The SVAR addon for gretl

Jack Lucchetti and Sven Schreiber

Version 1.4

Contents
1 Introduction

2 C models
2.1 Asimpleexample
2.2 Base estimation via the SVAR package
2.3 Algorithm choice
2.4 Displaying the Impulse Responses.,
2.5 Bootstrapping
2.6 Ashortcut L

3 More on plotting
3.1 Plottingthe FEVD
3.2 Historical decomposition L o

4 C-models with long-run restrictions (Blanchard-Quah style)
4.1 A modicum of theory L
4.2 Exampleo
4.3 Combining short- and long-run restrictions

5 AB models
51 Asimpleexample

6 Checking for identification

7 Structural VEC Models
Tl Syntax e
7.2 A hands-on example

A The GUI interface
A1 Identifying constraints L
A.2 Bootstrap parameters and cumulationo
A3 Theoutput window
A4 Anexample e

B Alphabetical list of (public) functions

C Contents of the model bundle

24

27
28
31

34
35
35
36
36

38

43

D Changelog (after v1.2)

44

1 Introduction

The SVAR package is a collection of gretl functions to estimate Structural VARs, or SVARs for
short.

In the remainder of this guide, the emphasis will be put on the scripting interface, which is
the recommended way of using the package. However, most, if not all, of its features are also
accessible via the “Structural VAR” menu entry (go to Model > Time Series > Multivariate)
and the corresponding menu-driven interface. The impatient reader, who already has some
understanding of what a SVAR is and is looking for a step-by-step guide on how to get her work
done quickly via point-and click methods, can consult section A in the Appendix.

In order to establish notation and define a few concepts, allow me to inflict on you a 2-page
crash course on SVARs. In this context,’ we call “structural” a model in which we assume
that the one-step-ahead prediction errors ¢; from a statistical model can be thought of as linear
functions of the structural shocks u;. In its most general form, a structural model is the pair of
equations

& = Yt — E(ytl}-tfl) (1)
A€t = But (2)

where F;_q is the information set at ¢t — 1.
In practically all cases, the statistical model is a a finite-order VAR and equation (1) spe-
cialises to

P
Yt = M/xt + Z (I)iytfi + &¢ or (I)(L)yt = ,U/J?t + &¢ (3)
i=1
where the VAR may include an exogenous component x;, which typically contains at least a
constant term. The above model is referred to as the AB-model in Amisano-Giannini (1997).
The object of estimation are the square matrices A and B; estimation is carried out by
maximum likelihood. After defining C' as A~ B, the relationship between prediction errors and

structural shocks becomes
er = Cuy (4)

and under the assumption of normality the average log-likelihood can be written as
L = const — In|C| — 0.5 - tr(2(CC) ™)

As is well known, the above model is under-identified and in order for the log-likelihood to
have a (locally) unique maximum, it is necessary to impose some restrictions on the matrices
A and B. This issue will be more thoroughly discussed in section 6; for the moment, let’s just
say that some the elements in A and B have to be fixed to pre-specified values. The minimum
number of restrictions is n? + @ This, however, is a necessary condition, but not sufficient
by itself.

The popular case in which A = I is called a C-model. Further, a special case of the C-model
occurs when B is assumed to be lower-triangular. This was Sims’s (1980) original proposal, and
is sometimes called a “recursive” identification scheme. It has a number of interesting properties,
among which the fact that the ML estimator of C' is just the Cholesky decomposition of 3, the
sample covariance matrix of VAR residuals. This is why many practitioners, including myself,
often use the “recursive model” and “Cholesky model” phrases interchangeably. This has been

1The adjective “structural” is possibly one of the most widely used and abused in econometrics. In other
contexts, it takes a totally different, and unrelated, meaning.

the most frequently used variant of a SVAR model, partly for its ease of interpretation, partly
for its ease of estimation.? In the remainder of this document, a lower-triangular C model will
be called a “plain” SVAR model.
If the model is just-identified, f](C’C”)~! will be the identity matrix and the log-likelihood
simplifies to
£ = const — 0.51n|%| — 0.5n

Of course, it is possible to estimate constrained models by imposing some extra restrictions; this
makes it possible to test the over-identifying restrictions easily by means of a LR test.

Except for trivial cases, like the Cholesky decomposition, maximisation of the likelihood
involves numerical iterations. Fortunately, analytical expressions for the score, the Hessian and
the information matrix are available, which helps a lot;® once convergence has occurred, the
covariance matrix for the unrestricted elements of A and B is easily computed via the information
matrix.

Once estimation is completed, A and B can be used to compute the structural VMA rep-
resentation of the VAR, which is the base ingredient for most of the subsequent analysis, such
as Impulse Response Analysis and so forth. If the matrix polynomial ®(L) in equation (3) is
invertible, then (assuming x; = 0 for ease of notation), y; can be written as

Yt = q)(L)_lEt = Q(L)Et =& +0O0160_1 4+ (5)

which is known as the VMA representation of the VAR. Note that in general the matrix poly-
nomial ©(L) is of infinite order.
From the above expression, one can write the structural VMA representation as

yr = Cug + 01Cu—1 + - = Mouy + Myup—1 + - (6)

From equation (6) it is immediate to compute the impulse response functions:

Yt OYi t+h
Liin= — = . 7
75 8uj,t7h auj,t ()
which in this case equal simply
Zijh = [Mh}ij

The computation of confidence intervals for impulse responses could, in principle, be performed
analytically by the delta method (see Liitkepohl (1990)). However, this has two disadvantages:
for a start, it is quite involved to code. Moreover, the limit distribution has been shown to be a
very poor approximation in finite samples (see for example Fachin and Bravetti (1996) or Kilian
(1998)), so the bootstrap is almost universally adopted, although in some cases it may be quite
CPU-heavy.

2 C models

2.1 A simple example

As a trivial example, we will estimate a plain Cholesky model. The data are taken from Stock
and Watson’s sample data sw_ch14.gdt, and our VAR will include inflation and unemployment,

2Some may say “partly for the unimaginative nature of applied economists, who prefer to play safe and
maximise the chances their paper isn’t rejected rather than risk and be daring and creative”. But who are we to
judge?

3As advocated in Amisano and Giannini, the scoring algorithm is used by default, but several alternatives are
available. See subsection 2.3 below.

with a constant and 3 lags. Then, we will compute the IRFs and their 90% bootstrap confidence
interval.

turn extra output off
set verbose off

open the data and do some preliminary transformations
open sw_chl4.gdt

genr infl = 400x1diff (PUNEW)

rename LHUR unemp

list X = unemp infl

var 3 unemp infl

Sigma = $sigma
C = cholesky(Sigma)
print Sigma C

Table 1: Cholesky example via gretl’s internal var command

In order to accomplish the above, note that we don’t need to use the SVAR package, as a
Cholesky SVAR can be handled by gretl natively. In fact, the script shown in Table 2.1 does
just that: runs a VAR, collects S and estimates C as its Cholesky decomposition. Part of its
output is in Table 2.1. The impulse responses as computed by gretl’s internal command can be
see in figure 1. See the Gretl User’s Guide for more details.

2.2 Base estimation via the SVAR package

We will now replicate the above example via the SVAR package; in order to do so, we need to
treat this model as a special case of the C-model, where £; = Cu; and identification is attained
by stipulating that C is lower-triangular, that is

‘0] . (8)

Ci12 (€22

Table 3 shows a sample script to estimate the example Cholesky model: the basic idea is that
the model is contained in a gretl bundle.’ In this example, the bundle is called Mod, but it can
of course take any valid gretl identifier.

After performing the same preliminary steps as in the example in Table 2.1, we load the
package and use the SVAR_setup function, which initialises the model and sets up a few things.
This function takes 4 arguments:

e a string, with the model type ("C" in this example);

e a list containing the endogenous variables y;

4Why not 95%? Well, keeping the number of bootstrap replications low is one reason. Anyway, it must be
said that in the SVAR literature few people use 95%. 90%, 84% or even 66% are common choices.

5Bundles are a gretl data type: they may be briefly described as containers in which a certain object (a scalar,
a matrix and so on) is associated to a “key” (a string). Technically speaking, a bundle is an associative array:
these data structures are called “hashes” in Perl or “dictionaries” in Python. Fore more info, you’ll want to take
a look at the Gretl User’s Guide, section 10.7.

VAR system, lag order 3

OLS estimates, observations 1960:1-1999:4 (T = 160)
Log-likelihood = -267.76524

Determinant of covariance matrix = 0.097423416

AIC = 3.5221
BIC = 3.7911
HQC = 3.6313

Portmanteau test: LB(40) = 162.946, df = 148 [0.1896]
Equation 1: u

coefficient std. error t-ratio p-value

const 0.137300 0.0846842 1.621 0.1070
u_l 1.56139 0.0792473 19.70 8.07e-44 *xx
u_2 -0.672638 0.140545 -4.786 3.98e-06 **x

Sigma (2 x 2)

0.055341 -0.028325
-0.028325 1.7749

C (2 x2)
0.23525 0.0000
-0.12041 1.3268

Table 2: Cholesky example via gretl’s internal var command — Output

turn extra output off
set verbose off

open the data and do some preliminary transformations
open sw_chil4.gdt

genr infl = 400%1diff (PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package
include SVAR.gfn

set up the SVAR
Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C
SVAR_restrict (&Mod, "C", 1, 2, 0)

Estimate
SVAR_estimate (&Mod)

Table 3: Simple C-model

u->u u -> infl
T T T T T T 02 T T T T T _ T T
T 0 T vifTTTTTWT T‘W

\] 02 H %ﬁfﬁ;ﬂmu |
%ﬁh e E l :
R - H

-0.8 .
1 IllJ‘ J‘JJJJI‘ _1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
periods periods
infl ->u infl -> infl
04 T T T T T T T 16 T T T T T T
0.35 E 1.4 i
0.3 | T 1.2 -il -
0.25 B 1k i
0.2 | R L i
0.15 | § 8'2 i]
0.1 | 1/ R :
S B S
008 [ST o.g I L ﬂ“» AR
_b_1 1 1 1 1 1 1 0.2 1 llm UMU_U—MU
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
periods periods

Figure 1: Impulse response functions for the simple Cholesky model (native)

e a list containing the exogenous variables z; (may be null);
e the VAR order p.

