

3.0585 2.5603

2.5603 10.004

163

Chapter 2. Gretl functions 164

mean

Output: scalar or series
Argument: X (series or list)

If x is a series, returns the (scalar) sample mean, skipping any missing observations.

If x is a list, returns a series y such that y; is the mean of the values of the variables in the list at
observation t, or NA if there are any missing values at t.

meanc

Output: row vector
Argument: X (matrix)

Returns the means of the columns of X. See also meanr, sumc, sdc.

meanr

Output: column vector
Argument: X (matrix)

Returns the means of the rows of X. See also meanc, sumr.

median
Output: scalar or series
Argument: x (series or list)
If x is a series, returns the (scalar) sample median, skipping any missing observations.

If x is a list, returns a series y such that y; is the median of the values of the variables in the list
at observation t, or NA if there are any missing values at t.

mexp

Output: square matrix
Argument: A (square matrix)

Computes the matrix exponential,

a_xA T A A A
N T I TR TIA T

(This series is sure to converge.) The algorithm used is 11.3.1 from Golub and Van Loan (1996).

mgradient

Output: matrix
Arguments: p (integer)
theta (vector)
type (integer or string)
Analytical derivatives for MIDAS weights. Let k denote the number of elements in the vector of
hyper-parameters, theta. This function returns a p X k matrix holding the gradient of the vector
of weights (as calculated by mweights) with respect to the elements of theta. The first argument

represents the desired lag order and the last argument specifies the type of parameterization. See
mweights for an account of the acceptable type values.

See also mweights, mlincomb.

Chapter 2. Gretl functions 165

min
Output: scalar or series
Argument: y (series or list)

If the argument y is a series, returns the (scalar) minimum of the non-missing observations in the
series. If the argument is a list, returns a series each of whose elements is the minimum of the
values of the listed variables at the given observation.

See also max, xmax, xmin.

minc
Output: row vector
Argument: X (matrix)
Returns the minima of the columns of X.

See also iminc, maxc, minr.

minr
Output: column vector
Argument: X (matrix)

Returns the minima of the rows of X.

See also iminr, maxr, minc.

missing
Output: same type as input
Argument: X (scalar, series or list)
Returns a binary variable holding 1 if x is NA. If x is a series, the comparison is done element by

element; if x is a list of series, the output is a series with 1 at observations for which at least one
series in the list has a missing value, and 0 otherwise.

See also misszero, ok, zeromiss.

misszero

Output: same type as input
Argument: X (scalar or series)

Converts NAs to zeros. If x is a series, the conversion is done element by element. See also missing,
ok, zeromiss.

mlag

Output: matrix
Arguments: X (matrix)
p (scalar or vector)
m (scalar, optional)
Shifts up or down the rows of X. If p is a positive scalar, the returned matrix Y has typical element
Yij = Xi—p,j for i = p and zero otherwise. In other words, the columns of X are shifted down by p

rows and the first p rows are filled with the value m. If p is a negative number, X is shifted up and
the last rows are filled with the value m. If m is omitted, it is understood to be zero.

Chapter 2. Gretl functions 166

If p is a vector, the above operation is carried out for each element in p, joining the resulting
matrices horizontally.

See also lags.

mlincomb

Output: series
Arguments: hfvars (list)
theta (vector)
type (integer or string)
A convenience MIDAS function which combines lincomb with mweights. Given a list hfvars, it
constructs a series which is a weighted sum of the elements of the list, the weights based on the

vector of hyper-parameters theta and the type of parameterization: see mweights for details. Note
that hflags is generally the best way to create a list suitable as the first argument to this function.

To be explicit, the call

series s = mlincomb(hfvars, theta, 2)

is equivalent to

matrix w = mweights(nelemChfvars), theta, 2)
series s = lincombChfvars, w)

but use of m1incomb saves on some typing and also some CPU cycles.

mnormal
Output: matrix
Arguments: r (integer)
¢ (integer)

Returns a matrix with r rows and ¢ columns, filled with standard normal pseudo-random variates.
See also normal, muniform.

mols
Output: matrix
Arguments: Y (matrix)

X (matrix)
&U (reference to matrix, or null)
&V (reference to matrix, or null)

Returns a k X n matrix of parameter estimates obtained by OLS regression of the T X n matrix Y
on the T X k matrix X.

If the third argument is not nu1T, the T xn matrix U will contain the residuals. If the final argument
is given and is not null then the k x k matrix V will contain (a) the covariance matrix of the
parameter estimates, if Y has just one column, or (b) X’ X! if Y has multiple columns.

By default, estimates are obtained via Cholesky decomposition, with a fallback to QR decomposition
if the columns of X are highly collinear. The use of SVD can be forced via the command set svd
on.

See also mpols, mrls.

Chapter 2. Gretl functions 167

monthlen
Output: integer
Arguments: month (integer)
year (integer)
weeklen (integer)
Returns the number of (relevant) days in the specified month in the specified year, on the proleptic

Gregorian calendar; weeklen, which must equal 5, 6 or 7, gives the number of days in the week that
should be counted (a value of 6 omits Sundays, and a value of 5 omits both Saturdays and Sundays).

movavg
Output: series
Arguments: X (series)

p (scalar)

control (integer, optional)

y0 (scalar, optional)
Depending on the value of the parameter p, returns either a simple or an exponentially weighted
moving average of the input series x.
If p > 1, a simple p-term moving average is computed, that is, = Zf:_ol Xx¢—i. If a non-zero value
is supplied for the optional control parameter the MA is centered, otherwise it is “trailing”. The
optional y0 argument is ignored.

If 0 < p < 1, an exponential moving average is computed:

yve=pxt+ (1 -p)yi-1

This is the formula of Roberts (1959). By default the output series y is initialized using the first
valid value of x, but the control parameter may be used to specify the number of initial obser-
vations that should be averaged to produce yy. A zero value for control indicates that all the
observations should be used. Alternatively, an initializer may be specified using the optional y0
argument; in that case the control argument is ignored.

mpols
Output: matrix
Arguments: Y (matrix)

X (matrix)
&U (reference to matrix, or null)

Works exactly as mols, except that the calculations are done in multiple precision using the GMP
library.

By default GMP uses 256 bits for each floating point number, but you can adjust this using the
environment variable GRETL_MP_BITS, e.g. GRETL_MP_BITS=1024.

Chapter 2. Gretl functions 168

mrandgen

Output: matrix
Arguments: d (string)
pl (scalar or matrix)
p2 (scalar or matrix, conditional)
p3 (scalar, conditional)
rows (integer)
cols (integer)
Examples: matrix mx = mrandgen(u, 0, 100, 50, 1)
matrix mtl4d = mrandgen(t, 14, 20, 20)
Works like randgen except that the return value is a matrix rather than a series. The initial argu-
ments to this function (the number of which depends on the selected distribution) are as described
for randgen, but they must be followed by two integers to specify the number of rows and columns

of the desired random matrix. If p1 or p2 are given in matrix form they must have a number of
elements equal to the product of rows and cols.

The first example above calls for a uniform random column vector of length 50, while the second
example specifies a 20 x 20 random matrix with drawings from the t distribution with 14 degrees
of freedom.

See also mnormal, muniform.

mread

Output: matrix
Arguments: fname (string)
import (boolean, optional)

Reads a matrix from a file named fname. This is mostly intended for reading files with a specific
format, described below, but it can also be used on delimited text files of various sorts. For the
latter usage see the section titled “Delimited text files”.

If the filename has the suffix “. gz” it is assumed that gzip compression has been applied in writing
the data; if it has the suffix “. bin” the file is assumed to be in binary format (see mwrite for details).
Otherwise the file is assumed to be plain text, conforming to the following specification:

e It may start with any number of comments, defined as lines that start with the hash mark, #;
such lines are ignored.

e The first non-comment line must contain two integers, separated by a space or a tab, indicat-
ing the number of rows and columns, respectively.

e The columns must be separated by spaces or tab characters.

e The decimal separator must be the dot character, “.".

If the file name does not contain a full path specification, it will be looked for in several “likely”
locations, beginning with the currently set workdir. However, if a non-zero value is given for the
optional import argument, the input file is looked for in the user’s “dot” directory. This is intended
for use with the matrix-exporting functions offered in the context of the foreign command. In this
case the fname argument should be a plain filename, without any path component.

Delimited text files

If the name of the file to be read has extension “.csv” or “.txt” the rules governing the format
of the file are relaxed —in particular, we do not require that the actual data be preceded by spec-

Chapter 2. Gretl functions 169

ification of the number of rows and columns. The program will try to figure out the delimiter
(space, tab, comma or semicolon) and do its best to import the matrix, allowing for use of comma
as decimal separator if need be.

See also bread, mwrite.

mreverse
Output: matrix
Arguments: X (matrix)
bycol (boolean, optional)

Returns a matrix containing the rows of X in reverse order, or the columns in reverse order if the
optional second argument has a non-zero value.

mrls
Output: matrix
Arguments: Y (matrix)
X (matrix)
R (matrix)

g (column vector)

&U (reference to matrix, or null)

&V (reference to matrix, or null)
Restricted least squares: returns a k X n matrix of parameter estimates obtained by least-squares
regression of the T X n matrix Y on the T x k matrix X subject to the linear restriction RB = q,

where B denotes the stacked coefficient vector. R must have kn columns; each row of this matrix
represents a linear restriction. The number of rows in g must match the number of rows in R.

If the fifth argument is not nul11, the T X n matrix U will contain the residuals. If the final argument
is given and is not nul11 then the k x k matrix V will hold the restricted counterpart to the matrix
X'X~1, The variance matrix of the estimates for equation i can be constructed by multiplying the
appropriate sub-matrix of V by an estimate of the error variance for that equation.

mshape

Output: matrix
Arguments: X (matrix)
r (integer)
¢ (integer)
Rearranges the elements of X into a matrix with r rows and ¢ columns. Elements are read from

X and written to the target in column-major order. If X contains fewer than k = rc elements, the
elements are repeated cyclically; otherwise, if X has more elements, only the first k are used.

See also cols, rows, unvech, vec, vech.

msortby

Output: matrix
Arguments: X (matrix)
J (integer)

Returns a matrix in which the rows of X are reordered by increasing value of the elements in column
j. This is a stable sort: rows that share the same value in column j will not be interchanged.

Chapter 2. Gretl functions 170

msplitby
Output: array of matrices
Arguments: X (matrix)

v (vector)

Returns an array of matrices, the result of splitting X vertically under the control of the vector v.
This vector must be of length equal to the row dimension of X, and should contain integer values
with a minimum of 1 and a maximum equal to the number of matrices in the desired array. Each
element of v indicates the array index of the matrix to which the corresponding row of X should
be assigned.

In the following example we split a 3 x 3 matrix into three matrices: the first two rows are assigned
to the first matrix; the second matrix is left empty; and the third matrix gets row 3 of X.

matrix X = {1,2,3; 4,5,6; 7,8,9}
matrices M = msplitby(X, {1,1,3})
print M

The print statement gives

Array of matrices, length 3
[1] 2 x 3
[2] null
[3] 1 x 3

See flatten for the inverse operation.

muniform

Output: matrix
Arguments: r (integer)
c (integer)

Returns a matrix with r rows and ¢ columns, filled with uniform (0,1) pseudo-random variates.
Note: the preferred method for generating a scalar uniform r.v. is to use the randgen1 function.

See also mnormal, uniform.

mweights

Output: matrix
Arguments: p (integer)
theta (vector)
type (integer or string)

Returns a p-vector of MIDAS weights to be applied to p lags of a high-frequency series, based on
the vector theta of hyper-parameters.

The type argument identifies the type of parameterization, which governs the required number of
elements, k, in theta: 1 = normalized exponential Almon (k at least 1, typically 2); 2 = normalized
beta with zero last (k = 2); 3 = normalized beta with non-zero last lag (k = 3); and 4 = Almon
polynomial (k at least 1). Note that in the normalized beta case the first two elements of theta must
be positive.

Chapter 2. Gretl functions 171

The type may be given as an integer code, as shown above, or by one of the following strings
(respectively): nealmon, beta0, betan, almonp. If a string is used, it should be placed in double
quotes. For example, the following two statements are equivalent:

W
W

mweights(8, theta, 2)
mweights(8, theta, "betal0")

See also mgradient, mlincomb.

mwrite

Output: integer
Arguments: X (matrix)
fname (string)
export (boolean, optional)

Writes the matrix X to a file named fname. By default this file will be plain text; the first line will
hold two integers, separated by a tab character, representing the number of rows and columns; on
the following lines the matrix elements appear, in scientific notation, separated by tabs (one line
per row). See below for alternative formats.

If a file fname already exists, it will be overwritten. The return value is 0 on successful completion;
if an error occurs, such as the file being unwritable, the return value will be non-zero.

The output file will be written in the currently set workdir, unless the filename string contains a full
path specification. However, if a non-zero value is given for the export argument, the output file
will be written into the user’s “dot” directory, where it is accessible by default via the matrix-loading
functions offered in the context of the foreign command. In this case a plain filename, without any
path component, should be given for the second argument.

Matrices stored via the mwrite function in its default form can be easily read by other programs;
see chapter 16 of the Gretl User’s Guide for details.

Two mutually exclusive inflections of this function are available, as follows:

o If fname has the suffix “. gz” then the file is written with gzip compression.

o If fname has the suffix “.bin” then the file is written in binary format. In this case the first
19 bytes contain the characters gret1_binary_matrix, the next 8 bytes contain two 32-bit
integers giving the number of rows and columns, and the remainder of the file contains the
matrix elements as little-endian “doubles”, in column-major order. If gretl is run on a big-
endian system, the binary values are converted to little endian on writing, and converted to
big endian on reading.

Note that if the matrix file is to be read by a third-party program it is not advisable to use the gzip
or binary options. But if the file is intended for reading by gretl the alternative formats save space,
and the binary format allows for much faster reading of large matrices. The gzip format is not
recommended for very large matrices, since decompression can be quite slow.

See also mread.

mxtab

Output: matrix
Arguments: x (series or vector)
y (series or vector)

Chapter 2. Gretl functions 172

Returns a matrix holding the cross tabulation of the values contained in x (by row) and y (by
column). The two arguments should be of the same type (both series or both column vectors), and
because of the typical usage of this function, are assumed to contain integer values only.

See also values.

naalen

Output: matrix
Arguments: d (series or vector)
cens (series or vector, optional)

Given a sample of duration data, d, possibly accompanied by a record of censoring status, cens,
computes the Nelson-Aalen nonparametric estimator of the hazard function (Nelson (1972); Aalen
(1978)). The returned matrix has three columns holding, respectively, the sorted unique values in
d, the estimated cumulated hazard function corresponding to the duration value in column 1, and
the standard error of the estimator.

If the cens series is given, the value 0 is taken to indicate an uncensored observation while a value
of 1 indicates a right-censored observation (that is, the period of observation of the individual in
question has ended before the duration or spell has been recorded as terminated). If cens is not
given, it is assumed that all observations are uncensored. (Note: the semantics of cens may be
extended at some point to cover other types of censoring.)

See also kmeier.

nadarwat
Output: series
Arguments: y (series)

X (series)
h (scalar, optional)
LOO (boolean, optional)
trim (scalar, optional)
Computes the Nadaraya-Watson nonparametric estimator of the conditional mean of y given x.

The return value is a series holding m(x;), the estimate of E(y;|x;) for each non-missing element
of the series x.

Y1y Kn(xi—x;j)
> Kn(xi = xj)

m(x;) =

where the kernel function Ky, (-) is given by

2
Kp(x) =exp (—;)

for |x| < T and zero otherwise. (T = trimming parameter.)

The three optional arguments inflect the behavior of the estimator as described below.

Bandwidth

The argument h can be used to control the bandwidth, a positive real number. This is usually small;
larger values of h make m(x) smoother. A popular choice is to make h proportional to n=%2. If his
omitted or set to zero, the bandwidth defaults to a data-determined value using the proportionality
just mentioned but incorporating the dispersion of the x data as measured by the inter-quartile
range or standard deviation; see chapter 37 of the Gretl User’s Guide for more details.

Chapter 2. Gretl functions 173

Leave-one-out

“Leave-one-out” is a variant of the algorithm which omits the i-th observation when evaluating
m(x;). This makes the Nadaraya-Watson estimator more robust numerically and is generally
advised when the estimator is computed for inference purposes. This variant is not enabled by
default, but is activated if a non-zero value is given for the LOO argument.

In formulae, this estimator is
i+ Vi Kn(xi —x;j)
2j+i Kn(xi — x;)

m(x;) =

Trimming

The trim argument can be used to control the degree of “trimming”, which is imposed to prevent
numerical problems when the kernel function is evaluated too far away from zero. This parameter
is expressed as a multiple of h, the default value being 4. In some cases a value greater than 4 may
be preferable. Again see chapter 37 of the Gretl User’s Guide for details.

See also loess.

nelem

Output: integer
Argument: L (list, matrix, bundle or array)

Returns the number of elements in the argument, which may be a list, a matrix, a bundle, or an
array (but not a series).

ngetenv

Output: scalar
Argument: s (string)

If an environment variable by the name of sis defined and has a numerical value, returns that value;
otherwise returns NA. See also getenv.

nlines

Output: scalar
Argument: buf (string)

Returns a count of the complete lines (that is, lines that end with the newline character) in buf.

Example:
string web_page = readfile("http://gretl.sourceforge.net/™")
scalar number = nlines(web_page)
print number
NMmax
Output: scalar

Arguments: &b (reference to matrix)
f (function call)
maxfeval (integer, optional)

Numerical maximization via the Nelder-Mead derivative-free simplex method. On input the vector
b should hold the initial values of a set of parameters, and the argument f should specify a call to a

Chapter 2. Gretl functions 174

function that calculates the (scalar) criterion to be maximized, given the current parameter values
and any other relevant data. On successful completion, NMmax returns the maximized value of the
criterion, and b holds the parameter values which produce the maximum.

The optional third argument may be used to set the maximum number of function evaluations; if
it is omitted or set to zero the maximum defaults to 2000. As a special signal to this function the
maxfeval value may be set to a negative number. In this case the absolute value is taken, and NMmax
flags an error if the best value found for the objective function at the maximum number of function
evaluations is not a local optimum. Otherwise non-convergence in this sense is not treated as an
error.

If the object is in fact minimization, either the function call should return the negative of the
criterion or alternatively NMmax may be called under the alias NMm1in.

For more details and examples chapter 34 of the Gretl User’s Guide. See also simann.

NMmin
Output: scalar

An alias for NMmax; if called under this name the function acts as a minimizer.

nobs
Output: integer
Argument: y (series)

Returns the number of non-missing observations for the variable y in the currently selected sample.

normal
Output: series
Arguments: u (scalar)

o (scalar)

Generates a series of Gaussian pseudo-random variates with mean y and standard deviation o. If
no arguments are supplied, standard normal variates N(0,1) are produced. The values are produced
using the Ziggurat method (Marsaglia and Tsang, 2000).

See also randgen, mnormal, muniform.

normtest

Output: matrix
Arguments: Yy (series or vector)
method (string, optional)

Performs a test for normality of y. By default this is the Doornik-Hansen test but the optional
method argument can be used to select an alternative: use swilk to get the Shapiro-Wilk test,
jbera for Jarque-Bera test, or 1i111e for the Lilliefors test.

The second argument may be given in either quoted or unquoted form. In the latter case, however, if
the argument is the name of a string variable the value of the variable is substituted. The following
shows three acceptable ways of calling for a Shapiro-Wilk test:

matrix nt = normtest(y, swilk)
matrix nt = normtest(y, "swilk")
string testtype = "swilk"

matrix nt = normtest(y, testtype)

Chapter 2. Gretl functions 175

The returned matrix is 1 x 2; it holds the test statistic and its p-value. See also the normtest
command.

npcorr

Output: matrix
Arguments: Xx (series or vector)
y (series or vector)
method (string, optional)
Calculates a measure of correlation between x and y using a nonparametric method. If given,

the third argument should be either kendal1 (for Kendall’s tau, version b, the default method) or
spearman (for Spearman’s rho).

The return value is a 3-vector holding the correlation measure plus a test statistic and p-value for
the null hypothesis of no correlation. Note that if the sample size is too small the test statistic
and/or p-value may be NaN (not a number, or missing).

See also corr for Pearson correlation.

npv
Output: scalar
Arguments: Xx (series or vector)

r (scalar)

Returns the Net Present Value of x, considered as a sequence of payments (negative) and receipts
(positive), evaluated at annual discount rate r, which must be expressed as a decimal fraction, not a
percentage (0.05 rather than 5%). The first value is taken as dated “now” and is not discounted. To
emulate an NPV function in which the first value is discounted, prepend zero to the input sequence.

Supported data frequencies are annual, quarterly, monthly, and undated (undated data are treated
as if annual).

See also irr.

NRmax

Output: scalar

Arguments: &b (reference to matrix)
f (function call)
g (function call, optional)
h (function call, optional)

Numerical maximization via the Newton-Raphson method. On input the vector b should hold the
initial values of a set of parameters, and the argument f should specify a call to a function that
calculates the (scalar) criterion to be maximized, given the current parameter values and any other
relevant data. If the object is in fact minimization, this function should return the negative of the
criterion. On successful completion, NRmax returns the maximized value of the criterion, and b
holds the parameter values which produce the maximum.

The optional third and fourth arguments provide means of supplying analytical derivatives and an
analytical (negative) Hessian, respectively. The functions referenced by g and h must take as their
first argument a predefined matrix that is of the correct size to contain the gradient or Hessian,
respectively, given in pointer form. They also must take the parameter vector as an argument
(in pointer form or otherwise). Other arguments are optional. If either or both of the optional
arguments are omitted, a numerical approximation is used.

Chapter 2. Gretl functions 176

For more details and examples see chapter 34 of the Gretl User’s Guide. See also BFGSmax, fdjac.

NRmin
Output: scalar

An alias for NRmax; if called under this name the function acts as a minimizer.

nullspace

Output: matrix

Argument: A (matrix)
Computes the right nullspace of A, via the singular value decomposition: the result is a matrix B
such that

e AB = [0], except when A has full column rank, in which case an empty matrix is returned.
Otherwise, if A is m x n, B will be an n x (n — v) matrix, where r is the rank of A.

o If A is not of full column rank, then the vertical concatenation of A and B’ produces a full
rank matrix.

Example:

A = mshape(seq(1,6),2,3)
B = nullspace(A)
C=A | B’

print A B C

eval A*B
eval rank(C)

Produces

? print ABC

A2 x 3
1 3 5
2 4 6
B (3 x 1)
-0.5
1
-0.5
C (3 x3)
1 3 5
2 4 6
-0.5 1 -0.5

? eval A*B
-4.4409e-16
-4.4409e-16

Chapter 2. Gretl functions 177

? eval rank(C)
3

See also rank, svd.

numhess

Output: matrix
Arguments: b (column vector)
fcall (function call)
d (scalar, optional)
Calculates a numerical approximation to the Hessian associated with the n-vector b and the objec-
tive function specified by the argument fcall. The function call should take b as its first argument
(either straight or in pointer form), followed by any additional arguments that may be needed, and

it should return a scalar result. On successful completion numhess returns an n X n matrix holding
the Hessian, which is exactly symmetric by construction.

The method used is Richardson extrapolation, with four steps. The optional third argument can
be used to set the fraction d of the parameter value used in setting the initial step size; if this
argument is omitted the default is d = 0.01.

Here is an example of usage:

matrix H = numhess(theta, myfunc(&theta, X))

See also BFGSmax, fdjac.

obs
Output: series

Returns a series of consecutive integers, setting 1 at the start of the dataset. Note that the result
is invariant to subsampling. This function is especially useful with time-series datasets. Note: you
can write t instead of obs with the same effect.

See also obsnum.

obslabel
Output: string
Argument: t (integer)

Returns the observation label for observation t, where t is a 1-based index. The inverse function is
provided by obsnum.

obsnum
Output: integer
Argument: s (string)
Returns an integer corresponding to the observation specified by the string s. Note that the result is

invariant to subsampling. This function is especially useful with time-series datasets. For example,
the following code

Chapter 2. Gretl functions 178

open denmark
k = obsnum(1980:1)

yvields k = 25, indicating that the first quarter of 1980 is the 25th observation in the denmark
dataset.

See also obs, obslabel.

ok

Output: see below
Argument: X (scalar, series, matrix or list)

If x is a scalar, returns 1 if x is not NA, otherwise 0. If x is a series, returns a series with value 1 at
observations with non-missing values and zeros elsewhere. If x is a list, the output is a series with
0 at observations for which at least one series in the list has a missing value, and 1 otherwise.

If x is a matrix the function returns a matrix of the same dimensions as x, with 1s in positions
corresponding to finite elements of x and Os in positions where the elements are non-finite (either
infinities or not-a-number, as per the IEEE 754 standard).

See also missing, misszero, zeromiss. But note that these functions are not applicable to matrices.

onenorm

Output: scalar
Argument: X (matrix)

Returns the 1-norm of the » x ¢ matrix X:

r
X1y = max > Xl
J .
i=1

See also infnorm, rcond.

ones

Output: matrix
Arguments: r (integer)
¢ (integer)
Outputs a matrix with » rows and ¢ columns, filled with ones.

See also seq, zeros.

orthdev

Output: series
Argument: y (series)

Only applicable if the currently open dataset has a panel structure. Computes the forward orthog-
onal deviations for variable y, that is

T.
~ T”_t 1 l
Vit = T —t+1 (J’l,t Ti—tsg_lyt,s)

This transformation is sometimes used instead of differencing to remove individual effects from
panel data. For compatibility with first differences, the deviations are stored one step ahead of their

Chapter 2. Gretl functions 179

true temporal location (that is, the value at observation t is the deviation that, strictly speaking,
belongs at t — 1). That way one loses the first observation in each time series, not the last.

See also diff.

pdf

Output: same type as input
Arguments: d (string)

... (see below)

X (scalar, series or matrix)

Examples: fl = pdf(N, -2.5)
2 = pdf(X, 3, y)
f3 = pdf(W, shape, scale, y)

Probability density function calculator. Returns the density at x of the distribution identified by
the code d. See cdf for details of the required (scalar) arguments. The distributions supported
by the pdf function are the normal, Student’s t, chi-square, F, Gamma, Beta, Exponential, Weibull,
Laplace, Generalized Error, Binomial and Poisson. Note that for the Binomial and the Poisson what'’s
calculated is in fact the probability mass at the specified point. For Student’s t, chi-square, F the
noncentral variants are supported too.

For the normal distribution, see also dnorm.

pergm

Output: matrix
Arguments: Xx (series or vector)
bandwidth (scalar, optional)
If only the first argument is given, computes the sample periodogram for the given series or vector.

If the second argument is given, computes an estimate of the spectrum of x using a Bartlett lag
window of the given bandwidth, up to a maximum of half the number of observations (T/2).

Returns a matrix with two columns and T/2 rows: the first column holds the frequency, w, from
21t/T to 1T, and the second the corresponding spectral density.

pexpand

Output: series

Argument: v (vector)
Only applicable if the currently open dataset has a panel structure. Performs the inverse operation
of pshrink. That is, given a vector of length equal to the number of individuals in the current panel

sample, it returns a series in which each value is repeated T times, for T the time-series length of
the panel. The resulting series is therefore non-time varying.

pmax

Output: series
Arguments: y (series)
mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the maxima
of variable y for each cross-sectional unit (repeated for each time period).