Once the model is set up, you can specify which elements you want to constrain to achieve
identification: in fact, the key ingredient in a SVAR is the set of constraints we put on the
structural matrices. SVAR handles these restrictions via their implicit form representation R = d.
As an example, the constraints for the simple case we’re considering here can be written in implicit
form as

RvecC =d

where R =[0,0,1,0] and d = 0.

There are several ways to constrain a model: for a C model, the R* = [R|d] matrix is stored
as the bundle element Rd1 and the number of its rows is kept as bundle element nc1. If you feel
like building the matrix R* via gretl’s ordinary matrix functions, all you have to do is to fill up
the bundle elements Rd1 and ncl properly before calling SVAR_estimate ().

In most cases, however, you’ll want to use the SVAR_restrict function, which gives you a
much more straightforward tool. A complete description can be found in appendix B; suffice it
to say here that the result of the function

SVAR_restrict(&Mod, "C", 1, 2, 0)

is to ensure that C7 2 = 0 (see eq. 8). The SVAR_restrict function does nothing but add rows
to R*. The function also contains a check so that redundant or inconsistent restrictions will not
be allowed.

The next step is estimation, which is accomplished via the SVAR_estimate function, which
just takes one argument, the model to estimate. The output of the SVAR_estimate function

is shown below:® note that, as an added benefit, we get asymptotic standard errors for the
estimated parameters (estimated via the information matrix).

Unconstrained Sigma:

0.05676 -0.02905
-0.02905 1.82044
coefficient std. error z-stat p-value
c[1; 1] 0.238243 0.0131548 18.11 2.62e-73 *xx*
cl 2; 1] -0.121939 0.105142 -1.160 0.2461
cl 1; 2] 0.00000 0.00000 NA NA
cl[2; 2] 1.34371 0.0741942 18.11 2.62e-73 **x

At this point, the model bundle contains all the quantities that will need to be accessed later
on, including the structural VMA representation (6), which is stored in a matrix called IRFs
which has h rows and n? columns. Each row i of this matrix is vec(M;)’, so if you wanted to
retrieve the IRF for variable m with respect to the shock k, you’d have to pick its [(k—1)-n+m]-th
column.

The number of rows h is called the “horizon”. The function SVAR_setup initialises automat-
ically the horizon to 24 for monthly data and to 20 for quarterly data. To change it, you just
assign the desired value to the horizon element of the bundle, as in

Mod.horizon = 40

Clearly, this adjustment has to be done before the SVAR_estimate function is called.

More details on the internal organisation of the bundle can be found in section C in the
appendix. Its contents can be accessed via the ordinary gretl syntactic constructs for dealing
with bundles. For example, the number of observations used in estimating the model is stored
as the bundle member T, so if you ever need it you can just use the syntax Mod.T.

Once the model has been estimated, it becomes possible to retrieve estimates of the structural
shocks, via the function GetShocks, as in:

series foo = GetShock(&Mod, 1)
series bar = GetShock(&Mod, 2)

If we append the two lines above to example 3, two new series will be obtained. The formula
used is nothing but equation (4) in which the VAR residuals are used in place of ¢;.

Warning: If you are working on a subsample of your dataset, keep in mind that the SVAR
package follows a different convention than gretl for handling the actual start of your sample.
Ordinary gretl commands, such as var, will use data prior to your subsampling choice for lags,
if present. The SVAR package, on the contrary, will not. An example should make this clear:
suppose your dataset starts at 1970Q1, but you restrict your sample range only to start at
1980Q1. The gretl commands

smpl 1980:1 ;
list X =xy z
var 6 X

6For compatibility with other packages, 3 is estimated by dividing the cross-products of the VAR residuals by
T — k instead of T'; this means that the actual figures will be slightly different from what you would obtain by
running var and then cholesky($sigma).

will estimate a VAR with 6 lags, in which the first datapoint for the dependent variable will be
1980Q1 and data from 1978Q3 to 1979Q4 will be used for initialising the VAR. However,

smpl 1980:1 ;
list X =xy z
Mod = SVAR_setup("C", X, const, 6)

will estimate the same model on a different dataset: that is, the first available datapoint for
estimation will be 1981Q3 because data from 1980Q1 to 1981Q2 will be needed for lagged values
of the y; variables.

2.3 Algorithm choice

Another thing you may want to toggle before calling SVAR_estimate is the optimisation method:
you do this by setting the bundle element optmeth to some number between 0 and 4; its meaning
is shown below:

optmeth Algorithm
0 BFGS (numerical score)
BFGS (analytical score)

Newton-Raphson (numerical score)

Newton-Raphson (analytical score)

- W N =

Scoring algorithm (default)

So in practice the following code snippet

Mod.optmeth = 3
SVAR_estimate (&Mod)

would estimate the model by using the Newton-Raphson method, computing the Hessian by
numerically differentiating the analytical score. In most cases, the default choice will be the
most efficient; however, it may happen (especially with heavily over-identified models) that the
scoring algorithm fails to converge. In those cases, there’s no general rule. Experiment!

2.4 Displaying the Impulse Responses

The SVAR package provides a function called IRFplot for plotting the impulse response function
on your screen, with a little help from our friend gnuplot; its syntax is relatively simple. IRFplot
requires three arguments:

1. The model bundle (as a pointer);
2. the number of the structural shock we want the IRF to;
3. the number of the variable we want the IRF for.

For example,

IRFplot(&Mod, 1, 1)

IRF: unemp shock -> unemployment

04 F ‘ ‘]

0.3 [4

0.1 4

01 |

Figure 2: Impulse response functions for unemployment

The function can be used in a more sophisticated way than this (see later). Its output is
presented in Figure 2. As can be seen, it’s very similar to the one obtained by gretl’s native
command (Figure 1).”

By the way: you can attach labels to the structural shocks if you want. Just store an array of
strings with the appropriate number of elements into the model bundle, under the snames key.
For example,

Mod.snames = strsplit("foo bar baz")

If you omit this step, the structural shocks will be labelled with names corresponding to the
observable variables in your VAR. This doesn’t make particular sense in general, but it does in
a triangular model, in which there is a one-to-one correspondence, so I decided to make this the
default choice.

A word on the unit of measurement of IRFs: by their definition (see equation (7)), and the
fact the structural shocks are assumed to have unit variance, clearly their unit of measurement
is the same as the one for the corresponding observable variable y; ;. Sometimes, however, a
different convention is adopted, and people want to display IRFs graphically by normalizing
Zi 0 = 1. This can be achieved by setting the bundle member normalize to 1, as in

Mod.normalize = 1

before calling IRFplot. Setting ot back to its default value of 0 will restore standard behavior.

TWarning: using the built-in GUI graph editor that gretl provides may produce ‘wrong’ results on the figures
generated by the IRFplot function. All gretl’s graphics are handled by creating a gnuplot script, executing it
and then sending the result to the display. All this is done transparently. When you edit a graph, you modify
the underlying gnuplot script via some GUI elements, so when you click “Apply” the graphic gets re-generated.
However, gretl’s GUI interface for modifying graphics can’t handle arbitrary gnuplot scripts, but only those
generated internally.

The figures generated by IRFplot contain a few extra features that the GUI editor doesn’t handle, so invoking
the GUI controls may mess up the graph. As an alternative, you can customise the graph by editing the gnuplot
script directly: right-click on it and “Save [it] to session as icon”. Then, in the icon view, right click on the graph
icon and choose “Edit plot commands”: you’ll have the gnuplot source to the graph, that you can modify as
needed.

10

2.5 Bootstrapping

bfail = SVAR_boot(&Mod, 1024, 0.90)

loop i=1..2 --quiet
loop j=1..2 --quiet
sprintf fnam "simpleC_%d%d.pdf", i, j
IRFsave(fnam, &Mod, i, j)
end loop
end loop

Table 4: Simple C-model (continued)

The next step is computing bootstrap-based confidence intervals for the estimated coefficients
and, more interestingly, for the impulse responses: as can be seen in Table 4, this task is given
to the SVAR boot function, which takes as arguments

1. The model bundle pointer;
2. the required number of bootstrap replications (1024 here);®
3. the desired size of the confidence interval a.

The function outputs a scalar, which keeps track of how many bootstrap replications failed
to converge (none here). Note that this procedure may be quite CPU-intensive.

The function can also return in output a table similar to the output to Cmodel, which is used
to display the bootstrap means and standard errors of the parameters:

Bootstrap results (1024 replications)

coefficient std. error z p-value
cl 1; 1] 0.232146 0.0183337 12.66 9.57e-37 **x
cl 2; 1] -0.114610 0.143686 -0.7976 0.4251
c[1; 2] 0.00000 0.00000 NA NA
cl 2; 2] 1.30234 0.0853908 15.25 1.61e-52 *xx

Failed = 0, Time (bootstrap) = 20.24
This can be achieved by supplying a zero fourth argument to the SVAR_boot function, as in
bfail = SVAR_boot(&Mod, 1024, 0.90, 0)

Once the bootstrap is done, its results are stored into the bundle for later use: upon successful
completion, the model bundle will contain another bundle called bootdata. This contains some
information on the bootstrap details, such as the confidence interval a. and others; in addition,
it will contain three matrices in which each column is one of the n? IRFs, and the rows contain

1. the lower limit of the confidence interval in the lo_cb matrix;

2. the upper limit of the confidence interval in the hi_cb matrix;

8There’s a hard limit at 16384 at the moment; probably, it will be raised in the future. However, unless your
model is very simple, anything more than that is likely to take forever and melt your CPU.

11

3. the medians in the mdns matrix.

where h is the IRF horizon.
In practice, the bootstrap results may be retrieved as follows (the medians in this example):

bfail = SVAR_boot (&Mod, 1024, 0.90)
scalar h = Mod.horizon
bundle m = Mod.bootdata
matrix medians = m.mdns

However, if you invoke IRFplot () after the bootstrap, the above information will be auto-
matically used for generating the graph. In this case, you may supply IRFplot() with a fourth
argument, an integer from 0 to 2, to place the legend to the right of the plot (value: 1), below it
(value: 2) or omit it altogether (value: 0). The default, which applies if you omit the parameter,
is 1.

Another SVAR function, IRFsave (), is used to store plots the impulse responses into graphic
files files for later use;” its arguments are the same as IRFplot (), except that the first argument
must contain a valid filename to save the plot into. In the above example, this function is used
within a loop to save all impulse responses in one go. The output is shown in Figure 3.

IRF: shock 1 -> unemp IRF: shock 1 -> infl

Bstrap 90% CI ——=1 T T T T z Bstrap 90% CI =
| Bstrap median Bstrap median
IRF IRF

IRF: shock 2 -> unemp IRF: shock 2 > infl

Figure 3: Impulse response functions for the simple Cholesky model

The default method for performing the bootstrap is the the most straightforward residual-
based bootstrap, that is the one put forward by Runkle (1987).

As an alternative, one may use bias-correction, which comes in two flavors, both inspired by
the procedure known as “bootstrap-after-bootstrap” (Kilian, 1998).

The one which corresponds more closely to Kilian’s procedure is what what we call the “Full”
variant; The “Partial” variant applies the bias correction only for adjusting the VAR coefficients
used for generating the bootstrap replications, but not for computing the VMA representation.
The interested user may want to experiment with both.

9The format is dictated by the extension you use for the output file name: since this job is delegated to
gnuplot, all graphical formats that gnuplot supports are available, including pdf, PostScript (via the extension
ps), PNG (via the extension png) or Scalable Vector Graphics (via the extension svg).

12

The “Partial” and “Full” variant may be enabled by setting the bundle member biascorr
to 1 and 2, respectively, before calling SVAR boot. For an example, look at the example file
bias_correction.inp.

Finally: if you change the optmeth bundle element before SVAR_boot is called, the choice
affects the estimation of the bootstrap artificial models. Hence, you may use one method for the
real data and another method for the bootstrap, if you so desire.

2.6 A shortcut

In many cases, a triangular, Cholesky-style specification for the C' matrix like the one analysed
in this section is all that is needed. When many variables are involved, the setting of the W
restrictions via the SVAR restrict function could be quite boring, although easily done via a
loop.

For these cases, the SVAR package provides an alternative way: if you supply the SVAR_setup
function with the string "plain" as its first argument, the necessary restrictions are set up
automatically. Thus, the example considered above in Table 3 could by modified by replacing
the lines

Mod = SVAR_setup("C", X, Z, 3)
SVAR_restrict(&Mod, "C", 1, 2, 0)

with the one-liner
Mod = SVAR_setup("plain", X, Z, 3)

and leaving the rest unchanged. Of course, when you have two variables, such as in this case,
there’s not much difference, but for larger systems the latter syntax is much more convenient.

Another advantage is that, in this case, the solution to the likelihood maximisation problem
is known analytically, so no numerical optimisation technique is used at all. This makes compu-
tations much faster, and for example allows you to make extravagant choices on, for example, the
number of bootstrap replications. Hence, if your C model can be rearranged as a plain triangular
model, it is highly advisable to do so.

3 More on plotting

Traditionally, analysis of the Impulse Response Functions has been the main object of interest
in the applied SVAR literature, but is by no means the only one. After estimation, two more
techniques are readily available for inspecting the results: the Forecast Error Variance Decom-
position and the Historical Decomposition. Since the results from these two procedures are often
visualised as graphs, I will describe them here.

3.1 Plotting the FEVD

Another quantity of interest that may be computed from the structural VMA representation
is the Forecast Error Variance Decomposition (FEVD). Suppose we want to predict the future
path of the observable variables h steps ahead, on the basis of the information set F;_;. From
equations (5) and (6) one obtains that

h h

Yern —Gien = > OkE(erin—r) = Y MyE(uin)
k=0 k=0

13

Since F(utyn—x) = I by definition, the forecast error variance after h steps is given by

h
Q) = Z MM,
k=0
hence the variance for variable i is
h h n
2 / ! 2
Wi = [Qh]“ = Z eiMpMye; = ZZ(kmzl)

k=0 k=0 l=1

where e; is the i-th selection vector,'® so ym;; is, trivially, the 4,{ element of M. As a conse-
quence, the share of uncertainty on variable ¢ that can be attributed to the j-th shock after h
periods equals
h
ko (kmiy)?
i .
D=0 2ot (KMi0)?

VD jn =

fevdmat = FEVD(&Mod)
print fevdmat

FEVDplot (&Mod, 1)
FEVDplot (&Mod, 2)

Table 5: FEVD: computation and output

As shown in Table 5, after the model has been estimated, it can be passed to another func-
tion called FEVD to compute the Forecast Error Variance Decomposition, which is subsequently
printed. Its usage is very simple, since it only needs one input (a pointer to the model bundle);
like the IRFplot function, you can also attach an extra optional parameter at the end to control
the position of the legend.

FEVD for unemp FEVD for infl

T unemp =—= unemp ==

H | infl === infl ===
80 777 &

" 77177 60

o TTTTTTT 40 VL T

20 * il

. o

Figure 4: FEVD for the simple Cholesky model

Since the FEVD for a particular variable is expressed in terms of shares, it is quite common
to depict it graphically as a histogram, with the horizon on the x-axis. This can be accomplished
rather simply in SVAR by using the specialised function FEVDplot (), which needs two arguments:
a pointer to the model bundle and the number of the variable you want the FEVD for. Running
the code in Table 5 you should see two graphs similar to Figure 4.

10That is, a vector with zeros everywhere except for a 1 at the i-th element.

14

For saving the output to a file, its variant FEVDsave () works the same, except you need an
extra argument (which goes first) with the filename you choose for the output.!!

3.2 Historical decomposition

turn extra output off
set verbose off

open the data and do some preliminary transformations
open sw_chl4.gdt

genr infl = 400*1diff (PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package
include SVAR.gfn

set up the SVAR
Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C
SVAR_restrict(&Mod, "C", 1, 2, 0)

Estimate
SVAR_estimate (&Mod)

Save the historical decomposition as a list of series
list HD_infl = SVAR_hd(&Mod, 2)

Just plot the historical decomposition for unemployment
HDplot (&Mod, 2)

Table 6: Simple C-model with historical decomposition

A natural extension of the FEVD concept (see sections 1 and 2.4) is the so-called historical
decomposition of observed time series, which can be briefly described as follows.

Consider the representations (3) and (6); clearly, if one could observe the parameters of the
system (the coefficients of the ®(-) polynomial and the matrix p) plus the sequence of structural
shocks wug, it would be possible to decompose the observed path of the y; variables into n + 1
distinct components: first, a purely exogenous one, incorporating the term u'z; plus all the
feedback effects given by the lag structure ®(L); this is commonly termed the “deterministic
component” (call it d;). The remainder y; —d; can be therefore thought of as the superimposition
of separate contributions, given by each structural shock hitting the system at a given time. In
practice, we’d think of each individual series in the system as

Yir —dig = Mi1(D)urg + -+ M (L) un

using representation (6).
Note that each element of the sum on the right-hand side of the above equation is uncorre-
lated (by hypothesis) of all the other ones at all leads and lags. Therefore, the contribution of

11See also the illustration of the IRFsave function at Section 2.5.

15

each shock to the visible path of the variable y;; is distinct from the others. In a way, historical
decomposition could be considered as a particular form of counterfactual analysis: each compo-
nent M; ;(L)u; shows what the history of y;; would have been if the j-th shock had been the
only one affecting the system.

From a technical point of view, the decomposition is computed via a “rotated” version of the
system:'? pre-multiplying equation (3) by C~! gives

p
vi =+ >y
1=1

where y; = C~ 1y, and ®; = C~1®,;C. This makes it trivial to compute the historical contribu-
tions of the structural shocks w; to the rotated variables y;, which are then transformed back
into the original series y;.

The decomposition above can be performed in the SVAR package using the estimated quan-
tities by the SVAR_hd function, which takes two arguments: a pointer to the SVAR model and an
integer, indicating which variable you want the decomposition for. Upon successful completion,
it will return a list of n 4+ 1 series, containing the deterministic component and the n separate
contributions by each structural shock to the observed trajectory of the chosen variable. The
name of each variable so created will be given by the hd_ prefix, plus the names of the variable
and of the shock (det for the deterministic component).

12 T T T

T
unemp
10 infl C— N B
infl (stoch. component) —— [\

1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 5: Simple C-model example: historical decomposition plot

A traditional way to represent the outcome of historical decomposition is, again, graphical.
The most common variant depicts the single contributions as histograms against time and their
sum (the stochastic component y; — d;) as a continuous line. The SVAR package provides a pair
of functions for plotting such a graph on screen or saving it to a file, and the go by the name
of HDplot () and HDsave (), respectively. See their description in Section B in the appendix and
Figure 5, which shows the historical decomposition for the unemployment series we’ve been using
as an example in this section.

121 know, I know: strictly speaking, it’s not a rotation; for it to be a rotation, you ought to force C to be
orthogonal somehow; but let’s not be pedantic, OK?

16

4 C-models with long-run restrictions (Blanchard-Quah
style)

An alternative way to impose restrictions on C'is to use long-run restrictions, as pioneered by
Blanchard and Quah (1989). The economic rationale of imposing restrictions on the elements of
C'is that C'is equal to My, the instantaneous IRF. For example, Cholesky-style restrictions mean
that the j-th shock has no instantaneous impact on the i-th variable if i < j. Assumptions of this
kind are normally motivated by institutional factors such as sluggish adjustments, information
asymmetries, technical constraints and so on.

Long-run restrictions, instead, stem from more theoretically-inclined reasoning: in Blanchard
and Quah (1989), for example, it is argued that in the long run the level of GDP is ultimately
determined by aggregate supply only. Fluctuations in aggregate demand, such as those in-
duced by fiscal or monetary policy, should affect the level of GDP only in the short term. As
a consequence, the impulse response of GDP with respect to demand shocks should go to 0
asymptotically, whereas the response of GDP to a supply shock should settle to some positive
value.