Chapter 2. Gretl functions 180

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmin, pmean, pnobs, psd, pxsum, pshrink, psum.

pmean

Output: series
Arguments: Yy (series)
mask (series, optional)
Only applicable if the current dataset has a panel structure. Computes the time-mean of variable y
for each cross-sectional unit; that is,
1 &
Yi= T Z Vit
Li=1
where T; is the number of valid observations for unit i.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmin, pnobs, psd, pxsum, pshrink, psum.

pmin
Output: series

Arguments: Yy (series)
mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the minima of
variable y for each cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmean, pnobs, psd, pshrink, psum.

pnobs

Output: series
Arguments: Yy (series)
mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the number
of valid observations of variable y for each cross-sectional unit (repeated for each time period).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmin, pmean, psd, pshrink, psum.

polroots

Output: matrix
Argument: a (vector)
Finds the roots of a polynomial. If the polynomial is of degree p, the vector a should contain p +

1 coefficients in ascending order, i.e. starting with the constant and ending with the coefficient on
xP.

Chapter 2. Gretl functions 181

If all the roots are real they are returned in a column vector of length p, otherwise a p X 2 matrix is
returned, the real parts in the first column and the imaginary parts in the second.

polyfit
Output: series
Arguments: Yy (series)
g (integer)

Fits a polynomial trend of order g to the input series y using the method of orthogonal polynomials.
The series returned holds the fitted values.

princomp
Output: matrix
Arguments: X (matrix)
p (integer)
covmat (boolean, optional)

Let the matrix X be T X k, containing T observations on k variables. The argument p must be a
positive integer less than or equal to k. This function returns a T X p matrix, P, holding the first p
principal components of X.

The optional third argument acts as a boolean switch: if it is non-zero the principal components
are computed on the basis of the covariance matrix of the columns of X (the default is to use the
correlation matrix).

The elements of P are computed as
k
()
Pij = Z Ziiv;’
i=1
where Z;; is the standardized value (or just the centered value, if the covariance matrix is used)

of variable i at observation t, Z;; = (X;; — X;) /04, and vl-(j) is the jth eigenvector of the correla-
tion (or covariance) matrix of the Xjs, with the eigenvectors ordered by decreasing value of the
corresponding eigenvalues.

See also eigensym.

prodc

Output: row vector
Argument: X (matrix)

Returns the product of the elements of X, by column. See also prodr, meanc, sdc, sumc.

prodr

Output: column vector
Argument: X (matrix)

Returns the product of the elements of X, by row. See also prodc, meanr, sumr.

psd

Output: series
Arguments: Yy (series)
mask (series, optional)

Chapter 2. Gretl functions 182

Only applicable if the current dataset has a panel structure. Computes the per-unit sample standard
deviation for variable vy, that is

1 &
: > (i — 3i)?
S|

g; =
T;

The above formula holds for T; > 2, where T; is the number of valid observations for unit i; if
T; = 0, NA is returned; if T; = 1, 0 is returned.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note: this function makes it possible to check whether a given variable (say, X) is time-invariant via
the condition max(psd(X)) == 0.

See also pmax, pmin, pmean, pnobs, pshrink, psum.

psdroot

Output: square matrix
Arguments: A (symmetric matrix)
psdcheck (boolean, optional)
Performs a generalized variant of the Cholesky decomposition of the matrix A, which must be
positive semidefinite (but may be singular). If the input matrix is not square an error is flagged,
but symmetry is assumed and not tested; only the lower triangle of A is read. The result is a

lower-triangular matrix L which satisfies A = LL’. Indeterminate elements in the solution are set to
Zero.

To force a check on the positive semidefiniteness of A, give a non-zero value for the optional second
argument. In that case an error is flagged if the maximum absolute value of A — LL" exceeds 1.0e-8.
Such a check can also be performed manually:

L

= psdroot(A)
chk =

maxc(maxr(abs(A - L*L’)))

For the case where A is positive definite, see cholesky.

pshrink
Output: matrix
Argument: y (series)

Only applicable if the current dataset has a panel structure. Returns a column vector holding the
first valid observation for the series y for each cross-sectional unit in the panel, over the current
sample range. If a unit has no valid observations for the input series it is skipped.

This function provides a means of compacting the series returned by functions such as pmax and
pmean, in which a value pertaining to each cross-sectional unit is repeated for each time period.

See pexpand for the inverse operation.

psum

Output: series
Arguments: y (series)
mask (series, optional)

Chapter 2. Gretl functions 183

This function is applicable only if the current dataset has a panel structure. It computes the sum
over time of variable y for each cross-sectional unit; that is,

T;
Si= > Vit
t=1

where T; is the number of valid observations for unit i.

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

See also pmax, pmean, pmin, pnobs, psd, pxsum, pshrink.

pvalue

Output: same type as input
Arguments: ¢ (character)
... (see below)
X (scalar, series or matrix)
Examples: pl = pvalue(z, 2.2)
p2 pvalue(X, 3, 5.67)
p2 pvalue(F, 3, 30, 5.67)
P-value calculator. Returns P(X > x), where the distribution of X is determined by the character
c. Between the arguments c and X, zero or more additional arguments are required to specify the
parameters of the distribution; see cdf for details. The distributions supported by the pvalue

function are the standard normal, ¢, Chi square, F, gamma, binomial, Poisson, Exponential, Weibull,
Laplace and Generalized Error.

See also critical, invedf, urcpval, imhof.

pxnobs

Output: series
Arguments: y (series)
mask (series, optional)

Only applicable if the current dataset has a panel structure. Returns a series holding the number
of valid observations of y in each time period (this count being repeated for each unit).

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note that this function works in a different dimension from the pnobs function.

pxsum

Output: series
Arguments: y (series)
mask (series, optional)

Only applicable if the currently open dataset has a panel structure. Computes the cross-sectional
sum for variable y in each period; that is,

N
V=D Vit
i-1

where N is the number of cross-sectional units.

Chapter 2. Gretl functions 184

If the optional second argument is provided then observations for which the value of mask is zero
are ignored.

Note that this function works in a different dimension from the psum function.

gform

Output: matrix
Arguments: x (matrix)
A (symmetric matrix)
Computes the quadratic form Y = xAx’. Using this function instead of ordinary matrix multiplica-

tion guarantees more speed and better accuracy, when A is a generic symmetric matrix. However, in
the special case A = I, the simple expression x’ x performs much better than gform(x’ ,I(rows(x)).

If x and A are not conformable, or A is not symmetric, an error is returned.

qlrpval
Output: scalar
Arguments: X2 (scalar)
df (integer)
pl (scalar)
p2 (scalar)

P-values for the test statistic from the QLR sup-Wald test for a structural break at an unknown
point (see glrtest), as per Hansen (1997).

The first argument, X2, denotes the (chi-square form of) the maximum Wald test statistic and df
denotes its degrees of freedom. The third and fourth arguments represent, as decimal fractions
of the overall estimation range, the starting and ending points of the central range of observations
over which the successive Wald tests are calculated. For example if the standard approach of 15
percent trimming is adopted, you would set p1 to 0.15 and p2 to 0.85.

See also pvalue, urcpval.

gqnorm
Output: same type as input
Argument: X (scalar, series or matrix)

Returns quantiles for the standard normal distribution. If x is not between 0 and 1, NA is returned.
See also cnorm, dnorm.

qrdecomp

Output: matrix
Arguments: X (matrix)
&R (reference to matrix, or nul1)
Computes the QR decomposition of an m X n matrix X, that is X = QR where Q is an m X n

orthogonal matrix and R is an n X n upper triangular matrix. The matrix Q is returned directly,
while R can be retrieved via the optional second argument.

See also eigengen, eigensym, svd.

Chapter 2. Gretl functions 185

quadtable

Output: matrix

Arguments: n (integer)
type (integer, optional)
a (scalar, optional)
b (scalar, optional)

Returns an » x 2 matrix for use with Gaussian quadrature (numerical integration). The first column
holds the nodes or abscissae, the second the weights.

The first argument specifies the number of points (rows) to compute. The second argument codes
for the type of quadrature: use 1 for Gauss-Hermite (the default); 2 for Gauss-Legendre; or 3 for
Gauss-Laguerre. The significance of the optional parameters a and b depends on the selected type,
as explained below.

Gaussian quadrature is a method of approximating numerically the definite integral of some func-
tion of interest. Let the function be represented as the product f(x)W (x). The types of quadrature
differ in the specification of the component W (x): in the Hermite case we have W (x) = exp(—x?2);
in the Laguerre case, W (x) = exp(—x); and in the Legendre case simply W(x) = 1.

For each specification of W(x), one can compute a set of nodes, x;, and weights, w;, such that
>t f(xi)w; approximates the desired integral. The method of Golub and Welsch (1969) is used.

When the Gauss-Legendre type is selected, the optional arguments a and b can be used to control
the lower and upper limits of integration, the default values being —1 and 1. (In Hermite quadrature
the limits are fixed at —c and +co, while in the Laguerre case they are fixed at 0 and c.)

In the Hermite case a and b play a different role: they can be used to replace the default form of
W (x) with the (closely related) normal distribution with mean a and standard deviation b. Supply-
ing values of 0 and 1 for these parameters, for example, has the effect of making W (x) into the
standard normal pdf, which is equivalent to multiplying the default x; values by /2 and dividing
the default w; by /7.

quantile

Output: scalar or matrix
Arguments: y (series or matrix)
p (scalar between 0 and 1)

If y is a series, returns the p-quantile for the series. For example, when p = 0.5, the median is
returned.

If y is a matrix, returns a row vector containing the p-quantiles for the columns of y; that is, each
column is treated as a series.

In addition, for matrix y an alternate form of the second argument is supported: p may be given as
a vector. In that case the return value is an m X n matrix, where m is the number of elements in p
and n is the number of columns in y.

For a series of length n, the p-quantile, g, is defined as:

a=yiu+Ilm+1)-p—-kl(Yk11 — Yik)

where k is the integer part of (n + 1) - p and yy; is the i-th element of the series when sorted from
smallest to largest.

Chapter 2. Gretl functions

randgen(B, 0.6, 30)

andgen(u, 0, 100)
randgen(t, 14)

andgen(G, 1, 1)

randgen

Output: series

Arguments: d (string)
pl (scalar or series)
p2 (scalar or series, conditional)
p3 (scalar, conditional)

Examples: series X = r
series tl4 =
series y =
series g = r
series P = r

andgen(P, mu)

186

All-purpose random number generator. The argument d is a string (in most cases just a single char-
acter) which specifies the distribution from which the pseudo-random numbers should be drawn.
The arguments pl to p3 specify the parameters of the selected distribution; the number of such
parameters depends on the distribution. For distributions other than the beta-binomial, the param-
eters pl and (if applicable) p2 may be given as either scalars or series: if they are given as scalars
the output series is identically distributed, while if a series is given for pI or p2 the distribution
is conditional on the parameter value at each observation. In the case of the beta-binomial all the

parameters must be scalars.

Specifics are given below: the string code for each distribution is shown in parentheses, followed
by the interpretation of the argument p1 and, where applicable, p2 and p3.

Distribution

Uniform (continuous)
Uniform (discrete)
Normal

Student’s t

Chi square
Snedecor’s F
Gamma

Binomial

Poisson
Exponential
Logistic

Weibull

Laplace
Generalized Error
Beta
Beta-Binomial

d pl

uorlU minimum
i minimum
z,norN mean

t degrees of freedom
¢, xorX

forF df (num.)
gorG shape

b or B 14

p or P mean
exp scale

s location
wor W shape
TorlL mean
eorkE shape
beta shapel
bb n

See also normal, uniform, mrandgen, randgen1.

degrees of freedom

p2

maximum
maximum
standard deviation

df (den.)
scale
n

scale
scale
scale

shape?
shapel

p3

Chapter 2. Gretl functions 187

randgenl

Output: scalar
Arguments: d (character)
pl (scalar)
p2 (scalar, conditional)
Examples: scalar x = randgenl(z, 0, 1)
scalar g = randgenl(g, 3, 2.5)
Works like randgen except that the return value is a scalar rather than a series.

The first example above calls for a value from the standard normal distribution, while the second
specifies a drawing from the Gamma distribution with shape 3 and scale 2.5.

See also mrandgen.

randint

Output: integer
Arguments: min (integer)
max (integer)

Returns a pseudo-random integer in the closed interval [min, max]. See also randgen.

rank
Output: integer
Argument: X (matrix)

Returns the rank of X, numerically computed via the singular value decomposition. See also svd.

ranking

Output: same type as input

Argument: Yy (series or vector)
Returns a series or vector with the ranks of . The rank for observation i is the number of elements
that are less than y; plus one half the number of elements that are equal to y;. (Intuitively, you
may think of chess points, where victory gives you one point and a draw gives you half a point.)
One is added so the lowest rank is 1 instead of 0.
Formally,

rank(y;) =1+ > [I(yj <¥yi) +0.5-I(yj = J’i)]
J#i

where I denotes the indicator function.

See also sort, sorthy.

rcond
Output: scalar
Argument: A (square matrix)

Returns the reciprocal condition number for A with respect to the 1-norm. In many circumstances,
this is a better measure of the sensitivity of A to numerical operations such as inversion than the
determinant.

Chapter 2. Gretl functions 188

Given that A is non-singular, we may define
K(A) = [|All - IAT]

This function returns k(A) L.

See also det, ldet, onenorm.

readfile

Output: string
Arguments: fname (string)
codeset (string, optional)
If a file by the name of fname exists and is readable, returns a string containing the content of this

file, otherwise flags an error. If fname does not contain a full path specification, it will be looked
for in several “likely” locations, beginning with the currently set workdir.

If fname starts with the identifier of a supported internet protocol (http://, ftp:// or https://),
libcurl is invoked to download the resource. See also curl for more elaborate downloading opera-
tions.

If the text to be read is not encoded in UTF-8, gretl will try recoding it from the current locale
codeset if that is not UTF-8, or from ISO-8859-15 otherwise. If this simple default does not meet
your needs you can use the optional second argument to specify a codeset. For example, if you
want to read text in Microsoft codepage 1251 and that is not your locale codeset, you should give
a second argument of "cp1251".