4.1 A modicum of theory

To translate this intuition into formulae, assume that the bivariate process GDP growth-unemployment

AY;
U

Ty =

is I(0) (which implies that Y; is I(1)), and that it admits a finite-order VAR representation
(I)(L)It = &t

where the prediction errors are assumed to be a linear combination of demand and supply shocks
2] _of
U uf ’

&
= @(L)st =& +01g0 1+ =

=C

Considering the structural VMA representation

AY;
Ut

= Cut+©1Cu4—1 + - = Mouy + Myug—1 + -+,

it should be clear that the impact of demand shocks on AY; after h periods is given by the
north-west element of M. Since z; is assumed to be stationary, limy,_. ., ©; = 0 and the same
holds for My, so obviously the impact of either shock on AY; goes to 0. However, the impact of
uy on the level of Y; is given by the sum of the corresponding elements of M}, since

h
Yign =Yi1+ Y AYiy,

=0

SO
h h

3Yt+h 8A}ft+z
ous = ous [Mi]y,

i=0

17

set verbose off

include SVAR.gfn

open BlQuah.gdt --frompkg=SVAR

set seed 1234 # make results reproducible

list X =DY U
list exog = const time
maxlag = 8

set up the model
BQModel = SVAR_setup("C", X, exog, maxlag)
BQModel.horizon = 40

set up the long-run restriction
SVAR_restrict (&BQModel, "1lrC", 1, 2, 0)

cumulate the IRFs for variable 1
SVAR_cumulate (&BQModel, 1)

set up names for the shocks
BQModel.snames = defarray("Supply", "Demand")

do estimation
SVAR_estimate (&BQModel)

retrieve the demand shocks
dShock = GetShock(&BQModel, 2)

bootstrap (set ’quiet’ off with trailing zero arg)
bfail = SVAR_boot (&BQModel, 1024, 0.9, 0)

page 662

IRFsave("bq_Ys.pdf", &BQModel, 1, 1)
IRFsave("bq_us.pdf", &BQModel, 1, 2)
IRFsave("bq_Yd.pdf", &BQModel, -2, 1)
IRFsave("bq_ud.pdf", &BQModel, -2, 2)

now perform historical decomposition
list HDDY = SVAR_hd(&BQModel, 1)
list HDU = SVAR_hd(&BQModel, 2)

cumulate the effect of the demand shock on DY
series hd_Y_Demand = cum(hd_DY_Demand)
reproduce Figure 8

gnuplot hd_Y_Demand --time-series --with-lines --output=display

reproduce Figure 10
gnuplot hd_U_Demand --time-series --with-lines --output=display

Table 7: Blanchard-Quah example

18

and in the limit

aY’H—h Z aA}/t-i-z _ i [Mi]u ’

h—>oo 3ut 8ut =0

In general, if z; is stationary, the above limit is finite, but needn’t go to 0; however, if we
assume that the long-run impact of u{ on Y; is null, then

)¢
lim OVt

=0
k—oco 81[,?

and this is the restriction we want. In practice, instead of constraining elements of My, we
impose an implicit constraint on the whole sequence M.
How do we impose such a constraint? First, write Y ;- ©; as ©(1); then, observe that

the constraint we seek is that the north-west element of ©(1)C equals 0. The matrix ©(1) is easy
to compute after the VAR coefficients have been estimated: since ©(L) = ®(L)~!, an estimate
of ©(1) is simply

o(1) = (1)
Of course, for this to work ®(1) needs to be invertible. This rules out processes with one or more
unit roots. The cointegrated case, however, is an interesting related case and will be analysed in
section 7.

The long-run constraint can then be written as

Rvec[O(1)C] =0, (9)

where R = [1,0, 0, 0]; since
vec[O(1)C] = [I ® ©(1)] vec(C),

the constraint can be equivalently expressed as
[©(1)11,0(1)12,0,0] vec(C) = O(1)11 - c11 + O(1)12 - co1 = 0. (10)

Note that we include in R elements that, strictly speaking, are not constant, but rather functions
of the estimated VAR parameters. Bizarre as this may seem, this poses no major inferential
problems under a suitable set of conditions (see Amisano and Giannini (1997), section 6.1).

4.2 Example

The way all this is handled in SVAR is hopefully quite intuitive: an example script is reported in
Table 7. After reading the data in, the function SVAR_setup is invoked in pretty much the same
way as in section 2.

Then, the SVAR_restrict is used to specify the identifying restriction. Note that in this case
the code for the restriction type is "1rC", which indicates that the restriction applies to the
long-run matrix, so the formula (10) is employed. Next, we insert into the model the information
that we will want IRFs for y;, so those for Ay, will have to be cumulated. This is done via
the function SVAR_cumulate(), in what should be a rather self-explanatory way (the number 1
refers in this case to the position of AY; in the list X). Finally, a cosmetic touch: we overwrite

19

coefficient std. error z p-value

cl 1; 1] 0.0575357 0.0717934 0.8014 0.4229

cl 2; 11 0.217542 0.0199133 10.92 8.80e-28 *x*x*
cl 1; 2] -0.907210 0.0507146 -17.89 1.45e-71 **x
cl 2; 2] 0.199459 0.0111501 17.89 1.45e-71 **¥x

Estimated long-run matrix (restricted)
longrun (2 x 2)

0.50080 0.0000
0.088690 3.9133

Log-likelihood = -202.193

Bootstrap results (1024 replications, O failed)

coefficient std. error z p-value
cl 1; 1] 0.0563995 0.340707 0.1655 0.8685
cl 2; 1] 0.184285 0.0814261 2.263 0.0236 *x*
cl 1; 2] -0.769799 0.109725 -7.016 2.29e-12 *%x
cl 2; 2] 0.171516 0.0830117 2.066 0.0388 *xx*

coefficient std. error z p-value

LongRun[1; 1] 0.544885 0.168701 3.230 0.0012 **x*
LongRun[2; 1] 0.0285569 2.89306 0.009871 0.9921
LongRun[1; 2] 0.00000 0.00000 NA NA
LongRun[2; 2] 4.09942 2.08718 1.964 0.0495 *x

Table 8: Output for the Blanchard-Quah model

the model’s default shock labels with a string array containing "Supply" and "Demand". The
shock labels are always stored in the array snames.

When a model with long-run restrictions is estimated, the resulting long-run matrix is stored
in the model bundle as member 1rmat, and is also printed out by default.

The bootstrap is invoked by SVAR_boot, which however by default does not produce any ad-
ditional printout. To display the results straight away set the optional fourth (trailing) argument
to 0.

In Table 8 I reported the output to the example code in Table 7, while the pretty pictures
are in Figure 6.'3 Note that in the two calls to IRFplot which are used to plot the responses to
a demand shock, the number to identify the shock is not 2, but rather -2. This is a little trick
the plotting functions use to flip the sign of the impulse responses, which may be necessary to
ease their interpretation (since the shocks are identified only up to their sign).

Note that the bottom part of the scripts uses the functions described in section 3.2 so to
replicate figures 8 (p. 664) and 10 (p. 665) in the original AER article, where the historical
contribution of demand shocks to output and unemployment is reconstructed. The output on
your screen should be roughly similar to figure 7.

131 found it impossible to reproduce Blanchard and Quah’s results ezactly. I believe this is due to different
vintages of the data. Qualitatively, however, results are very much the same.

20

IRF: Demand -> DY; bias-correction = full (cumulated) IRF: Demand -> U; bias-correction = full

Bstrap 90% CI ——— T T L . T T T Bstrap 90% Cl ———
Bstrap median Bstrap median
IRF IRF

-0.6 & 1 1 1 1 1 L L =
o 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

IRF: Supply -> DY; bias-correction = full (cumulated) IRF: Supply -> U; bias-correction = full

1.2 F T T T T T T T] Bstrap 90% CI C———1 T T T T T T T T Bstrap 90% Cl ———

Bstrap median 04 Bstrap median
1r g IRF —— -

-0.2 - 1

-0.3

Impulse response functions for the Blanchard-Quah model

hd_Y_2
.
hd_U_2
-
T

/”J v
10 L L L L L L L L 2 L L L M L L L

1950 1955 1960 1965 1970 1975 1980 1985 1950 1955 1960 1965 1970 1975 1980 1985

Output Unemployment

Figure 7: Effects of a demand shock in the Blanchard-Quah model

4.3 Combining short- and long-run restrictions

In the previous example, it turned out that the estimated coefficient for c¢;; was seemingly
insignificant; if true, this would mean that the supply shock has no instantaneous effect on AY;;
in other words, the IRF of output to supply starts from 0. Leaving the economic implications
aside, from a statistical viewpoint this could have suggested an alternative identification strategy
or, more interestingly, to combine the two hypotheses into one.

SVAR allows the combination of short- and long-run restrictions in C models (but not in AB
models, which are very rarely used in this context). The script presented in Table 7 is very easy
to modify to this effect: in this case, we simply need to insert the line

SVAR_restrict (&BQModel, "C", 1, 1, 0)

somewhere between the SVAR_setup and the SVAR estimate function. The rest is unchanged,
and below is the output.

21

coefficient std. error z p-value

cl 1; 1] 0.00000 0.00000 NA NA

cl 2; 1] -0.230192 0.0128681 -17.89 1.45e-71 *%x*
cl 1; 2] -0.909033 0.0508165 -17.89 1.45e-71 *%*
cl 2; 2] 0.199859 0.0111725 17.89 1.45e-71 *x%x*

Overidentification LR test = 0.642254 (1 df, pval = 0.422896)

Note that, since this model is over-identified, SVAR automatically computes a LR test of the
overidentifying restrictions. Of course, all the subsequent steps (bootstrapping and IRF plotting)
can be performed just like in the previous example if so desired.

5 AB models

5.1 A simple example

set verbose off
include SVAR.gfn
open IS-LM.gdt --frompkg=SVAR

list X =qim
list Z = const time

ISLM = SVAR_setup("AB", X, Z, 4)
ISLM.horizon = 48

SVAR_restrict (&ISLM, "Adiag", 1)
SVAR_restrict (&ISLM, "A", 1, 3, 0)
SVAR_restrict(&ISLM, "A", 3, 1, 0)
SVAR_restrict (&ISLM, "A", 3, 2, 0)
SVAR_restrict(&ISLM, "Bdiag", NA)
ISLM.snames = defarray("uIS", "uLM", "uMS")
SVAR_estimate (&ISLM)

Amat = ISLM.S1
Bmat = ISLM.S2

printf "Estimated contemporaneous impact matrix (x100) =\n%10.6f", \
100*inv(Amat) *Bmat

rej = SVAR_boot (&ISLM, 2000, 0.95)
IRFplot (&ISLM, 1, 2)

Table 9: Estimation of an AB model — example from Liitkepohl and Krétzig (2004)

AB models are more general than the C model, but more rarely used in practice. In order to
exemplify the way in which they are handled in the SVAR package, I will replicate the example
given in section 4.7.1 of Liitkepohl and Krétzig (2004). See Table 9.

This is an empirical implementation of a standard Keynesian IS-LM model in the formulation
by Pagan (1995). The vector of endogenous variables includes output ¢, interest rate i; and real

22

money my; the matrices A and B are

]. ai2 0 b11 0 0
A= a1 1 asi B = 0 b22 0
0 0 1 0 0 bss

so for example the first structural relationship is
el = —appel + ufs (11)

which can be read as an IS curve. The LM curve is the second relationship, while money supply
is exogenous.

The model is set up via the function SVAR_setup, like in the previous section. Note, however,
that in this case the model code is "AB" rather than "C". The base VAR has 4 lags, with the
constant and a linear time trend as exogenous variables. The horizon of impulse response analysis
is set to 48 quarters.

The constraints on the matrices A and B can be set up quite simply by using the function
SVAR restrict via a special syntax construct: the line

SVAR_restrict (&ISLM, "Adiag", 1)

sets up a system of constraints such that all elements on the diagonal of A are set to 1. More
precisely, SVAR restrict(&Model, "Adiag", x) sets all diagonal elements of A to the value
x, unless x is NA. In that case, all non-diagonal elements are constrained to 0, while diagonal
elements are left unrestricted; in other words, the syntax

SVAR_restrict (&ISLM, "Bdiag", NA)

is a compact form for saying “B is diagonal”. The other three constraints are set up as usual.
Estimation is then carried out via the SVAR estimate function; as an example, Figure 8
shows the effect on the interest rate of a shock on the IS curve. This example also shows how to
retrieve estimated quantities from the model: after estimation, the bundle elements S1 and S2
contain the estimated A and B matrices; the C matrix is then computed and printed out.
The output is shown below:

coefficient std. error z p-value
Al 1; 1] 1.00000 0.00000 NA NA
Al 2; 1] -0.144198 0.280103 -0.5148 0.6067
Al 3; 1] 0.00000 0.00000 NA NA
Al 1; 2] -0.0397571 0.155114 -0.2563 0.7977
Al 2; 2] 1.00000 0.00000 NA NA
Al 3; 2] 0.00000 0.00000 NA NA
Al 1; 3] 0.00000 0.00000 NA NA
Al 2; 3] 0.732161 0.146135 5.010 5.44e-07 **x*
Al 3; 3] 1.00000 0.00000 NA NA
coefficient std. error z p-value

B[1; 1] 0.00671793 0.000473619 14.18 1.15e-45 *x*x*
B[2; 1] 0.00000 0.00000 NA NA
B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA
B[2; 2] 0.00858125 0.000581359 14.76 2.63e-49 **x
B[3; 2] 0.00000 0.00000 NA NA
B[1; 3] 0.00000 0.00000 NA NA
B[2; 3] 0.00000 0.00000 NA NA
B[3; 3] 0.00555741 0.000371320 14.97 1.21e-50 *x*x*

Estimated contemporaneous impact matrix (x100) =
0.675666 0.034313 -0.016270
0.097430 0.863073 -0.409238
0.000000 0.000000 0.555741

Bootstrap results (2000 replications)

coefficient std. error z p-value

Al 1; 1] 1.00000 0.00000 NA NA

Al 2; 1] -0.0909784 0.395312 -0.2301 0.8180

Al 3; 1] 0.00000 0.00000 NA NA

Al 1; 2] -0.0377229 0.228185 -0.1653 0.8687

Al 2; 2] 1.00000 0.00000 NA NA

Al 3; 2] 0.00000 0.00000 NA NA

Al 1; 3] 0.00000 0.00000 NA NA

Al 2; 3] 0.782728 0.181538 4.312 1.62e-05 **¥x

Al 3; 3] 1.00000 0.00000 NA NA
coefficient std. error z p-value

B[1; 1] 0.00635862 0.000850539 7.476 7.66e-14 *xx

B[2; 1] 0.00000 0.00000 NA NA

B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA

B[2; 2] 0.00814276 0.00111305 7.316 2.56e-13 *x*x

B[3; 2] 0.00000 0.00000 NA NA

B[1; 3] 0.00000 0.00000 NA NA

B[2; 3] 0.00000 0.00000 NA NA

B[3; 3] 0.00512819 0.000478826 10.71 9.14e-27 *x*x

6 Checking for identification
Consider equation (2) again, which we reproduce here for clarity:
A€t = But

Since the u; are assumed mutually incorrelated with unit variance, the following relation must
hold:
AY A" = BB’ (12)

If C = A7 B, equation (12) can be written as

Y =CC.

24

IRF: ulS -> i

Bstrap 95% Cl 1
Bstrap median
IRF

0.008 -

0.006

0.004

0.002

-0.002 |- *

0 10 20 30 40 50

Figure 8: u!® — i

The matrix 3 can be consistently estimated via the sample covariance matrix of VAR resid-
uals, but estimation of A and B is impossible unless some constraints are imposed on both
matrices: 3 contains @ distinct entries; clearly, the attempt to estimate 2n? parameters
violates an elementary order condition.

The recursive identification scheme resolves the issue by fixing A = I and by imposing lower-
triangularity of B. In general, however, one may wish to achieve identification by other means.'*
The most immediate way to place enough constraints on the A and B matrices so to achieve
identification is to specify a system of linear constraints; in other words, the restrictions on A
and B take the form

RovecA = d, (13)
RyvecB = d, (14)

This setup is perhaps overly general in most cases: the restrictions that are put almost
universally on A and B are zero- or one-restrictions, that is constraints of the form, eg, A;; = 1.
In these cases, the corresponding row of R is a vector with a 1 in a certain spot and zeros

everywhere else. However, generality is nice for exploring the identification problem.
n(n+1)
2

The order condition demands that the number of restrictions is at least 2n2 —

n? + @, so for the order condition to be fulfilled it is necessary that

0< rank (Rg) <n?
0< rank (Rp) <n?
n(n —1)

n® + < rank (R,) +rank (Ry) < 2n?

2

MNecessary and sufficient conditions to achieve identification are stated in Lucchetti (2006). Other interesting
contributions in this area is Rubio-Ramirez et al. (2010) and Bacchiocchi (2011).

25

For the C model, R, = I,,2 and d, = vec I, so to satisfy the order condition ”(n;l) constraints

are needed on on B: in practice, for a C model we have one set of constraints which pertain to
B, or, equivalently in this context, to C"

RvecC =d (15)

The problem is that the order condition is necessary, but not sufficient. It is possible to
construct models in which the order condition is satisfied but there is an uncountable infinity of
solutions to the equation AX A’ = BB’. If you try to estimate such a model, you're bound to
hit all sorts of numerical problems (apart from the fact, of course, that your model will have no
meaningful economic interpretation).

In order to ensure identification, another condition, called the rank condition, has to hold
together with the order condition. The rank condition is described in Amisano and Giannini
(1997) (chapter 4 for the AB model), and it involves the rank of a certain matrix, which can be
computed as a function of the four matrices Ry, d,, Ry and dp. The SVAR package contains a
function for doing just that, whose name is SVAR_ident.!?

As a simple example, let’s check that the plain model is in fact identified by running a simple
variation of the example contained in Table 3:

set verbose off

include SVAR.gfn
open sw_chl4.gdt

genr infl = 400%1diff (PUNEW)
rename LHUR unemp

list X = unemp infl
list Z = const

Mod = SVAR_setup("C", X, Z, 3)
SVAR_restrict(&Mod, "C", 1, 2)

Now check for identification
scalar is_identified = SVAR_ident (&Mod)
if is_identified
printf "Whew!\n"
else
printf "Blast!\n"
endif

Re-check, verbosely
scalar is_identified = SVAR_ident(&Mod, 1)

The above code should produce the following output:

Order condition OK

Rank condition 0K

Whew!

Constraints in implicit form:

15Starting in version 1.4 of the SVAR addon this identification check is carried out by default.

26

Ra:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
da:
1
0
0
1
Rb:

db:

no. of constraints on A: 4

no. of constraints on B: 1

no. of total constraints: 5

no. of necessary restrictions for the order condition = 5
Order condition OK

rank condition: r = 5, cols(Q) =5

Rank condition OK

7 Structural VEC Models

This class of models was first proposed in King et al. (1991).1¢ A SVEC is basically a C-model
in which the interest is centred on classifying structural shocks as permanent or transitory by
exploiting the presence of cointegration.

Suppose we have an n-dimensional system with cointegration rank r which can be represented
as a finite-order VAR ®(L)y; = &;. As is well known,'” the system also admits the VECM
representation

[(L)Ay: = py + af'yi—1 + & (16)

in which « and 3 are r X n matrices, with 0 < r < n. If r = n, the system is stationary; if » = 0,
the system is I(1). In the intermediate cases, 7 is said to be the cointegration rank.
In all these cases, it is also possible to express Ay; as a vector moving average process

Ayy = C(L)e. (17)

The main consequence of cointegration for eq. (17) is that C'(1) is a singular matrix, with rank
n — r. The most important consequence of the above for structural estimation is that the C(1)

matrix satisfies
C(1)a = 0;

16 A very nice paper in the same vein which is also frequently cited is Gonzalo and Ng (2001). A compact yet
rather complete analysis of the main issues in this context can be found in Liitkepohl (2006).
17See Johansen (1995).

27

Moreover, as argued in section 4, the ij-th element of C(1) can be thought of as the long-run
response of y; + to €;+ or, more precisely

. Otk
C)y = Jim =5
Js

Hence, the long-run response of y; to structural shocks is easily seen (via eq. 4) to be C(1) - C.

Now, define a transitory shock as a structural shock that has no long-run effect on any
variable: therefore, the corresponding column of C(1) - C' must be full of zeros. But this, in
turn, implies that the corresponding column of C' must be a linear combination of the columns
of a. Since a has r linearly independent columns, the vector of structural shocks must contain
r transitory shocks and n — r permanent ones.