Examples:

string web_page = readfile("http://gretl.sourceforge.net/™")
print web_page

string current_settings = readfile("@dotdir/.gretl2rc")
print current_settings

Also see the sscanf and getline functions.

regsub

Output: string
Arguments: s (string)
match (string)
repl (string)
Returns a copy of s in which all occurrences of the pattern match are replaced using repl. The
arguments match and repl are interpreted as Perl-style regular expressions.

See also strsub for simple substitution of literal strings.

remove
Output: integer
Argument: fname (string)

If a file by the name of fname exists and is writable by the user, removes (deletes) the named file.
Returns 0 on successful completion, non-zero if there is no such file or the file cannot be removed.

Chapter 2. Gretl functions 189

If fname contains a full path specification, gretl will attempt to delete that file and return an error
if the file doesn’t exist or can’t be deleted for some reason (such as insufficient privileges). If fname
does not contain a full path, then it will be assumed that the given file name is relative to workdir.
If the file doesn’t exist or is unwritable, no other directories will be searched.

replace

Output: same type as input

Arguments: X (series or matrix)
find (scalar or vector)
subst (scalar or vector)

Replaces each element of x equal to the i-th element of find with the corresponding element of
subst.

If find is a scalar, subst must also be a scalar. If find and subst are both vectors, they must have
the same number of elements. But if find is a vector and subst a scalar, then all matches will be
replaced by subst.

Example:
a = {1,2;3;3,415}
find = {1,3,4}
subst = {-1,-8, 0}
b = replace(a, find, subst)
print a b
produces
a (2 x 3)
1 2 3
3 4 5
b (2 x 3)
-1 2 -8
-8 0 5
resample
Output: same type as input

Arguments: Xx (series or matrix)
blocksize (integer, optional)

The initial description of this function pertains to cross-sectional or time-series data; see below for
the case of panel data.

Resamples from x with replacement. In the case of a series argument, each value of the returned
series, v, is drawn from among all the values of x; with equal probability. When a matrix argument
is given, each row of the returned matrix is drawn from the rows of x with equal probability.

The optional argument blocksize represents the block size for resampling by moving blocks. If this
argument is given it should be a positive integer greater than or equal to 2. The effect is that the
output is composed by random selection with replacement from among all the possible contiguous
sequences of length blocksize in the input. (In the case of matrix input, this means contiguous

Chapter 2. Gretl functions 190

rows.) If the length of the data is not an integer multiple of the block size, the last selected block
is truncated to fit.

If the argument x is a series and the dataset takes the form of a panel, resampling by moving blocks
is not supported. The basic form of resampling is supported, but has this specific interpretation:
the data are resampled “by individual”. Suppose you have a panel in which 100 individuals are
observed over 5 periods. Then the returned series will again be composed of 100 blocks of 5
observations: each block will be drawn with equal probability from the 100 individual time series,
with the time-series order preserved.

round

Output: same type as input

Argument: X (scalar, series or matrix)
Rounds to the nearest integer. Note that when x lies halfway between two integers, rounding is
done "away from zero", so for example 2.5 rounds to 3, but round(-3.5) gives —4. This is a

common convention in spreadsheet programs, but other software may vield different results. See
also ceil, floor, int.

rnameget

Output: string or array of strings
Arguments: M (matrix)
r (integer, optional)

If the r argument is given, retrieves the name for row r of matrix M. If M has no row names attached
the value returned is an empty string; if r is out of bounds for the given matrix an error is flagged.

If no second argument is given, retrieves an array of strings holding the row names from M, or an
empty array if the matrix does not have row names attached.

Example:

matrix A = { 11, 23, 13 ; 54, 15, 46 }
rnameset(A, "First Second")

string name = rnameget(A, 2)

print name

See also rnameset.

rnameset
Output: integer
Arguments: M (matrix)
S (array of strings or list)

Attaches names to the rows of the m x n matrix M. If S is a named list, the names are taken from
the names of the listed series; the list must have m members. If S is an array of strings, it should
contain m elements. For backward compatibility, a single string may also be given as the second
argument; in that case it should contain m space-separated substrings.

The return value is 0 on successful completion, non-zero on error. See also cnameset.
Example:

matrix M = {1, 2; 2, 1; 4, 1}
strings S = array(3)

Chapter 2. Gretl functions 191

S[1] "Rowl"
S[2] = "Row2"
S[3] = "Row3"
rnameset(M, S)
print M

rows
Output: integer
Argument: X (matrix)

Returns the number of rows of the matrix X. See also cols, mshape, unvech, vec, vech.

sd

Output: scalar or series
Argument: X (series or list)

If x is a series, returns the (scalar) sample standard deviation, skipping any missing observations.

If x is a list, returns a series y such that y; is the sample standard deviation of the values of the
variables in the list at observation t, or NA if there are any missing values at t.

See also var.

sdc

Output: row vector
Arguments: X (matrix)
df (scalar, optional)
Returns the standard deviations of the columns of X. If df is positive it is used as the divisor for the

column variances, otherwise the divisor is the number of rows in X (that is, no degrees of freedom
correction is applied). See also meanc, sumc.

sdiff
Output: same type as input

Argument: y (series or list)

Computes seasonal differences: y: — y:_x, where k is the periodicity of the current dataset (see
$pd). Starting values are set to NA.

When a list is returned, the individual variables are automatically named according to the template
sd_varname where varname is the name of the original series. The name is truncated if necessary,
and may be adjusted in case of non-uniqueness in the set of names thus constructed.

See also diff, 1diff.

seasonals
Output: list
Arguments: baseline (integer, optional)
center (boolean, optional)

Applicable only if the dataset has a time-series structure with periodicity greater than 1. Returns a
list of dummy variables coding for the period or season, named S1, S2 and so on.

Chapter 2. Gretl functions 192

The optional baseline argument can be used to exclude one period from the set of dummies. For
example, if you give a baseline value of 1 with quarterly data the returned list will hold dummies
for quarters 2, 3 and 4 only. If this argument is omitted or set to zero a full set of dummies is
generated; if non-zero, it must be an integer from 1 to the periodicity of the data.

The center argument, if non-zero, calls for the dummies to be centered; that is, to have their
population mean subtracted. For example, with quarterly data centered seasonals will have values
—0.25 and 0.75 rather than 0 and 1.

With weekly data the precise effect depends on whether the data are dated or not. If they are
dated, up to 53 seasonals are created, based on the ISO 8601 week number (see isoweek); if not, the
maximum number of series is 52 (and over a long time span the “seasonals” will drift out of phase
with the calendar year). In the dated weekly case, if you wish to create monthly seasonals this can
be done as follows:

series month = $obsminor
Tist months = dummify(month)

See dummify for details.

selifc

Output: matrix
Arguments: A (matrix)
b (row vector)

Selects from A only the columns for which the corresponding element of b is non-zero. b must be
a row vector with the same number of columns as A.

See also selifr.

selifr

Output: matrix
Arguments: A (matrix)
b (column vector)

Selects from A only the rows for which the corresponding element of b is non-zero. b must be a
column vector with the same number of rows as A.

See also selifc, trimr.

seq
Output: row vector
Arguments: a (scalar)

b (scalar)
k (scalar, optional)

Given only two arguments, returns a row vector filled with values from a to b with an increment of
1, or a decrement of 1 if ais greater than b.

If the third argument is given, returns a row vector containing a sequence of values starting with
a and incremented (or decremented, if a is greater than b) by k at each step. The final value is the
largest member of the sequence that is less than or equal to b (or mutatis mutandis for a greater
than b). The argument k must be positive.

See also ones, zeros.

Chapter 2. Gretl functions 193

setnote
Output: integer
Arguments: b (bundle)
key (string)
note (string)

Sets a descriptive note for the object identified by key in the bundle b. This note will be shown
when the print command is used on the bundle. This function returns 0 on success or non-zero
on failure (for example, if there is no object in b under the given key).

simann

Output: scalar

Arguments: &b (reference to matrix)
f (function call)
maxit (integer, optional)

Implements simulated annealing, which may be helpful in improving the initialization for a numer-
ical optimization problem.

On input the first argument holds the initial value of a parameter vector and the second argument
specifies a function call which returns the (scalar) value of the maximand. The optional third
argument specifies the maximum number of iterations (which defaults to 1024). On successful
completion, simann returns the final value of the maximand and b holds the associated parameter
vector.

For more details and an example see chapter 34 of the Gretl User’s Guide. See also BFGSmax,
NRmax.

sin
Output: same type as input

Argument: x (scalar, series or matrix)

Returns the sine of x. See also cos, tan, atan.

sinh
Output: same type as input
Argument: x (scalar, series or matrix)
Returns the hyperbolic sine of x.

. eX —e™X
sinhx = ———

See also asinh, cosh, tanh.

skewness

Output: scalar
Argument: x (series)

Returns the skewness value for the series X, skipping any missing observations.

Chapter 2. Gretl functions 194

sleep

Output: scalar
Argument: ns (integer)

Not of any direct use for econometrics, but can be useful for testing parallelization methods. This
function simply causes the current thread to “sleep” —that is, do nothing—for ns seconds. On
wake-up, the function returns O.

smplspan

Output: scalar

Arguments: startobs (string)
endobs (string)
pd (integer)

Returns the number of observations from startobs to endobs (inclusive) for time-series data with
frequency pd.

The first two arguments should be given in the form preferred by gretl for annual, quarterly or
monthly data—for example, 1970, 1970:1 or 1970:01 for each of these frequencies, respectively —
or as ISO 8601 dates, YYYY-MM-DD.

The pd argument must be 1, 4 or 12 (annual, quarterly, monthly); one of the daily frequencies
(5, 6, 7); or 52 (weekly). If pd equals 1, 4 or 12, then ISO 8601 dates are acceptable for the first
two arguments if they indicate the start of the period in question. For example, 2015-04-01 is
acceptable in place of 2015:2 to represent the second quarter of 2015.

If you already have a dataset of frequency pd in place, with a sufficient range of observations, then
the result of this function could easily be emulated using obsnum. The advantange of smp1span is
that you can calculate the number of observations without having a suitable dataset (or any dataset)
in place. An example follows:

scalar T = smplspan("2010-01-01", "2015-12-31", 5)
nulldata T
setobs 5 2010-01-01

This produces:

? scalar T = smplspan('2010-01-01", "2015-12-31", 5)
Generated scalar T = 1565

? nulldata T

periodicity: 1, maxobs: 1565

observations range: 1 to 1565

? setobs 5 2010-01-01

Full data range: 2010-01-01 - 2015-12-31 (n = 1565)

After the above, you can be confident that the last observation in the dataset created via null-
data will be 2015-12-31. Note that the number 1565 would have been rather tricky to compute
otherwise.

sort

Output: same type as input
Argument: x (series, vector or string array)

Chapter 2. Gretl functions 195

Sorts x in ascending order, skipping observations with missing values when x is a series. See also
dsort, values. For matrices specifically, see msortby.

sortby

Output: series
Arguments: ylI (series)
y2 (series)

Returns a series containing the elements of y2 sorted by increasing value of the first argument, y1.
See also sort, ranking.

sprintf

Output: string
Arguments: format (string)
.. . (see below)
The returned string is constructed by printing the values of the trailing arguments, indicated by the

dots above, under the control of format. It is meant to give you great flexibility in creating strings.
The format is used to specify the precise way in which you want the arguments to be printed.

In general, format must be an expression that evaluates to a string, but in most cases will just be a
string literal (an alphanumeric sequence surrounded by double quotes). Some character sequences
in the format have a special meaning: those beginning with the percent character (for the items
contained in the argument list; moreover, special characters such as the newline character are
represented via a combination beginning with a backslash.

For example, the code below
scalar x = sqrt(5)

string claim = sprintf("sqrt(%d) is (roughly) %6.4f.\n", 5, x)
print claim

will output

sqrt(5) 1is (roughly) 2.2361.

The expression %d in the format string indicates that we want an integer at that place in the output;
since it is the leftmost “percent” expression, it is matched to the first argument, that is 5. The
second special sequence is %6.4f, which stands for a decimal value at least 6 digits wide with
4 digits after the decimal separator. The number of such sequences must match the number of
arguments following the format string.

See the help page for the printf command for more details about the syntax you can use in format
strings.

sqrt
Output: same type as input
Argument: X (scalar, series or matrix)
Returns the positive square root of x; produces NA for negative values.

Note that if the argument is a matrix the operation is performed element by element. For the
“matrix square root” see cholesky.

Chapter 2. Gretl functions 196

square

Output: list
Arguments: L (list)
cross-products (boolean, optional)

Returns a list that references the squares of the variables in the list L, named on the pattern
sq_varname. If the optional second argument is present and has a non-zero value, the returned list
also includes the cross-products of the elements of L; these are named on the pattern varl_var2.
In these patterns the input variable names are truncated if need be, and the output names may be
adjusted in case of duplication of names in the returned list.

sscanf
Output: integer
Arguments: src (string or array of strings)
format (string)
. . . (see below)

Reads values from src under the control of format and assigns these values to one or more trailing
arguments, indicated by the dots above. Returns the number of values assigned. This is a simplified
version of the sscanf function in the C programming language, with an extension to the scanning
of an entire matrix; this extension is described under the leading “Scanning a matrix” below. Note
that giving an array of strings as src is acceptable only in the case of matrix scanning.

src may be either a literal string, enclosed in double quotes, or the name of a predefined string
variable. format is defined similarly to the format string in printf (more on this below). args should
be a comma-separated list containing the names of predefined variables: these are the targets of
conversion from src. (For those used to C: one can prefix the names of numerical variables with &
but this is not required.)

Literal text in format is matched against src. Conversion specifiers start with %, and recognized
conversions include %f, %g or %1f for floating-point numbers; %d for integers; %s for strings. You
may insert a positive integer after the percent sign: this sets the maximum number of characters to
read for the given conversion. Alternatively, you can insert a literal * after the percent to suppress
the conversion (thereby skipping any characters that would otherwise have been converted for the
given type). For example, %3d converts the next 3 characters in src to an integer, if possible; %*g
skips as many characters in src as could be converted to a single floating-point number.