By ordering the structural shocks with the permanent ones first,

uy

t
Uy

Uy =

it’s easy to see that a separation of the transitory shocks from the permanent ones can be achieved
by imposing that the last r columns of C lie in the space spanned by «; in formulae,

o, CJ =0, (18)

where J is the matrix
J — On—rxr

IT’XT‘

and L is the “nullspace” operator.!® Equation (18) can be expressed in vector form as
(J' @) vec(C) = 0;

since o] has n — r columns, this provides r - (n — r) constraints of the type Rvec(C) = d, that
we know how to handle.

Since 0 < r < n, this system of constraints is not sufficient to achieve identification, apart
from the special case n = 2, r = 1, so in general the partition between transitory and permanent
shocks must be supplemented by extra constraints. Clearly, these can be short-run constraints
on both kind of shocks, but long-run constraints only make sense on permanent ones.'?

7.1 Syntax

Fort this type of model, the model code you have to supply to SVAR_setup is "SVEC". This
means that your model is a C-model in which, however, the structural shocks will be classified
as transitory or permanent, depending on the cointegration properties you assume.

This is an important point: SVAR is not meant for doing inference on the cointegration
part of your model. For determining the cointegration rank of your system and estimating the
cointegration (3, you're on your own. Of course, you can use gretl’s in-built commands, such

181f M is an r X ¢ matrix, with 7 > ¢ and rank (M) = ¢, then M is some matrix such that MiM = 0. Note
that M is not unique.

19The SVAR. addon also allows to apply further long-run constraints manually in a SVEC model, using the same
1rC code as before. However, getting these right is sometimes tricky given the reduced rank of the long-run impact
matrix. Sometimes, for example, the restrictions might imply a different o matrix from what the reduced-form
estimates yielded. These complications are currently not (always) handled automatically and remain the user’s
responsibility. You should double-check what your long-run constraints actually mean and how they interact.

28

as coint2 and vecm, or pre-set them to some theory-derived value: SVAR won’t care, and will
blindly accept the matrix 8 you supply it; the cointegration rank is implicitly assumed as the
number of columns of the § matrix.

Another piece of information you must supply separately, prior to estimation, is how you want
the deterministic terms (the constant and the trend) in your model to be treated; in practice,
which of the famous “five cases” you want to apply to your model. In fact, the constant and the
trend are subject to a special treatment in this class of models, so they will be dropped from the
exogenous list X, if present, when you call SVAR_setup and re-added internally if needed. Unless
you have extra exogenous variables, such as centred seasonals, you might just as well leave X as
null. The five cases range from the most to the least restrictive, as per Table 10.

Code vecm option Description

1 --nc No constant, no trend

2 --rc Restricted constant, no trend

3 Unrestricted constant, no trend
4 --crt Constant, restricted trend

) --ct Constant, unrestricted trend

Table 10: The five cases for deterministic terms in cointegrated systems

This is not the place for explaining the differences between the five options; if you've come
this far, you probably know already. If you don’t, grab any decent econometrics textbook or the
Gretl User’s Guide and look for the chapter on cointegration and VECMs.

For injecting the necessary information into the model bundle once you’ve set it up, there
is a dedicated function whose name is SVAR_coint. It takes three compulsory parameters: the
SVAR model (in pointer form), the “deterministic terms code” and the cointegration matrix S.
Next is the loading matrix «; this argument may be omitted or equivalently passed as an empty
matrix {}, in which case it will be estimated via OLS. If, on the contrary, it is not empty, then
it should be a n x r matrix that will be accepted at face value. Pre-setting v may be useful, in
some cases, to force some of the variables to be weakly exogenous. Note that the $jbeta and
$jalpha standard gretl accessors make it painless to fetch them from a Johansen-style VECM
if necessary. This also means that the coefficients of any restricted deterministic terms must be
included as part of the given 5 matrix in the cases 2 and 4 (sometimes called 3% in the literature).

Calling this function will

1. set up a system of constraints such that the n — r permanent shocks will come first in the
ordering, followed by the r temporary ones. The shock names will be set accordingly.

2. Estimate the VECM parameters subject to the constraints implied by the given § (and «,
if not empty): in practice, the matrix ¥ and the parameters p and I'; in equation (16).
Internally, SVAR_coint will take care of transforming into the VAR form (3) so that the
VMA representation can be computed and everything will proceed like in an ordinary C
model.

At that point, the rest of the model can be setup as per usual (setting extra restrictions and
so on). In the next subsection, I will provide an extended and annotated example.

29

© 00N U WN =

BOE DD D D DWW WWWWWWWWRNNNNDNODNNNNDNE S e
OB WO RODONDANRDNPLOOONDANREWDNPL,OO©O~NDC D WN R O

nulldata 116
setobs 4 1970:1
include SVAR.gfn

grab data from AWM
join AWM.gdt YER PCR ITR

transform into logs
series y = 100 * 1n(YER)

series ¢ = 100 * 1n(PCR)
series i = 100 * 1n(ITR)
list X =c iy

find best lag
var 8 X --lagselect
p=3

check for the "balanced growth path" hypothesis

coint2 p X

vecm p 2 X

restrict
b[1,1] = -1
bl1,2] =
b[1,3] = 1
b[2,1]1 = 0
b[2,2] = -1
b[2,3] = 1

end restrict

ok, now go for the real thing

x = SVAR_setup("SVEC", X, const, p)

matrix b = I(2) | -ones(1,2)
SVAR_coint (&x, 3, b, {}, 1)
x.horizon = 40
SVAR_restrict(&x, "C", 1, 2, 0)

SVAR_estimate (&x)
loop j=1..3 --quiet

FEVDplot (&x, j)
endloop

SVAR_boot (&x, 1024, 0.90)
loop j=1..3 --quiet

IRFplot(&x, 1, j, 2)
endloop

Table 11: The awm.inp script

30

7.2 A hands-on example

In this example, we will go through a pseudo-replication of the simpler of the two examples
presented in King et al. (1991): the structure of the model will be kept the same, but we will
use a different dataset. While the original article used post-WWII data for the US economy,
I will use the so-called AWM dataset, which is supplied among gretl’s sample datasets. AWM
stands for Area-Wide Model, and is a quarterly dataset of the Euro area, which spans the 1970-
1998 period. It was originally developed by Fagan et al. (2005) but has been used in countless
other benchmark studies. The script is supplied in the examples directory as awm.inp, but we
reproduce it here as table 11 for your convenience.

The model comprises three variables, all in logs: real GDP (y;), real private consumption (c;)
and real investment (¢;); these should, in theory, follow the same stochastic trend (the so-called
“balanced growth path”), so that there ought to be two cointegration relationships:

e = Ytz
it = Yt
The general idea of the script is: use gretl’s internal functions to estimate the VECM and

test whether the “balanced growth path” hypothesis is in fact tenable on this particular dataset.
Then, set up the structural part of the model, estimate it and do a few plots.

IRF: Permanent -> y IRF: Permanent -> ¢ IRF: Permanent -> i
25
120 | 12
1+ 4 1r 2r
0.8 | g 0.8 |- 1 15+
0.6 1 0.6 -
1
04 1 0.4
05 -
02+ , 0.2 -
0 S R S WS 0 S R R S 0 S S S !
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Bstrap 90% Cl —— IRF —— Bstrap 90% Cl == IRF —— Bstrap 90% Cl —— IRF ——

Bstrap median

Bstrap median

Bstrap median

Figure 9: Impulse responses to a permanent shock

More in detail, the script goes like this:

Lines 1-7 Create an empty quarterly dataset, populate it with the relevant variables from the
AWM. gdt file.

lines 813 Transform the series to logarithms and group them into the list X.

lines 14—-30 Run some preliminary checks: find the best lag length for the VAR, check that the
cointegration rank is in fact 2 and that the cointegration matrix is the one hypothesised
by economic theory.

Line 32 Set up the SVAR object. Note the usage of the SVEC code.
Lines 33—-36 Set up the cointegration infrastructure (deterministic terms, [, etcetera).

lines 35—36 Set the horizon for IRF computation to a higher value than the default and add an
extra restriction to one of the temporary shocks to achieve identification. Here we assume
that the idiosyncratic shock on investment does not affect consumption instantaneously.

31

lines 38—42 Estimate the model and plot the FEVD graphs.
lines 43—46 Bootstrap the model and plot the IRFs with a 90% confidence interval.

A selection of the output is shown below, while Figure 9 is the equivalent of King et al.’s
figure 2 (p. 820).2° Considering that the data span a different period and describe a different
economy, the similarity between the original figure and the replicated one is quite remarkable.

ok, now go for the real thing
? x = SVAR_setup("SVEC", X, const, p)
? matrix b = I(2) | -ones(1,2)
Generated matrix b
? SVAR_coint(&x, 3, b, {3}, 1)
Unestricted constant, beta =

1.00000 0.00000

0.00000 1.00000

-1.00000 -1.00000

alpha is unrestricted

? x.horizon = 40

? SVAR_restrict(&x, "C", 1, 2, 0)

? SVAR_estimate (&x)

Optimization method = Scoring algorithm
Unconstrained Sigma:

0.29538 0.39670 0.22203

0.39670 1.64419 0.55188

0.22203 0.55188 0.32538

coefficient std. error z p-value

cl 1; 1] 0.485389 0.0391266 12.41 2.44e-35 **x
cl 2; 1] 1.09533 0.0948831 11.54 7.92e-31 **¥x
cl 3; 1] 0.516670 0.0406739 12.70 5.71e-37 *x*x
cl 1; 2] 0.00000 0.00000 NA NA
cl 2; 2] 0.373888 0.0245469 15.23 2.18e-52 *xxx*
cl 3; 2] -0.211184 0.0138649 -15.23 2.18e-52 *x¥x
cl 1; 3] 0.244504 0.0160525 15.23 2.18e-52 *x*x
cl 2; 3] -0.551965 0.0501828 -11.00 3.86e-28 *x*x*
cl 3; 3] -0.117619 0.0210737 -5.581 2.39e-08 *x*x

Estimated long-run matrix
longrun (3 x 3)

1.1036 0.0000 0.0000
1.1036 0.0000 0.0000
1.1036 0.0000 0.0000

Log-likelihood = -295.974

20Note the usage of the fourth, optional parameter in the call to IRFplot to move the legend to the bottom of
the figure.