In addition to %s conversion for strings, a simplified version of the C format %N [chars] is available.
In this format N is the maximum number of characters to read and chars is a set of acceptable
characters, enclosed in square brackets: reading stops if N is reached or if a character not in
chars is encountered. The function of chars can be reversed by giving a circumflex, A, as the first
character; in that case reading stops if a character in the given set is found. (Unlike C, the hyphen
does not play a special role in the chars set.)

If the source string does not (fully) match the format, the number of conversions may fall short of
the number of arguments given. This is not in itself an error so far as gretl is concerned. However,
you may wish to check the number of conversions performed; this is given by the return value.
Some simple examples follow:

scanning scalar values

scalar x

scalar y

sscanf("123456", "%3d%3d", x, y)
scanning string values

string s = "one two"

string sl

Chapter 2. Gretl functions 197

string s2
sscanf(s, "%s %s", sl, s2)
print sl s2

Scanning a matrix

Matrix scanning must be signaled by the special conversion specification “%m”. The maximum
number of rows to be read can be specified by inserting an integer between the “%” sign and the “m”
for matrix. Two variants are supported: src a single string representing a matrix, and src an array
of strings. We describe these options in turn.

If src is a single string argument the scanner reads a line of input and counts the (space- or tab-
separated) number of numeric fields. This defines the number of columns in the matrix. By default,
reading then proceeds for as many lines (rows) as contain the same number of numeric columns,
but the maximum number of rows can be limited via the optional integer value mentioned above.

If src is an array of strings the output is necessarily a column vector, each element of which is the
numerical conversion of the corresponding string, or NA if the string is not numeric. Here are some
simple examples.

scanning a single string

string s = sprintf("1 2 3 4\n5 6 7 8")

print s

matrix m

sscanf(s, "%m", m)

print m

scanning an array of strings

strings S = defarray("1.1", "2.2", "3.3", "4.4", "5.5")
sscanf(S, "%4m", m)

print m

sst
Output: scalar
Argument: y (series)

Returns the sum of squared deviations from the mean for the non-missing observations in series y.
See also var.

strftime

Output: string
Arguments: tm (scalar)
format (string, optional)

The argument tm is taken to give the number of seconds since the start of the year 1970 according
to UTC (Coordinated Universal Time, once known as Greenwich Mean Time), and the return value
is a string giving the corresponding date and/or time —either in a format specified via the second,
optional argument or, by default, the “preferred date and time representation for the current locale”
as determined by the system C library.

Values of tm suitable for use with this function may be obtained via the $now accessor or the
strptime function.

The formatting options may be found by consulting the strftime manual page, on systems which
have such pages, or via one of the many websites which present relevant information, such as
https://devhints.io/strftime.

https://devhints.io/strftime

Chapter 2. Gretl functions 198

stringify
Output: integer
Arguments: Yy (series)
S (array of strings)
Provides a means of defining string values for the series y. Two conditions must be satisfied for
this to work: the target series must have nothing but integer values, none of them less than 1, and

the array S must have at least n elements where n is the largest value in y. In addition each element
of S must be valid UTF-8. See also strvals.

The value returned is zero on success or a positive error code on error.

strlen

Output: integer
Argument: s (string)

Returns the number of characters in the string s. Note that this does not necessarily equal the
number of bytes if some characters are outside of the printable-ASCII range.

Example:
string s = "regression"
scalar number = strlen(s)
print number

strncmp

Output: integer

Arguments: sl (string)
s2 (string)
n (integer, optional)
Compares the two string arguments and returns an integer less than, equal to, or greater than

zero if s1 is found, respectively, to be less than, to match, or be greater than s2, up to the first n
characters. If nis omitted the comparison proceeds as far as possible.

Note that if you just want to compare two strings for equality, that can be done without using a
function, asin if (sl == s2)

strptime

Output: scalar
Arguments: s (string)
format (string)
This function is the converse of strftime; it parses the date/time string s using the specified format

and returns a scalar giving the number of seconds since the start of 1970 according to Coordinated
Universal Time (UTC).

The format options may be found by consulting the strptime manual page, on systems which
have such pages, or via one of the many websites which present relevant information, such as
http://man7.org/1inux/man-pages/man3/strptime.3.html.

The example below shows how one can convert date information from one format to another.

http://man7.org/linux/man-pages/man3/strptime.3.html

Chapter 2. Gretl functions 199

scalar tm = strptime("Thursday 02/07/19", "%A %m/%d/%y")
eval strftime(tm) # default output
eval strftime(tm, "%B %d, %Y")

In the US English locale the result is

Thu 07 Feb 2019 12:00:00 AM EST
February 07, 2019

strsplit

Output: string or array of strings
Arguments: s (string)

sep (string, optional)

I (integer, optional)

In basic usage, with a single argument, returns the array of strings that results from the splitting
of s on white space (that is on any combination of the space, tab and/or newline characters).

The optional second argument can be used to specify the separator used for splitting s. For example

string basket = "banana,apple,jackfruit,orange"
strings S = strsplit(basket, ",")

will split the input into an array of four strings using comma as separator.

The backslash-escape sequences “\n” and “\t” are taken to represent newline and tab in the op-
tional sep argument. If you wish to include a literal backslash as a separator character you should
double it, as in “\\”. Example:

string s = "c:\fiddle\sticks"
strings S = strsplit(s, "\\'")

Regardless of the separator, the members of the returned array are trimmed of any leading or
trailing white space. Correspondingly, if sep contains non-whitespace characters then it is stripped
of any leading or trailing space.

If an integer value greater than zero is given as the third argument the return value is a single
string, namely the (1-based) element i of the array that would otherwise be produced. If i is less
than 1 that provokes an error, but if i is greater than the implied number of elements an empty
string is returned.

strstr

Output: string
Arguments: s1 (string)
s2 (string)

Searches s1 for an occurrence of the string s2. If a match is found, returns a copy of the portion of
s1 that starts with s2, otherwise returns an empty string.

Example:

Chapter 2. Gretl functions 200

string sl = "Gretl is an econometrics package"
string s2 = strstr(sl, "an")
print s2

If you just wish to find out if sI contains s2 (boolean test), see instring.

strstrip

Output: string
Argument: s (string)

Returns a copy of the argument s from which leading and trailing white space have been removed.

Example:
string s1 = " A Tot of white space. "
string s2 = strstrip(sl)
print sl s2
strsub
Output: string
Arguments: s (string)
find (string)

subst (string)

Returns a copy of s in which all occurrences of find are replaced by subst. See also regsub for more
complex string replacement via regular expressions.

Example:
string sl = "Hello, Gretl!"
string s2 = strsub(sl, "Gretl", "Hans1")
print s2

strvals

Output: array of strings

Argument: Yy (series)

If the series y is string-valued, returns an array containing all its distinct values, ordered by the as-
sociated numerical values starting at 1. If y is not string-valued an empty strings array is returned.
See also stringify.

substr
Output: string
Arguments: s (string)
start (integer)
end (integer)
Returns a substring of s, from the character with (1-based) index start to that with index end,
inclusive.

For example, the code below

Chapter 2. Gretl functions 201

"HeTllo, Gret1!"
substr(sl, 8, 12)
substr("Hello, Gretl!"™, 8, 12)

string sl
string s2
string s3
print s2
print s3

gives:

? print s2
Gretl
? print s3
Gretl

It should be noted that in some cases you may be willing to trade clarity for conciseness, and use
slicing and increment operators, as in

string sl = "Hello, Gretl!"
string s2 s1[8:12]

string s3 sl +7

print s2

print s3

which would give you

? print s2
Gretl
? print s3
Gretl!

sum

Output: scalar or series
Argument: x (series, matrix or list)

If x is a series, returns the (scalar) sum of the non-missing observations in x. See also sumall.
If x is a matrix, returns the sum of the elements of the matrix.

If x is a list, returns a series y such that y; is the sum of the values of the variables in the list at
observation t, or NA if there are any missing values at t.

sumall

Output: scalar
Argument: Xx (series)

Returns the sum of the observations of x over the current sample range, or NA if there are any
missing values. Use sum if you want missing values to be skipped.

sumc

Output: row vector
Argument: X (matrix)

Returns the sums of the columns of X. See also meanc, sumr.

Chapter 2. Gretl functions 202

sumr

Output: column vector
Argument: X (matrix)

Returns the sums of the rows of X. See also meanr, sumc.

svd

Output: row vector

Arguments: X (matrix)
&U (reference to matrix, or nul1)
&V (reference to matrix, or null)

Performs the singular values decomposition of the » X ¢ matrix X:

01
(0]

O-‘Vl’

where n = min(r,c). Uisr xnand Visn xc,withU'U =T and VV' = I.

The singular values are returned in a row vector. The left and/or right singular vectors U and V
may be obtained by supplying non-null values for arguments 2 and 3, respectively. For any matrix
A, the code

n
I

svd(A, &U, &)
B=(.*s) *V

should yield B identical to A (apart from machine precision).

See also eigengen, eigensym, qrdecomp.

svm
Output: series
Arguments: L (list)

bparms (bundle)

bmod (reference to bundle, optional)

bprob (reference to bundle, optional)
This function enables the training of, and prediction based on, an SVM (a Support Vector Machine),
using LIBSVM as back-end. The list argument L should include the dependent variable followed
by the independent variables and the bparms bundle is used to pass options to the SVM mecha-

nism. The return value is a series holding the SVM’s predictions. The two optional bundle-pointer
argument can be used to retrieve additional information after training and/or prediction.

For details, please see the PDF documentation for gretl + SVM.

tan

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the tangent of x. See also atan, cos, sin.

Chapter 2. Gretl functions

tanh

Output: same type as input
Argument: X (scalar, series or matrix)

Returns the hyperbolic tangent of x.

2x _ 1
tanh x =

See also atanh, cosh, sinh.

toepsolv
Output: column vector
Arguments: ¢ (vector)
r (vector)
b (vector)

Solves a Toeplitz system of linear equations, that is Tx

e2x +1

203

b where T is a square matrix whose

element T; ; equals ¢;—j for i = j and r;_; for i < j. Note that the first elements of ¢ and r must be
equal, otherwise an error is returned. Upon successful completion, the function returns the vector

X.

The algorithm used here takes advantage of the special structure of the matrix T, which makes it
much more efficient than other unspecialized algorithms, especially for large problems. Warning:
in certain cases, the function may spuriously issue a singularity error when in fact the matrix T is

nonsingular; this problem, however, cannot arise when T is positive definite.

tolower

Output: string
Argument: s (string)

Returns a copy of s in which any upper-case characters are converted to lower case.

Examples:
string sl = "Hello, Gretl!"
string s2 = tolower(sl)
print s2
string s3 = tolower("Hello, Gretl1!")
print s3

toupper

Output: string

Argument: s (string)

Returns a copy of s in which any lower-case characters are converted to upper case.

Examples:

"Hello, Gretl!"
toupper(sl)

string sl
string s2
print s2

Chapter 2. Gretl functions 204

string s3 = toupper("Hello, Gretl1!")
print s3

tr

Output: scalar
Argument: A (square matrix)

Returns the trace of the square matrix A, that is, the sum of its diagonal elements. See also diag.

transp
Output: matrix
Argument: X (matrix)

Returns the transpose of X. Note: this is rarely used; in order to get the transpose of a matrix, in
most cases you can just use the prime operator: X’.

trimr
Output: matrix
Arguments: X (matrix)
ttop (integer)
tbot (integer)
Returns a matrix that is a copy of X with ttop rows trimmed at the top and tbot rows trimmed at

the bottom. The latter two arguments must be non-negative, and must sum to less than the total
rows of X.

See also selifr.

typeof
Output: integer
Argument: name (string)

Returns a numeric type-code if name is the identifier of a currently defined object: 1 for scalar, 2
for series, 3 for matrix, 4 for string, 5 for bundle, 6 for array and 7 for list. Otherwise returns 0.
The function typestr may be used to get the string corresponding to the return value.

This function can also be used to retrieve the type of a bundle member or array element. For
example:

matrices M = array(l)
eval typestr(typeof(M))
eval typestr(typeof(M[1]))

The first eval result is “array” and the second is “matrix”.

typestr

Output: string
Argument: typecode (integer)

Chapter 2. Gretl functions 205

Returns the name of the gretl data-type corresponding to typecode. This may be used in con-

junction with the functions typeof and inbundle. The value returned is one of “scalar”, “series”,

LTS

“matrix”, “string”, “bundle”, “array”, “list”, or “null”.

uniform
Output: series
Arguments: a (scalar)

b (scalar)

Generates a series of uniform pseudo-random variates in the interval (a, b), or, if no arguments are
supplied, in the interval (0,1). The algorithm used by default is the SIMD-oriented Fast Mersenne
Twister developed by Saito and Matsumoto (2008).

See also randgen, normal, mnormal, muniform.

uniq
Output: column vector
Argument: X (series or vector)

Returns a vector containing the distinct elements of x, not sorted but in their order of appearance.
See values for a variant that sorts the elements.

unvech

Output: square matrix
Argument: v (vector)

Returns an n X n symmetric matrix obtained by rearranging the elements of v. The number of
elements in v must be a triangular integer —i.e., a number k such that an integer n exists with the
property k = n(n + 1)/2. This is the inverse of the function vech.

See also mshape, vech.

upper
Output: square matrix
Argument: A (square matrix)
Returns an n X n upper triangular matrix B for which B;; = A;; if i < j and 0 otherwise.

See also lower.

urcpval

Output: scalar

Arguments: tau (scalar)
n (integer)
niv (integer)
itv (integer)

P-values for the test statistic from the Dickey-Fuller unit-root test and the Engle-Granger cointe-
gration test, as per MacKinnon (1996).

The arguments are as follows: tau denotes the test statistic; n is the number of observations (or 0
for an asymptotic result); niv is the number of potentially cointegrated variables when testing for
cointegration (or 1 for a univariate unit-root test); and itv is a code for the model specification: 1 for

Chapter 2. Gretl functions 206

no constant, 2 for constant included, 3 for constant and linear trend, 4 for constant and quadratic
trend.