32

References

Amisano, G. and Giannini, C. (1997). Topics in structural VAR econometrics. Springer-Verlag,
2nd edition.

Bacchiocchi, E. (2011). Identification in structural VAR models with different volatility regimes.
Departmental Working Papers 2011-39, Department of Economics, Management and Quanti-
tative Methods at Universita degli Studi di Milano.

Blanchard, O. and Quah, D. (1989). The dynamic effects of aggregate demand and aggregate
supply shocks. American Economic Review, 79(4):655-73.

Fachin, S. and Bravetti, L. (1996). Asymptotic normal and bootstrap inference in structural
VAR analysis. Journal of Forecasting, 15(4):329-341.

Fagan, G., Henry, J., and Mestre, R. (2005). An area-wide model for the Euro area. Economic
Modelling, 22(1):39 — 59.

Gonzalo, J. and Ng, S. (2001). A systematic framework for analyzing the dynamic effects of
permanent and transitory shocks. Journal of Economic Dynamics and Control, 25(10):1527—
1546.

Johansen, S. (1995). Mazimum Likelihood Inference in Co-Integrated Vector Autoregressive Pro-
cesses. Oxford University Press.

Kilian, L. (1998). Small-sample confidence intervals for impulse response functions. The Review
of Economics and Statistics, 80(2):218-230.

King, R. G., Plosser, C. I, Stock, J. H., and Watson, M. (1991). Stochastic trends and economic
fluctuations. American Economic Review, 81(4):819-40.

Lucchetti, R. (2006). Identification of covariance structures. Econometric Theory, 22(02):235—
257.

Liitkepohl, H. (1990). Asymptotic distributions of impulse response functions and forecast er-
ror variance decompositions of vector autoregressive models. The Review of Economics and
Statistics, 72(1):116-25.

Liitkepohl, H. (2006). Cointegrated structural VAR analysis. In Hiibler, O., editor, Modern
Econometric Analysis, chapter 6, pages 73-86. Springer.

Liitkepohl, H. and Krétzig, M., editors (2004). Applied Time Series Econometrics. Cambridge
University Press.

Pagan, A. (1995). Three econometric methodologies: An update. In Oxley, L., Roberts, C.,
George, D., and Sayer, S., editors, Surveys in FEconometrics, pages 30—41. Basil Blackwell.

Rubio-Ramirez, J., Waggoner, D., and Zha, T. (2010). Structural vector autoregressions: Theory
of identification and algorithms for inference. Review of Economic Studies, 77(2):665-696.

Runkle, D. E. (1987). Vector autoregressions and reality. Journal of Business & FEconomic
Statistics, 5(4):437-42.

Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48:1-48.

33

A The GUI interface

This section introduces the GUI interface with which most of the available calculations can be
accomplished as well and which can be accessed via the Model > Time Series > Multivariate
> Structural VAR menu entry of the the graphical gretl client. While we recommend using the
script interface to access the full capabilities of the SVAR package, the GUI interface may be
less intimidating for less experienced users. At the time of writing, the GUI component covers
everything but the SVEC case (see section 7) where the cointegration properties of the system
are exploited for special long-run restrictions. The SVEC case will receive its own GUI in a
future version of the SVAR, package.

Structural VARs
Select arguments:
Model type | plain (Cholesky) v
WAR variables (list) |x v| g
Exogenous regressors (list) | null v| |4
Constant &
Time trend
Seasonal dummies
Lags |l3 -
Horizon |0 2
Restriction pattern (short-run C ar B) (matrix*) | null v | |4k
Restriction pattern (long-run C ar A) (matrix *) | null v |4k
Bootstrap replications | 0 =
Bootstrap alpha (scalar) 0.9 v | |qp
Bias correction | None e
Check identification
Indices of responses to cumulate (matrix *) | null v | |qp
Optimization method | Scoring algerithm v
v close this dialog on "OK"
@Help 3¢ close ok

Figure 10: Plain Cholesky model through the GUI interface

Many important contents of the window displayed in Figure 10 should be rather self-explanatory;
the model type chooser, the list of endogenous VAR variables, another (optional) list of exoge-
nous variables, the lag order, and further down the number of bootstrap replications along with
the nominal bootstrap confidence level (leave the number of replications at the default value
zero to skip the bootstrap), and finally the choice of the precise optimization algorithm from the
drop-down menu at the bottom, where as before the scoring algorithm is the default.

The other function parameters will be explained now. First there are three checkboxes that

34

specify the deterministic terms to be included in the model.?2! Note that it is still possible
to manually specify the deterministic terms as in the script interface, namely as part of the
exogenous regressor list. Next, the horizon parameter sets the desired maximum impulse response
horizon as explained above for the script interface, and can be left at zero to invoke the default
settings.

A.1 Identifying constraints

The two central inputs for the C and AB model types are the identifying constraints. In the
SVAR GUI they must be given as pattern matrices that can only have two types of entries:
Each entry with a "missing” value denotes an unrestricted element, and every entry with a
valid numerical value will be restricted to just that value. You can either pre-define the pattern
matrices before you call the SVAR, package and then choose the corresponding name of the matrix
in the drop-down menu, or you have to click on the “+” button next to the function argument
field and specify the matrix on the spot in the following standard gretl matrix creation dialog.??
If you do not wish to restrict any of the involved matrices, just leave the function argument at
the default "null” value.

For a C model, as indicated by the function argument labels the first restriction pattern
matrix refers to the short-run restrictions, while the second pattern matrix must be used for the
long-run restrictions. If you choose an AB model instead, these matrix inputs serve to hold the
restrictions on B and A, respectively. Note the reversed ordering of B and A here, which reflects
the fact that if A is the identity matrix then B is the same thing as the short-run restriction C
matrix, so these latter two matrices belong together.

A.2 Bootstrap parameters and cumulation

The next checkbox after the bootstrap specification concerns the activation of the bias correction
that was already explained in relation to the script interface. Following is another checkbox that
activates a check for identification, see section 6.

Towards the end of the SVAR GUI window you have another matrix argument which serves to
tell the package which of the impulse responses should be provided in cumulated form. You need
to provide a (row or column) vector that holds the corresponding integer indices of the variables
to be cumulated referring to the list of endogenous variables. Say your list of endogenous variables
is “foo baz bar” and the responses of foo and bar should be cumulated, then you would need to
pass a vector {1, 3} (or {1; 3}).23 Note that you can type an expression of this sort into the
matrix entry box directly, as shown in Figure 11.

Check identification

Indices of responses to cumulate (matrix *) | {1.3Y v | q¢

Optimization method | Scoring algorithm v

Figure 11: Entering a matrix specification directly

21The seasonal dummies are automatically centered, which should only matter in the rather exotic case without
a constant term, however.

22Hint: with recent gretl versions it is possible to initialize the matrix to hold only missing values, by entering
na or nan as the initial fill value. Then you just have to edit the actually restricted elements afterwards.

23This way of specifying the responses to be cumulated in the GUI of SVAR may change in the future, perhaps
by using another list of variables instead.

35

A.3 The output window

After specifying all necessary function arguments and clicking OK, you are presented—possibly
after having to wait for the CPU intensive bootstrap to finish—with a first output window
holding the basic estimation results, for example of the C matrix or of the A and B matrices.
If the provided restrictions are over-identifying the corresponding LR test result is also printed
out.

In the SVAR output window (see Figure 13 below) three toolbar buttons deserve special
mention: The “Save” button allows you to save the printed output, but more importantly you
can also save the entire bundle that was returned by the SVAR package as an icon (element) of
the current gretl session. When you open (view) the bundle again later, some information about
the model specification will also be shown. (And the session can in turn later be saved into
a session file.) Next, for saving only selected members of the SVAR bundle there is the “Save
bundle content” button. Finally you have the “Graph” button which provides the access to the
central SVAR analyses, namely the impulse responses, the error variance as well as the historical
decompositions.

A.4 An example

For example, suppose we wanted to estimate a C model like the one used as example so far,
with the only difference that we want the C' matrix to be upper triangular, rather than lower
triangular. Via a script, you would use the function SVAR restrict(), as in

Force C_{2,1} to O
SVAR_restrict(&Mod, "C", 2, 1, 0)

but you can do the same via the GUI interface by using a pattern matrix, which must be a n xn
matrix (that is, the same size as C).

view Fill Transform
1,1
1 2
i nan nan
2 0! nan
(& save as HSave € close

Figure 12: Template matrix

Suppose we call the pattern matrix TMPL and that we select the option “Build Numerically”
(of course, with 2 rows and 2 columns in this example). When you’re done, you return to the
main SVAR window (be sure to select C-model as the model type). After clicking “OK”, the
results window will appear, as in Figure 13. Note that the estimated C' matrix is now upper
triangular.

From the output window, you can save the model bundle to the Icon view by clicking on the
leftmost icon?* and re-use it as needed for further processing.

24The visual appearance of the icons on your computer may be different from the one shown in Figure 12, as
they depend on your software setup. The number and ordering of the icons, however, should be the same on all
systems.

36

Structural VARs

EE80ALl

Unconstrained Sigma:
0.05676 -0.02905
-0.02905 1.82044

Optimization method = Scoring algorithm

Log-likelihood = -276.913

coefficient std. error z p-value
cl 1; 1] 0.237268 0.0131009 18.11 2.62e-73 *kk
cl 2; 1] 0.00000 0.00000 A A
cl 1; 2] -0.0215318 0.0185656 -1.160 0.2451
cl 2; 2] 1.34924 0.0744551 18.11 2.52e-73 #kk

Figure 13: Output window

37

B Alphabetical list of (public) functions

FEVD (bundle *SVARobj)

Computes the Forecast Error Variance Decomposition from the structural IRF's, as contained
in the model SVARobj. Returns an h x n? matrix. The FEVD for variable k is the block of
columns from (k — 1)n 4 1 to kn (where n is the number of variables in the VAR).

FEVDplot (bundle *obj, int vnum[O], int keypos[0:2:1])

Plots on screen the Forecast Error Variance Decomposition for a variable. Its arguments are:
1. a bundle holding the model
2. the progressive number of the variable (0 means all)

3. the position of the legend, if any (optional; default = right).

FEVDsave (string outfilename, bundle *obj, int vnum[0], int keypos[0:2:1])

Saves the Forecast Error Variance Decomposition for a variable to a graphic file, whose format
is identified by its extension. Its arguments are:

1. The graphic file name
2. a bundle holding the model
3. the progressive number of the variable (0 means all)

4. the position of the legend, if any (optional; default = right).

GetShock(bundle *SVARobj, int i)

Retrieves, as a series, the estimate of i-th structural shock of the system via equation (2), in
which VAR residuals are used instead of the one-step-ahead prediction errors ;. If the bundle
SVARobj contains a non-null string snames with shock names, those are used in the description
for the generated series.

HDplot(bundle *obj, int vnum[0])

Plots on screen the Historical Decomposition for a variable. Its arguments are:
1. a bundle holding the model

2. the progressive number of the variable (0 means all)

38

HDsave(string outfilename, bundle *obj, int vnum[0])

Saves the Historical Decomposition for a variable to a graphic file, whose format is identified
by its extension. Its arguments are:

1. The graphic file name
2. a bundle holding the model

3. the progressive number of the variable (0 means all)

IRFplot(bundle *obj, int snum, int vnum, int keypos[0:2:1])

Plots an impulse response function on screen. Its arguments are:
1. a bundle holding the model

2. the progressive number of the shock (may be negative, in which case the IRF is flipped)

w

. the progressive number of the variable

W

. the position of the legend, if any (optional; default = right).

IRFsave(string outfilename, bundle *obj, int snum, int vnum, int keypos[0:2:1]))

Saves an impulse response function to a graphic file, whose format is identified by its extension.
Its arguments are:

1. The graphic file name
2. a bundle holding the model
3. the progressive number of the shock (may be negative, in which case the IRF is flipped)

4. the progressive number of the variable

SVAR boot (bundle *obj, int rep, scalar alpha, bool quiet[1])

Perform a bootstrap analysis of a model. Returns the number of bootstrap replications in
which the model failed to converge. Its arguments are:

1. a bundle holding the model

2. the number of bootstrap replications

w

. the quantile used for the confidence bands

N

. (optional) omit the table with bootstrap means and standard errors (default: yes)

39

SVAR_coint (bundle *obj, int dcase[1:5:3], matrix jbeta, matrix jalpha[null], bool
verbose[0])

Sets up a SVEC model for subsequent estimation. Its arguments are:

1. a bundle holding the model

2. a code for the constant/trend combination (1 to 5, as per Johansen; default 3)
3. the cointegration matrix (required)

4. the loading matrix (optional, will be estimated via OLS if omitted or empty)

5. an optional verbosity switch (default 0)

SVAR_cumulate(bundle *b, int nv)

Stores into the model the fact that the cumulated IRFs for variable nv are desired. This is
typically used jointly with long-run restrictions.

SVAR_estimate(bundle *obj, int verbosity[1])

Estimates the model by maximum likelihood. Its second argument is a scalar, which controls
the verbosity of output. If omitted, output is printed.
Since v1.4 the identification check is called automatically before the estimation of the struc-
tural form, unless this has been explicitly suppressed in SVAR_setup (or by manually setting
obj.checkident to 0).

SVAR_hd(bundle *b, int nv)

Performs the “historical decomposition” of variable nv: this function outputs a list of vari-
ables which decomposes the nv-th variable in the system into a deterministic component and
n stochastic components. The names of the resulting series are as follows: if the name of the
decomposed variable is foo, then the historical component attributable to the first structural
shock is called hd_foo_1, the one attributable to the second structural shock is called hd_foo_2,
and so on. Finally, the one for the first deterministic component is called hd_foo_det.

SVAR_ident (bundle *b, int verbose[0])

Checks if a model is identified by applying the algorithm described in Amisano and Giannini
(1997). Returns a 0/1 scalar. Its second argument is a scalar, which controls the verbosity of
output. If set to a non-zero value, a few messages are printed as checks are performed.

40

SVAR_restrict(bundle *b, string code, int r, int c[0], scalar d[0])

Sets up constraints for an existing model. The function which takes at most five arguments:

1.

2.

A pointer to the model for which we want to set up the restriction(s)
A code for which type of restriction we want:

"C" Applicable to C models. Used for short-run restrictions.

"1rC" Applicable to C models. Used for long-run restrictions.

"A" Applicable to AB models. Used for constraints on the A matrix.
"B" Applicable to AB models. Used for constraints on the B matrix.

"Adiag" Applicable to AB models. Used for constraints on the whole diagonal of the A
matrix (see below).

"Bdiag" Applicable to AB models. Used for constraints on the whole diagonal of the B
matrix (see below).

An integer:

case 1 : applies to the codes "C", "1rC", "A" and "B". Indicates the row of the restricted
element.

case 2 : applies to the codes "Adiag" and "Bdiag". Indicates what kind of restriction is
to be placed on the diagonal: any valid scalar indicates that the diagonal of A (or B)
is set to that value. Almost invariably, this is used with the value 1. IMPORTANT:
if this argument is NA, all non-diagonal elements are constrained to 0, while diagonal
elements are left unrestricted.

An integer: the column of the restricted element, for the codes "C", "1rC", "A" and "B".
Otherwise, unused and can then be omitted.

. A scalar: for the codes "C", "1rC", "A" and "B", the fixed value the matrix element should

be set to (may be omitted if 0). Otherwise, unused and can then be omitted.

A few examples:

SVAR_restrict (&M, "C", 3, 2, 0); in a C model called M, sets C35 = 0. As a conse-
quence, the IRF for variable number 3 with respect to the shock number 2 starts from
ZEero.

SVAR_restrict(&foo, "A", 1, 2, 0);in an AB model called foo, sets A4; 2 = 0.

SVAR_restrict (&MyMod, "1rC", 5, 3, 0); in a C model called MyMod, restricts C such
that the long-run impact of shock number 3 on variable number 5 is 0. This implies that
the cumulated IRF for variable 5 with respect to shock 3 tends to zero.

SVAR_restrict(&bar, "Adiag", 1);in an AB model called bar, sets 4, ; =1for 1 <i <
n.

SVAR_restrict(&baz, "Bdiag", NA);in an AB model called baz, sets B; ; = 0 for i # j.

41

If the restrictions are found to conflict with other ones already implied by the pre-existing
constraints, they will just be ignored and a warning will be printed.

SVAR_setup(string type, list Y, list X, int varorder, bool checkident[1])

Initialises a model: the function’s output is a bundle. The function arguments are:
1. A type string: at the moment, valid values are "C", "plain" and "AB";
2. a list containing the endogenous variables;

a list containing the exogenous variables;

- W

a positive integer, the VAR order;

5. a switch to activate or suppress the automatic identification check before estimation of the
structural form (default on).

42

C Contents of the model bundle

Basic setup

step done so far
type integer, model type (1: PLAIN, 2: C, 3: AB, 4: SVEC)
n, k numbers of endogenous and exogenous variables
p VAR order
T number of observations
t1, t2 initial and final observations
X exogenous variables data matrix
calc_lr switch to get long-run matrix lrmat in short-run models
checkident switch indicating whether to check identification before estimation
VAR
VARpar autoregressive parameters
mu coefficients for the deterministic terms
E residuals from base VAR (as matrix)
Sigma unrestricted covariance matrix
jalpha (SVEC only) cointegration loadings
jbeta (SVEC only) cointegration coeflicients
crank (SVEC only) cointegration rank (inferred from jbeta)
jcase (SVEC only) deterministic setup (1 to 5)
SVAR setup
Rdl short-run constraints on B (and therefore C in non-AB models)
Rd1l long-run constraints on C
RdO short-run constraints on A in AB models
horizon horizon for structural VMA
cumul vector of cumuland variables
ncumul number of cumuland variables
Ynames names for VAR variables (string array)
Xnames names for exogenous (string array) variables, if any
snames names for shocks (string array)
optmeth integer between 0 and 4, optimisation method
SVAR post-estimation
S1, 82, C estimated A, B, C
lrmat estimated long-run matrix
theta coefficient vector
IRFs IRF matrix (see section 2.2)
Bootstrap-related
nboot number of bootstrap replications
boot_alpha bootstrap confidence level
bootdata output from the bootstrap (see section 2.5)
biascorr scalar, 0 for no bias correction, 1 for partial, 2 for full

43

D Changelog (after v1.2)
Version 1.4, March 2019

catches of wrong user input: catch the case when no restrictions are given, to prevent other
errors; catch a missing cointegration setup when trying to estimate a SVEC; add a linear
dependency check on the exogenous terms in SVAR_setup; catch the case where restrictions
would not work (imp2exp) and print out a message

fixes in the SVEC case especially with further exogenous variables: fix indexing error
and mis-concatenation, and companion matrix in vecm_est with exogenous; and fix the
restricted terms in the bootstrap

internal changes: simplify centered seasonals creation in determ(), replace isnull with lexists
(and vice versa)

interface: allow omission of alpha in SVAR_coint

New argument ’checkident’ in SVAR _setup. Checking identification is now default in script
use.

A new restriction check in the SVEC case (Luetkepohl 2008).

Version 1.36, July 2018

Update this documentation to reflect previous changes.

fix a transposed matrix product in SVECM estimation for cases 2 and 4

Version 1.35, May 2018

Enable 0 index (meaning “all”) in plotting functions

Version 1.33 and 1.34, April 2018
Fix breakage in init_C function
Allow a C-model with no estimated parameters

Fix constant in cointegrated case

Version 1.31 and 1.32, January 2018
Update this documentation to reflect some previous changes.

Fix failing printout for bootstrap. (v1.32: Sanitize further the printout of the long-run
matrix.)

Enable long-run matrix calculation and reporting also for SVEC models.

44

Version 1.3, December 2017

The full bias correction now also corrects the estimated A/B/C matrices explicitly, not
only the implied IRF's.

Make it clear that long-run restrictions are not supported in AB models.

Calculate the long-run matrix and put it into the model bundle as lrmat. Also add a
boolean switch calc_1r to the model bundle to force its calculation when it would normally
not be done (in models with short-run constraints only).

The case of a SVEC model with Blanchard-Quah restrictions on top might not have been
handled correctly, and should be OK now (but the bootstrap is currently not allowed in
this case).

Require gretl version >2016¢ or >2017a due to internal changes.

45