Note that if the test regression is “augmented” with lags of the dependent variable, then you should
give an n value of 0 to get an asymptotic result.

See also pvalue, glrpval.

values

Output: column vector
Argument: x (series or vector)

Returns a vector containing the distinct elements of x sorted in ascending order. If you wish to
truncate the values to integers before applying this function, use the expression values(int(x)).

See also uniq, dsort, sort.

var

Output: scalar or series
Argument: x (series or list)

If x is a series, returns the (scalar) sample variance, skipping any missing observations.

If x is a list, returns a series y such that y; is the sample variance of the values of the variables in
the list at observation t, or NA if there are any missing values at t.

In each case the sum of squared deviations from the mean is divided by (n — 1) for n > 1. Otherwise
the variance is given as zero if n = 1, or as NAif n = 0.

See also sd.

varname
Output: string
Argument: v (integer or list)

If given an integer argument, returns the name of the variable with ID number v, or generates an
error if there is no such variable.

If given a list argument, returns a string containing the names of the variables in the list, separated
by commas. If the supplied list is empty, so is the returned string. To get an array of strings as
return value, use varnames instead.

Example:
open broiler.gdt
string s = varname(7)
print s

varnames

Output: array of strings

Argument: L (list)

Returns an array of strings containing the names of the variables in the list L. If the supplied list is
empty, so is the returned array.

Example:

Chapter 2. Gretl functions 207

open keane.gdt
Tist L = year wage status
strings S = varnames(L)

eval S[1]
eval S[2]
eval S[3]
varnum
Output: integer

Argument: varname (string)

Returns the ID number of the variable called varname, or NA is there is no such variable.

varsimul
Output: matrix
Arguments: A (matrix)
U (matrix)
y0 (matrix)

Simulates a p-order n-variable VAR, that is y; = Zf;lAiyt_i + u;. The coefficient matrix A is
composed by stacking the A; matrices horizontally; it is 1 X np, with one row per equation. This
corresponds to the first n rows of the matrix $compan provided by gretl’s var and vecm commands.

The u; vectors are contained (as rows) in U (T x n). Initial values are in y0 (p X n).

If the VAR contains deterministic terms and/or exogenous regressors, these can be handled by
folding them into the U matrix: each row of U then becomes u; = B'x; + e;.

The output matrix has T + p rows and n columns; it holds the initial p values of the endogenous
variables plus T simulated values.

See also $compan, var, vecm.

vec

Output: column vector
Argument: X (matrix)

Stacks the columns of X as a column vector. See also mshape, unvech, vech.

vech
Output: column vector
Argument: A (square matrix)

Returns in a column vector the elements of A on and above the diagonal. Typically, this function is
used on symmetric matrices; in this case, it can be undone by the function unvech. See also vec.

weekday

Output: same type as input

Arguments: year (scalar or series)
month (scalar or series)
day (scalar or series)

Chapter 2. Gretl functions 208

Returns the day of the week (Sunday = 0, Monday = 1, etc.) for the date(s) specified by the three
arguments, or NA if the date is invalid. Note that all three arguments must be of the same type,
either scalars (integers) or series.

wimean
Output: series
Arguments: Y (list)

W (list)

Returns a series y such that y; is the weighted mean of the values of the variables in list Y at
observation t, the respective weights given by the values of the variables in list W at t. The weights
can therefore be time-varying. The lists Y and W must be of the same length and the weights must
be non-negative.

See also wsd, wvar.

wsd
Output: series
Arguments: Y (list)

W (list)

Returns a series y such that y; is the weighted sample standard deviation of the values of the
variables in list Y at observation t, the respective weights given by the values of the variables in list
W at t. The weights can therefore be time-varying. The lists Y and W must be of the same length
and the weights must be non-negative.

See also wmean, wvar.

wvar
Output: series
Arguments: X (list)

W (list)

Returns a series 7y such that y; is the weighted sample variance of the values of the variables in
list X at observation t, the respective weights given by the values of the variables in list W at t.
The weights can therefore be time-varying. The lists Y and W must be of the same length and the
weights must be non-negative.

The weighted sample variance is computed as

n -
§2 n YL wilxi — Xw)?
Yo -1 St wi

where 1’ is the number of non-zero weights and X, is the weighted mean.

See also wmean, wsd.

Xmax
Output: scalar
Arguments: x (scalar)

y (scalar)
Returns the greater of x and y, or NA if either value is missing.

See also xmin, max, min.

Chapter 2. Gretl functions 209

xmin
Output: scalar
Arguments: x (scalar)

y (scalar)
Returns the lesser of x and y, or NA if either value is missing.

See also xmax, max, min.

xmlget

Output: string
Arguments: buf (string)
path (string or array of strings)
The argument buf should be an XML buffer, as may be retrieved from a suitable website via the

curl function (or read from file via readfile), and the path argument should be either a single XPath
specification or an array of such.

This function returns a string representing the data found in the XML buffer at the specified path. If
multiple nodes match the path expression the items of data are printed one per line in the returned
string. If an array of paths is given as the second argument the returned string takes the form of
a comma-separated buffer, with column i holding the matches from path i. In this case if a string
obtained from the XML buffer contains any spaces or commas it is wrapped in double quotes.

By default an error is flagged if path is not matched in the XML buffer, but this behavior is modified
if you pass the third, optional argument: in that case the argument retrieves a count of the matches
and an empty string is returned if there are none. Example call:

ngot = 0
ret = xmlget(xbuf, "//some/thing", &ngot)

However, an error is still flagged in case of a malformed query.

A good introduction to XPath usage and syntax can be found at https://www.w3schools.com/
xm1/xml_xpath.asp. The back-end for xmlget is provided by the xpath module of libxml2, which
supports XPath 1.0 but not XPath 2.0.

See also jsonget, readfile.

zZeromiss

Output: same type as input
Argument: X (scalar or series)

Converts zeros to NAs. If x is a series, the conversion is done element by element. See also missing,
misszero, ok.

zeros

Output: matrix
Arguments: r (integer)
¢ (integer)

Outputs a zero matrix with » rows and ¢ columns. See also ones, seq.

https://www.w3schools.com/xml/xml_xpath.asp
https://www.w3schools.com/xml/xml_xpath.asp

Chapter 3

Operators

3.1 Precedence

Table 3.1 lists the operators available in gretl in order of decreasing precedence: the operators on
the first row have the highest precedence, those on the second row have the second highest, and so
on. Operators on any given row have equal precedence. Where successive operators have the same
precedence the order of evaluation is in general left to right. The exceptions are exponentiation
and matrix transpose-multiply. The expression aAbAc is equivalent to aA(bAc), not (aAb)Ac, and
similarly A’B’C’ is equivalent to A’ (B’ (C’)).

Table 3.1: Operator precedence

o o . {4
! ++ -- A ’
+ -~

&&
I

In addition to the basic forms shown in the Table, several operators also have a “dot form” (as in
“.+” which is read as “dot plus”). These are element-wise versions of the basic operators, for use
with matrices exclusively; they have the same precedence as their basic counterparts. The available
dot operators are as follows.

AU+ - > . >= <= .=

Each basic operator is shown once again in the following list along with a brief account of its
meaning. Apart from the first three sets of grouping symbols, all operators are binary except
where otherwise noted.

() Function call

[1 Subscripting

. Bundle membership (see below)

{} Matrix definition

! Unary logical NOT

++ Increment (unary)

-- Decrement (unary)

A Exponentiation

’ Matrix transpose (unary) or transpose-multiply (binary)

210

Chapter 3. Operators 211

Multiplication

Division, matrix “right division”
Modulus

Matrix “left division”
Kronecker product

Addition

- Subtraction

f,é/&\

+

~ Matrix horizontal concatenation
| Matrix vertical concatenation
> Boolean greater than
< Boolean less than
>= Greater than or equal
<= Less than or equal
Range from-to (in constructing lists)
== Boolean equality test
= Boolean inequality test
&& Logical AND
|| Logical OR
?: Conditional expression

The interpretation of “.” as the bundle membership operator is confined to the case where it is
immediately preceded by the identifier for a bundle, and immediately followed by a valid identifier
(key).

Details on the use of the matrix-related operators (including the dot operators) can be found in the
chapter on matrices in the Gretl User’s Guide.

3.2 Assignment

The operators mentioned above are all intended for use on the right-hand side of an expression
which assigns a value to a variable (or which just computes and displays a value—see the eval
command). In addition we have the assignment operator itself, “=”. In effect this has the lowest
precedence of all: the entire right-hand side is evaluated before assignment takes place.

[]

Besides plain “=" several “inflected” versions of assignment are available. These may be used only
when the left-hand side variable is already defined. The inflected assignment yields a value that is
a function of the prior value on the left and the computed value on the right. Such operators are
formed by prepending a regular operator symbol to the equals sign. For example,

Yy += X

The new value assigned to y by the statement above is the prior value of y plus x. The other
available inflected operators, which work in an exactly analogous fashion, are as follows.

= ¥= J= %= A= ~= =

In addition, a special form of inflected assignment is provided for matrices. Say matrix Mis 2 x 2. If
you execute M = 5 this has the effect of replacing M with a 1 x 1 matrix with single element 5. But
if youdoM .= 5 this assigns the value 5 to all elements of M without changing its dimensions.

Chapter 3. Operators 212

3.3 Increment and decrement

The unary operators ++ and -- follow their operand,! which must be a variable of scalar type. Their
simplest use is in stand-alone expressions, such as

j++ # shorthand for j =
k-- # shorthand for k = k - 1

|
.

+

=

However, they can also be embedded in more complex expressions, in which case they first yield the
original value of the variable in question, then have the side-effect of incrementing or decrementing
the variable’s value. For example:

scalar i = 3

k = i++

matrix M = zeros(10, 1)
Mi++] =1

After the second line, k has the value 3 and i has value 4. The last line assigns the value 1 to
element 4 of matrix M and sets i = 5.

Warning: as in the C programming language, the unary increment or decrement operator should be
not be applied to a variable in conjunction with regular reference to the same variable in a single
statement. This is because the order of evaluation is not guaranteed, giving rise to ambiguity.
Consider the following:

M[i++] = i # don’t do this!

This is supposed to assign the value of i to M[1i], but is it the original or the incremented value?
This is not actually defined.

IThe C programming language also supports prefix versions of ++ and - -, which increment or decrement their operand
before yielding its value. Only the postfix form is supported by gretl.

Chapter 4

Comments in scripts

When a script does anything non-obvious, it’s a good idea to add comments explaining what’s
going on. This is particularly useful if you plan to share the script with others, but it’s also useful
as a reminder to yourself — when you revisit a script some months later and wonder what it was
supposed to be doing.

The comment mechanism can also be helpful when you’re developing a script. There may come a
point where you want to execute a script, but bypass execution of some portion of it. Obviously you
could delete the portion you wish to bypass, but rather than lose that section you can “comment it
out” so that it is ignored by gretl.

Two sorts of comments are supported by gretl. The simpler one is this:

o If a hash mark, #, is encountered in a gretl script, everything from that point to the end of the
current line is treated as a comment, and ignored.

If you wish to “comment out” several lines using this mode, you'll have to place a hash mark at the
start of each line.

The second sort of comment is patterned after the C programming language:

o If the sequence /* is encountered in a script, all the following input is treated as a comment
until the sequence */ is found.

Comments of this sort can extend over several lines. Using this mode it is easy to add lengthy
explanatory text, or to get gretl to ignore substantial blocks of commands. As in C, comments of
this type cannot be nested.

How do these two comment modes interact? You can think of gretl as starting at the top of a script
and trying to decide at each point whether it should or should not be in “ignore mode”. In doing so
it follows these rules:

o If we're not in ignore mode, then # puts us into ignore mode till the end of the current line.

e If we’re not in ignore mode, then /* puts us into ignore mode until */ is found.
This means that each sort of comment can be masked by the other.

o If /* follows # on a given line which does not already start in ignore mode, then there’s
nothing special about /*, it’s just part of a #-style comment.

e If # occurs when we'’re already in ignore mode, it is just part of a comment.
A few examples follow.

/* multi-line comment
hello
hello */

213

Chapter 4. Comments in scripts 214

In the above example the hash marks are not special; in particular the hash mark on the third line
does not prevent the multi-line comment from terminating at */.

single-1line comment /* hello

Assuming we were not in ignore mode before the line shown above, it is just a single-line comment:
the /* is masked, and does not open a multi-line comment.

You can append a comment to a command:
ols 1 0 2 3 # estimate the baseline model
Example of “commenting out”:

/ £3

let’s skip this for now
ols 102 3 4

omit 3 4

*/

Chapter 5

Options, arguments and path-searching

5.1 Invoking gretl

gret] (under MS Windows, gret1.exe)!.
— Opens the program and waits for user input.
gretl datafile

— Starts the program with the specified datafile in its workspace. The data file may be in any of
several formats (see the Gretl User’s Guide); the program will try to detect the format of the file and
treat it appropriately. See also Section 5.4 below for path-searching behavior.

gretl --help (or gretl -h)

— Print a brief summary of usage and exit.

gretl --version (or gretl -v)

— Print version identification for the program and exit.
gretl --english (or gretl -e)

— Force use of English instead of translation.

gretl --run scriptfile (or gret1 -r scriptfile)

— Start the program and open a window displaying the specified script file, ready to run. See
Section 5.4 below for path-searching behavior.

gretl --db database (or gretl -d database)

— Start the program and open a window displaying the specified database. If the database files
(the .b1in file and its accompanying .1idx file) are not in the default system database directory, you
must specify the full path. See also the Gretl User’s Guide for details on databases.

gretl --dump (or gretl -c)

— Dump the program’s configuration information to a plain text file (the name of the file is printed
on standard output). May be useful for trouble-shooting.

gretl --debug (or gretl -g)

— (MS Windows only) Open a console window to display any messages sent to the “standard out-
put” or “standard error” streams. Such messages are not usually visible on Windows; this may be
useful for trouble-shooting.

5.2 Preferences dialog

Various things in gretl are configurable under the “Tools, Preferences” menu. Separate menu items
are devoted to the choice of the monospaced font to be used in gretl screen output, and, on some
platforms, the font used for menus and other messages. The other options are organized under
five tabs, as follows.

1On Linux, a “wrapper” script named gret1 is installed. This script checks whether the DISPLAY environment variable
is set; if so, it launches the GUI program, gret1_x11, and if not it launches the command-line program, gret1cli

215

Chapter 5. Options, arguments and path-searching 216

General: Here you can configure the base directory for gretl’s shared files. In addition there are sev-
eral check boxes. If your native language setting is not English and the local decimal point character
is not the period (“.”), unchecking “Use locale setting for decimal point” will make gretl use the pe-
riod regardless. Checking “Allow shell commands” makes it possible to invoke shell commands in
scripts and in the gretl console (this facility is disabled by default for security reasons).

Programs tab: You can specify the names or paths to various third-party programs that may called
by gretl under certain conditions.

Editor tab: Set preferences pertaining to the gretl script editor.

Network tab: Set the server on which to look for gretl databases, and also whether or not you use
an HTTP proxy.

HCCME tab: Set preferences regarding robust covariance matrix estimation. See the Gretl User’s
Guide for details.

MPI tab: This is shown only if gretl is built with support for MPI (Message Passing Interface).

Settings chosen via the Preferences dialog are stored from one gretl session to the next.

5.3 Invoking gretlcli

gretlcli
— Opens the program and waits for user input.
gretlcli datafile

— Starts the program with the specified datafile in its workspace. The data file may be in any
format supported by gretl (see the Gretl User’s Guide for details). The program will try to detect the
format of the file and treat it appropriately. See also Section 5.4 for path-searching behavior.

gretlcli --help (or gretlcli -h)

— Prints a brief summary of usage.

gretlcli --version (or greticli -v)

— Prints version identification for the program.
gretlcli --english (or gretlcli -e)

— Force use of English instead of translation.
gretlcli --run scriptfile (or gret1cli -r scriptfile)

— Execute the commands in scriptfile then hand over input to the command line. See Section 5.4
for path-searching behavior.

gretlcli --batch scriptfile (or gret1cli -b scriptfile)

— Execute the commands in scriptfile then exit. When using this option you will probably want to
redirect output to a file. See Section 5.4 for path-searching behavior.

When using the --run and --batch options, the script file in question must call for a data file to
be opened. This can be done using the open command within the script.

5.4 Path searching
When the name of a data file or script file is supplied to gretl or gretlcli on the command line, the
file is looked for as follows:

1. “As is”. That is, in the current working directory or, if a full path is specified, at the specified
location.

Chapter 5. Options, arguments and path-searching 217

2. In the user’s gretl directory (see Table 5.1 for the default values; note that PERSONAL is a place-
holder that is expanded by Windows in a user- and language-specific way, typically involving
“My Documents” on English-language systems).

3. In any immediate sub-directory of the user’s gretl directory.

4. In the case of a data file, search continues with the main gretl data directory. In the case of
a script file, the search proceeds to the system script directory. See Table 5.1 for the default
settings. (PREFIX denotes the base directory chosen at the time gretl is installed.)

5. In the case of data files the search then proceeds to all immediate sub-directories of the main
data directory.

Table 5.1: Default path settings

Linux MS Windows
User directory $HOME /gret] PERSONAL\gret]
System data directory PREFIX/share/gretl/data PREFIX\gretl\data

System script directory PREFIX/share/gretl/scripts PREFIX\gretl\scripts

Thus it is not necessary to specify the full path for a data or script file unless you wish to override
the automatic searching mechanism. (This also applies within gretlcli, when you supply a filename
as an argument to the open or run commands.)

When a command script contains an instruction to open a data file, the search order for the data
file is as stated above, except that the directory containing the script is also searched, immediately
after trying to find the data file “as is”.

MS Windows

Under MS Windows configuration information for gretl and gretlcli is stored in the Windows reg-
istry. A suitable set of registry entries is created when gretl is first installed, and the settings
can be changed under gretl’s “Tools, Preferences” menu. In case anyone needs to make manual
adjustments to this information, the entries can be found (using the standard Windows program
regedit.exe) under Software\gretl in HKEY_LOCAL_MACHINE (the main gretl directory and the
paths to various auxiliary programs) and HKEY_CURRENT_USER (all other configurable variables).

Chapter 6

Reserved Words

Reserved words, which cannot be used as the names of variables, fall into the following categories:

o Names of constants and data types, plus a few specials: const, NA, null, obs, scalar, series,
matrix, string, 1ist, bundle, array, void, for, continue, next, to.

e Names of gretl commands (see section 1.2).

User-defined functions cannot have names which collide with built-in functions, the names of which
are shown in Table 6.1.

218

Chapter 6. Reserved Words

BFGScmax
NMmax
argname
bessel
bwfilt
chowlin
corr
dayspan
diff
eigengen
fdjac
flatten
getenv
halton
imaxc
instring
isconst
iwishart
kmeier
Tastobs
Tlog

maxc
median
mlag
mpirecv
mris
naalen
npcorr
ones
pnobs
psdroot
gnorm
ranking
rnameset
selifr
smplspan
strftime
strsub
svm
trimr
values
weekday
zeros

BFGScmin
NMm1in
array
bkfilt
bwrite
cmult
corrgm
defarray
digamma
eigensym
feval
floor
getinfo
hdprod
imaxr
int
isdiscrete
jsonget
kpsscrit
Tdet
Togl0
maxr
mexp
m1incomb
mpireduce
mshape
nadarwat
npv
orthdev
polroots
pshrink
grdecomp
rcond
round
seq

sort
stringify
strvals
tan
typeof
var
wmean

Table 6.1: Function names

BFGSmax
NRmax
asin

bkw
cdemean
chameget
cos
defbundle
dnorm
eigsolve
fevd
fracdiff
getkeys
hfdiff
imhof

inv
isdummy
jsongeta
ksetup
1diff
Tog2
mcorr
mgradient
mnorma’l
mpiscatter
msortby
nelem
nullspace
pdf
polyfit
psum
quadtabTle
readfile
rows
setnote
sortby
strilen
substr
tanh
typestr
varname
wsd

BFGSmin
NRmin
asinh
bootci
cdf
chameset
cosh
deflist
dropcoll
epochday
fft
fraclag
getline
hflags
iminc
invcdf
isnan
jsongetb
ksimdata
Tincomb
logistic
mcov

min

mols
mpisend
mspl1itby
ngetenv
numhess
pergm
princomp
pvalue
quantile
regsub
sd
simann
sprintf
strncmp
sum
toepsolv
uniform
varnames
wvar

GSSmax
abs

atan
bootpval
cdiv
chorm
cov
deseas
dsort
errmsg
ffti
freq

ghk
hfldiff
iminr
invmills
isoconv
juldate
ksimul
Tinearize
Tower
mcovg
minc
monthlen
mpols
muniform
nlines
obsTlabel
pexpand
printf
pxnobs
randgen
remove
sdc

sin

sqgrt
strptime
sumall
tolower
uniq
varnum
Xmax

GSSmin
acos
atan2
boxcox
cdummify
cnumber
critical
det
dummi fy
exists
filter
fzero
gini
hflist
inbundle
invpd
isocountry
kdensity
ksmooth
Tjungbox
Trcovar
mean
minr
movavg
mrandgen
mweights
nobs
obsnum
pmax
prodc
pxsum
randgenl
replace
sdiff
sinh
square
strsplit
sumc
toupper
unvech
varsimul
Xmin

219

I

acosh
atanh
bread
ceil
cols

cum

diag
easterday
exp
firstobs
gammafun
ginv
hpfilt
infnorm
irf
isodate
kdsmooth
kurtosis
Tngamma
Trvar
meanc
missing
mpiallred
mread
mwrite
normal
ok

pmean
prodr
gform
randint
resample
seasonals
skewness
sscanf
strstr
sumr

tr

upper
vec
xmlget

Lsolve
aggregate
atof
brename
cholesky
conv2d
curl
diagcat
ecdf
fcstats
fixname
genseries
grab
hyp2fl
inlist
irr
isoweek
kfilter
Tags
Toess
max
meanr
misszero
mpibcast
mreverse
mxtab
normtest
onenorm
pmin

psd
glrpval
rank
rnameget
selifc
sleep
sst
strstrip
svd
transp
urcpval
vech
zeromiss

Bibliography

Aalen, O. (1978) ‘Nonparametric inference for a family of counting processes’, Annals of Statistics
6(4): 701-726.

Adkins, L. C., M. S. Waters and R. C. Hill (2015) ‘Collinearity diagnostics in gretl’. Presented at
fourth gretl conference, Berlin. URL https://learneconometrics.com/pdf/Collin/collin_
gretl.pdf.

Agresti, A. (1992) ‘A survey of exact inference for contingency tables’, Statistical Science 7: 131-
153.

Akaike, H. (1974) ‘A new look at the statistical model identification’, IEEE Transactions on Auto-
matic Control AC-19: 716-723.

Arellano, M. and S. Bond (1991) ‘Some tests of specification for panel data: Monte carlo evidence
and an application to employment equations’, The Review of Economic Studies 58: 277-297.

Armesto, M. T., K. Engemann and M. Owyang (2010) ‘Forecasting with mixed frequencies’, Fed-
eral Reserve Bank of St. Louis Review 92(6): 521-536. URL http://research.stlouisfed.org/
publications/review/10/11/Armesto.pdf.

Baltagi, B. H. and Y.-J. Chang (1994) ‘Incomplete panels: A comparative study of alternative esti-
mators for the unbalanced one-way error component regression model’, Journal of Econometrics
62: 67-89.

Belsley, D., E. Kuh and R. Welsch (1980) Regression Diagnostics, New York: Wiley.

Breusch, T. S. and A. R. Pagan (1979) ‘A simple test for heteroscedasticity and random coefficient
variation’, Econometrica 47: 1287-1294.

Byrd, R. H., P. Lu, J. Nocedal and C. Zhu (1995) ‘A limited memory algorithm for bound constrained
optimization’, SIAM Journal on Scientific Computing 16(5): 1190-1208.

Choi, I. (2001) ‘Unit root tests for panel data’, Journal of International Money and Finance 20(2):
249-272.

Chow, G. C. and A.-l. Lin (1971) ‘Best linear unbiased interpolation, distribution, and extrapolation
of time series by related series’, The Review of Economics and Statistics 53(4): 372-375.

Cleveland, W. S. (1979) ‘Robust locally weighted regression and smoothing scatterplots’, Journal
of the American Statistical Association 74(368): 829-836.

Davidson, R. and J. G. MacKinnon (1993) Estimation and Inference in Econometrics, New York:
Oxford University Press.

(2004) Econometric Theory and Methods, New York: Oxford University Press.

Doornik, J. A. (1998) ‘Approximations to the asymptotic distribution of cointegration tests’, Jour-
nal of Economic Surveys 12: 573-593. Reprinted with corrections in McAleer and Oxley (1999).

Edgerton, D. and C. Wells (1994) ‘Critical values for the cusumsq statistic in medium and large
sized samples’, Oxford Bulletin of Economics and Statistics 56: 355-365.

Elliott, G., T. J. Rothenberg and J. H. Stock (1996) ‘Efficient tests for an autoregressive unit root’,
Econometrica 64: 813-836.

220

https://learneconometrics.com/pdf/Collin/collin_gretl.pdf
https://learneconometrics.com/pdf/Collin/collin_gretl.pdf
http://research.stlouisfed.org/publications/review/10/11/Armesto.pdf
http://research.stlouisfed.org/publications/review/10/11/Armesto.pdf

Bibliography 221
Engle, R. F. and C. W. J. Granger (1987) ‘Co-integration and error correction: Representation, esti-
mation, and testing’, Econometrica 55: 251-276.

Fiorentini, G., G. Calzolari and L. Panattoni (1996) ‘Analytic derivatives and the computation of
GARCH estimates’, Journal of Applied Econometrics 11: 399-417.

Geweke, J. (1991) ‘Efficient simulation from the multivariate normal and student-t distributions
subject to linear constraints’. In Computer Science and Statistics: Proceedings of the Twenty-third
symposium on the Interface, pp. 571-578. Alexandria, VA: American Statistical Association.

Geweke, J. and S. Porter-Hudak (1983) ‘The estimation and application of long memory time series
models’, Journal of Time Series Analysis 4: 221-238.

Godfrey, L. G. (1994) ‘Testing for serial correlation by variable addition in dynamic models esti-
mated by instrumental variables’, The Review of Economics and Statistics 76(3): 550-559.

Golub, G. H. and C. F. Van Loan (1996) Matrix Computations, Baltimore and London: The John
Hopkins University Press, third edn.

Golub, G. H. and J. H. Welsch (1969) ‘Calculation of Gauss quadrature rules’, Mathematics of Com-
putation 23: 221-230.

Greene, W. H. (2000) Econometric Analysis, Upper Saddle River, NJ: Prentice-Hall, fourth edn.

Greenwood, M. (1926) ‘The natural duration of cancer’, Ministry of Health Reports on Public Health
and Medical Subjects 33: 1-26.

Halton, J. H. and G. B. Smith (1964) ‘Algorithm 247: Radical-inverse quasi-random point sequence’,
Communications of the ACM 7: 701-702.

Hamilton, J. D. (1994) Time Series Analysis, Princeton, NJ: Princeton University Press.

Hansen, B. E. (1997) ‘Approximate asymptotic p values for structural-change tests’, Journal of
Business & Economic Statistics 15: 60-67.

Heckman, J. (1979) ‘Sample selection bias as a specification error’, Econometrica 47: 153-161.

Im, K. S., M. H. Pesaran and Y. Shin (2003) ‘Testing for unit roots in heterogeneous panels’, Journal
of Econometrics 115: 53-74.

Imhof, J. P. (1961) ‘Computing the distribution of quadratic forms in normal variables’, Biometrika
48: 419-426.

Kaplan, E. L. and P. Meier (1958) ‘Nonparametric estimation from incomplete observations’, Journal
of the American Statistical Association 53(282): 457-481.

Kiviet, J. F. (1986) ‘On the rigour of some misspecification tests for modelling dynamic relation-
ships’, Review of Economic Studies 53: 241-261.

Koenker, R. (1981) ‘A note on studentizing a test for heteroscedasticity’, Journal of Econometrics
17: 107-112.

(1994) ‘Confidence intervals for regression quantiles’. In P. Mandl and M. Huskova (eds.),
Asymptotic Statistics, pp. 349-359. New York: Springer-Verlag.

Koenker, R. and G. Bassett (1978) ‘Regression quantiles’, Econometrica 46: 33-50.

Koenker, R. and J. Machado (1999) ‘Goodness of fit and related inference processes for quantile
regression’, Journal of the American Statistical Association 94: 1296-1310.

Koenker, R. and Q. Zhao (1994) ‘L-estimation for linear heteroscedastic models’, Journal of Non-
parametric Statistics 3: 223-235.

Bibliography 222

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin (1992) ‘Testing the null of stationarity
against the alternative of a unit root: How sure are we that economic time series have a unit
root?’, Journal of Econometrics 54: 159-178.

Levin, A., C.-F. Lin and J. Chu (2002) ‘Unit root tests in panel data: asymptotic and finite-sample
properties’, Journal of Econometrics 108: 1-24.

Locke, C. (1976) ‘A test for the composite hypothesis that a population has a gamma distribution’,
Communications in Statistics — Theory and Methods A5: 351-364.

MacKinnon, J. G. (1996) ‘Numerical distribution functions for unit root and cointegration tests’,
Journal of Applied Econometrics 11: 601-618.

Maddala, G. S. (1992) Introduction to Econometrics, Englewood Cliffs, NJ: Prentice-Hall.
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature, New York: W. H. Freeman.

Marsaglia, G. and W. W. Tsang (2000) ‘The ziggurat method for generating random variables’,
Journal of Statistical Software 5: 3-30.

McAleer, M. and L. Oxley (1999) Practical Issues in Cointegration Analysis, Oxford: Blackwell.

Nelson, W. (1972) ‘Theory and applications of hazard plotting for censored failure data’, Techno-
metrics 14(4): 945-966.

Nerlove, M. (1971) ‘Further evidence on the estimation of dynamic economic relations from a time
series of cross sections’, Econometrica 39: 359-382.

Neter, J., W. Wasserman and M. H. Kutner (1990) Applied Linear Statistical Models, Boston: Irwin,
third edn.

Ng, S. and P. Perron (2001) ‘Lag length selection and the construction of unit root tests with good
size and power’, Econometrica 69(6): 1519-1554.

Odell, P. L. and A. H. Feiveson (1966) ‘A numerical procedure to generate a sample covariance
matrix’, Journal of the American Statistical Association 61: 199-203.

Perron, P. and Z. Qu (2007) ‘A simple modification to improve the finite sample properties of Ng
and Perron’s unit root tests’, Economics Letters 94(1): 12-19.

Pesaran, M. H. (2004) ‘General diagnostic tests for cross section dependence in panels’. Cambridge
Working Papers in Economics (CWPE 0435). URL https://www. repository.cam.ac.uk/handle/
1810/446.

Pesaran, M. H. and L. W. Taylor (1999) ‘Diagnostics for IV regressions’, Oxford Bulletin of Economics
and Statistics 61(2): 255-281.

Phillips, P. C. B. and K. Shimotsu (2004) ‘Local Whittle estimation in nonstationary and unit root
cases’, The Annals of Statistics 32(2): 659-692. URL http://arxiv.org/pdf/math/0406462.

Ramanathan, R. (2002) Introductory Econometrics with Applications, Fort Worth: Harcourt, fifth
edn.

Ridders, C. (1979) ‘A new algorithm for computing a single root of a real continuous function’,
IEEE Transactions on Circuits and Systems 26(11): 979-980.

Roberts, S. W. (1959) ‘Control chart tests based on geometric moving averages’, Technometrics
1(3): 239-250.

Robinson, P. (1995) ‘Gaussian semiparametric estimation of long range dependence’, Annals of
Statistics 22: 1630-1661.

https://www.repository.cam.ac.uk/handle/1810/446
https://www.repository.cam.ac.uk/handle/1810/446
http://arxiv.org/pdf/math/0406462

Bibliography 223

Saito, M. and M. Matsumoto (2008) ‘SIMD-oriented Fast Mersenne Twister: a 128-bit pseudorandom
number generator’. In A. Keller, S. Heinrich and H. Niederreiter (eds.), Monte Carlo and Quasi-Monte
Carlo Methods 2006, pp. 607-622. Berlin: Springer.

Satterthwaite, F. E. (1946) ‘An approximate distribution of estimates of variance components’,
Biometrics Bulletin 2(6): 110-114.

Schwert, G. W. (1989) ‘Tests for unit roots: A Monte Carlo investigation’, Journal of Business and
Economic Statistics 7(2): 5-17.

Sephton, P. S. (1995) ‘Response surface estimates of the KPSS stationarity test’, Economics Letters
47: 255-261.

Shapiro, S. and L. Chen (2001) ‘Composite tests for the gamma distribution’, Journal of Quality
Technology 33: 47-59.

Stock, J. H. and M. W. Watson (1999) ‘Forecasting inflation’, Journal of Monetary Economics 44(2):
293-335.

Stock, J. H., J. H. Wright and M. Yogo (2002) ‘A survey of weak instruments and weak identification
in generalized method of moments’, Journal of Business & Economic Statistics 20(4): 518-529.

Stock, J. H. and M. Yogo (2003) ‘Testing for weak instruments in linear IV regression’. NBER
Technical Working Paper 284. URL https://www.nber.org/papers/t0284.

Swamy, P. A. V. B. and S. S. Arora (1972) ‘The exact finite sample properties of the estimators of
coefficients in the error components regression models’, Econometrica 40: 261-275.

Welch, B. L. (1951) ‘On the comparison of several mean values: An alternative approach’,
Biometrika 38: 330-336.

Windmeijer, F. (2005) ‘A finite sample correction for the variance of linear efficient two-step GMM
estimators’, Journal of Econometrics 126: 25-51.

https://www.nber.org/papers/t0284

	Gretl Command Reference
	License
	Contents
	Gretl commands
	Introduction
	Commands
	add
	adf
	anova
	append
	ar
	ar1
	arbond
	arch
	arima
	arma
	biprobit
	bkw
	boxplot
	break
	catch
	chow
	clear
	coeffsum
	coint
	coint2
	corr
	corrgm
	cusum
	data
	dataset
	debug
	delete
	diff
	difftest
	discrete
	dpanel
	dummify
	duration
	elif
	else
	end
	endif
	endloop
	eqnprint
	equation
	estimate
	eval
	fcast
	flush
	foreign
	fractint
	freq
	funcerr
	function
	garch
	genr
	gmm
	gnuplot
	graphpg
	hausman
	heckit
	help
	hfplot
	hsk
	hurst
	if
	include
	info
	intreg
	join
	kpss
	labels
	lad
	lags
	ldiff
	leverage
	levinlin
	logistic
	logit
	logs
	loop
	mahal
	makepkg
	markers
	meantest
	midasreg
	mle
	modeltab
	modprint
	modtest
	mpols
	negbin
	nls
	normtest
	nulldata
	ols
	omit
	open
	orthdev
	outfile
	panel
	panplot
	pca
	pergm
	pkg
	plot
	poisson
	print
	printf
	probit
	pvalue
	qlrtest
	qqplot
	quantreg
	quit
	rename
	reset
	restrict
	rmplot
	run
	runs
	scatters
	sdiff
	set
	setinfo
	setmiss
	setobs
	setopt
	shell
	smpl
	spearman
	sprintf
	square
	store
	summary
	system
	tabprint
	textplot
	tobit
	tsls
	var
	varlist
	vartest
	vecm
	vif
	wls
	xcorrgm
	xtab

	Commands by topic
	Estimation
	Tests
	Transformations
	Statistics
	Dataset
	Graphs
	Printing
	Prediction
	Programming
	Utilities

	Short-form command options

	Gretl functions
	Introduction
	Accessors
	$ahat
	$aic
	$bic
	$chisq
	$coeff
	$command
	$compan
	$datatype
	$depvar
	$df
	$diagpval
	$diagtest
	$dw
	$dwpval
	$ec
	$error
	$ess
	$evals
	$fcast
	$fcse
	$fevd
	$Fstat
	$gmmcrit
	$h
	$hausman
	$hqc
	$huge
	$jalpha
	$jbeta
	$jvbeta
	$lang
	$llt
	$lnl
	$macheps
	$mnlprobs
	$model
	$ncoeff
	$nobs
	$now
	$nvars
	$obsdate
	$obsmajor
	$obsmicro
	$obsminor
	$parnames
	$pd
	$pi
	$pvalue
	$qlrbreak
	$result
	$rho
	$rsq
	$sample
	$sargan
	$sigma
	$stderr
	$stopwatch
	$sysA
	$sysB
	$sysGamma
	$sysinfo
	$system
	$T
	$t1
	$t2
	$test
	$tmax
	$trsq
	$uhat
	$unit
	$vcv
	$vecGamma
	$version
	$vma
	$windows
	$xlist
	$xtxinv
	$yhat
	$ylist

	Functions proper
	abs
	acos
	acosh
	aggregate
	argname
	array
	asin
	asinh
	atan
	atan2
	atanh
	atof
	bessel
	BFGSmax
	BFGSmin
	BFGScmax
	BFGScmin
	bkfilt
	bkw
	boxcox
	bread
	brename
	bwfilt
	bwrite
	cdemean
	cdf
	cdiv
	cdummify
	ceil
	cholesky
	chowlin
	cmult
	cnorm
	cnumber
	cnameget
	cnameset
	cols
	conv2d
	corr
	corrgm
	cos
	cosh
	cov
	critical
	cum
	curl
	dayspan
	defarray
	defbundle
	deflist
	deseas
	det
	diag
	diagcat
	diff
	digamma
	dnorm
	dropcoll
	dsort
	dummify
	easterday
	ecdf
	eigengen
	eigensym
	eigsolve
	epochday
	errmsg
	exists
	exp
	fcstats
	fdjac
	feval
	fevd
	fft
	ffti
	filter
	firstobs
	fixname
	flatten
	floor
	fracdiff
	fzero
	gammafun
	genseries
	getenv
	getinfo
	getkeys
	getline
	ghk
	gini
	ginv
	GSSmax
	GSSmin
	halton
	hdprod
	hfdiff
	hfldiff
	hflags
	hflist
	hpfilt
	hyp2f1
	I
	imaxc
	imaxr
	imhof
	iminc
	iminr
	inbundle
	infnorm
	inlist
	instring
	int
	inv
	invcdf
	invmills
	invpd
	irf
	irr
	isconst
	isdiscrete
	isdummy
	isnan
	isoconv
	isocountry
	isodate
	isoweek
	iwishart
	jsonget
	jsongetb
	juldate
	kdensity
	kdsmooth
	kfilter
	kmeier
	kpsscrit
	ksetup
	ksimul
	ksmooth
	kurtosis
	lags
	lastobs
	ldet
	ldiff
	lincomb
	linearize
	ljungbox
	lngamma
	loess
	log
	log10
	log2
	logistic
	lower
	lrcovar
	lrvar
	Lsolve
	max
	maxc
	maxr
	mcorr
	mcov
	mcovg
	mean
	meanc
	meanr
	median
	mexp
	mgradient
	min
	minc
	minr
	missing
	misszero
	mlag
	mlincomb
	mnormal
	mols
	monthlen
	movavg
	mpols
	mrandgen
	mread
	mreverse
	mrls
	mshape
	msortby
	msplitby
	muniform
	mweights
	mwrite
	mxtab
	naalen
	nadarwat
	nelem
	ngetenv
	nlines
	NMmax
	NMmin
	nobs
	normal
	normtest
	npcorr
	npv
	NRmax
	NRmin
	nullspace
	numhess
	obs
	obslabel
	obsnum
	ok
	onenorm
	ones
	orthdev
	pdf
	pergm
	pexpand
	pmax
	pmean
	pmin
	pnobs
	polroots
	polyfit
	princomp
	prodc
	prodr
	psd
	psdroot
	pshrink
	psum
	pvalue
	pxnobs
	pxsum
	qform
	qlrpval
	qnorm
	qrdecomp
	quadtable
	quantile
	randgen
	randgen1
	randint
	rank
	ranking
	rcond
	readfile
	regsub
	remove
	replace
	resample
	round
	rnameget
	rnameset
	rows
	sd
	sdc
	sdiff
	seasonals
	selifc
	selifr
	seq
	setnote
	simann
	sin
	sinh
	skewness
	sleep
	smplspan
	sort
	sortby
	sprintf
	sqrt
	square
	sscanf
	sst
	strftime
	stringify
	strlen
	strncmp
	strptime
	strsplit
	strstr
	strstrip
	strsub
	strvals
	substr
	sum
	sumall
	sumc
	sumr
	svd
	svm
	tan
	tanh
	toepsolv
	tolower
	toupper
	tr
	transp
	trimr
	typeof
	typestr
	uniform
	uniq
	unvech
	upper
	urcpval
	values
	var
	varname
	varnames
	varnum
	varsimul
	vec
	vech
	weekday
	wmean
	wsd
	wvar
	xmax
	xmin
	xmlget
	zeromiss
	zeros

	Operators
	Precedence
	Assignment
	Increment and decrement

	Comments in scripts
	Options, arguments and path-searching
	Invoking gretl
	Preferences dialog
	Invoking gretlcli
	Path searching
	MS Windows

	Reserved Words
	Bibliography

