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Chapter 1

Introduction

1.1 Features at a glance

Gretl is an econometrics package, including a shared library, a command-line client program and a
graphical user interface.

User-friendly Gretl offers an intuitive user interface; it is very easy to get up and running with
econometric analysis. Thanks to its association with the econometrics textbooks by Ramu
Ramanathan, Jeffrey Wooldridge, and James Stock and Mark Watson, the package offers many
practice data files and command scripts. These are well annotated and accessible. Two other
useful resources for gretl users are the available documentation and the gretl-users mailing
list.

Flexible You can choose your preferred point on the spectrum from interactive point-and-click to
complex scripting, and can easily combine these approaches.

Cross-platform Gretl’s “home” platform is Linux but it is also available for MS Windows and Mac
OS X, and should work on any unix-like system that has the appropriate basic libraries (see
Appendix C).

Open source The full source code for gretl is available to anyone who wants to critique it, patch it,
or extend it. See Appendix C.

Sophisticated Gretl offers a full range of least-squares based estimators, either for single equations
and for systems, including vector autoregressions and vector error correction models. Sev-
eral specific maximum likelihood estimators (e.g. probit, ARIMA, GARCH) are also provided
natively; more advanced estimation methods can be implemented by the user via generic
maximum likelihood or nonlinear GMM.

Extensible Users can enhance gretl by writing their own functions and procedures in gretl’s script-
ing language, which includes a wide range of matrix functions.

Accurate Gretl has been thoroughly tested on several benchmarks, among which the NIST refer-
ence datasets. See Appendix D.

Internet ready Gretl can fetch materials such databases, collections of textbook datafiles and add-
on packages over the internet.

International Gretl will produce its output in English, French, Italian, Spanish, Polish, Portuguese,
German, Basque, Turkish, Russian, Albanian or Greek depending on your computer’s native
language setting.

1.2 Acknowledgements

The gretl code base originally derived from the program ESL (“Econometrics Software Library”),
written by Professor Ramu Ramanathan of the University of California, San Diego. We are much in
debt to Professor Ramanathan for making this code available under the GNU General Public Licence
and for helping to steer gretl’s early development.


http://gretl.sourceforge.net/lists.html
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We are also grateful to the authors of several econometrics textbooks for permission to package for
gretl various datasets associated with their texts. This list currently includes William Greene, au-
thor of Econometric Analysis; Jeffrey Wooldridge (Introductory Econometrics: A Modern Approach);
James Stock and Mark Watson (Introduction to Econometrics); Damodar Gujarati (Basic Economet-
rics); Russell Davidson and James MacKinnon (Econometric Theory and Methods); and Marno Ver-
beek (A Guide to Modern Econometrics).

GARCH estimation in gretl is based on code deposited in the archive of the Journal of Applied
Econometrics by Professors Fiorentini, Calzolari and Panattoni, and the code to generate p-values
for Dickey-Fuller tests is due to James MacKinnon. In each case we are grateful to the authors for
permission to use their work.

With regard to the internationalization of gretl, thanks go to Ignacio Diaz-Emparanza (Spanish),
Michel Robitaille and Florent Bresson (French), Cristian Rigamonti (Italian), Tadeusz Kufel and Pawel
Kufel (Polish), Markus Hahn and Sven Schreiber (German), Hélio Guilherme and Henrique Andrade
(Portuguese), Susan Orbe (Basque), Talha Yalta (Turkish) and Alexander Gedranovich (Russian).

Gretl has benefitted greatly from the work of numerous developers of free, open-source software:
for specifics please see Appendix C. Our thanks are due to Richard Stallman of the Free Software
Foundation, for his support of free software in general and for agreeing to “adopt” gretl as a GNU
program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection par-
ticular thanks are due to Ignacio Diaz-Emparanza, Tadeusz Kufel, Pawel Kufel, Alan Isaac, Cri
Rigamonti, Sven Schreiber, Talha Yalta, Andreas Rosenblad, and Dirk Eddelbuettel, who maintains
the gretl package for Debian GNU/Linux.

1.3 Installing the programs

Linux

On the Linux! platform you have the choice of compiling the gretl code yourself or making use of a
pre-built package. Building gretl from the source is necessary if you want to access the development

version or customize gretl to your needs, but this takes quite a few skills; most users will want to
go for a pre-built package.

Some Linux distributions feature gretl as part of their standard offering: Debian, Ubuntu and Fe-
dora, for example. If this is the case, all you need to do is install gretl through your package
manager of choice. In addition the gretl webpage at http://gretl.sourceforge.net offers a
“generic” package in rpm format for modern Linux systems.

If you prefer to compile your own (or are using a unix system for which pre-built packages are not
available), instructions on building gretl can be found in Appendix C.

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter of
downloading gret1_install.exe and running this program. You will be prompted for a location
to install the package.

Mac OS X

The Mac version comes as a gzipped disk image. Installation is a matter of downloading the image
file, opening it in the Finder, and dragging Gret1.app to the Applications folder. However, when
installing for the first time two prerequisite packages must be put in place first; details are given
on the gretl website.

IIn this manual we use “Linux” as shorthand to refer to the GNU/Linux operating system. What is said herein about
Linux mostly applies to other unix-type systems too, though some local modifications may be needed.


http://gretl.sourceforge.net

Part I

Running the program



Chapter 2

Getting started

2.1 Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter 46
below and the Gretl Command Reference for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment let’s
not do that: just fire up the program.! You should see a main window (which will hold information
on the data set but which is at first blank) and various menus, some of them disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open a data
file, create a new data file, read the help items, or open a command script. For now let’s browse the
supplied data files. Under the File menu choose “Open data, Sample file”. A second notebook-type
window will open, presenting the sets of data files supplied with the package (see Figure 2.1). Select
the first tab, “Ramanathan”. The numbering of the files in this section corresponds to the chapter
organization of Ramanathan (2002), which contains discussion of the analysis of these data. The
data will be useful for practice purposes even without the text.

£0ax

4 Em | Greene | Gujarati | Penn World Table Ramanathan | Stock-Watson |’

gretl: data files

File |Summar)|r | =
data2-1 SAT scores

data2-2 College and high school GPAs

data2-3 Unemployment, inflation and wages

data3-1 House prices and sqft

data3-2 Income and health care spending

data3-3 Patents and R&D expenditures

data3-4 Gross Income and Taxes by States

data3-5 Sealing compound shipment data

data3-7 Toyota station wagon repairs

data3-8 Tuition and salary gain for MBAs

data3-9 Return on equity and assets |

Figure 2.1: Practice data files window

If you select a row in this window and click on “Info” this opens a window showing information on
the data set in question (for example, on the sources and definitions of the variables). If you find
a file that is of interest, you may open it by clicking on “Open”, or just double-clicking on the file
name. For the moment let’s open data3-6.

= |n gretl windows containing lists, double-clicking on a line launches a default action for the associated list
entry: e.g. displaying the values of a data series, opening a file.

IFor convenience we refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gret1_x11 while on
MS Windows it is gretl.exe. On Linux systems a wrapper script named gret] is also installed — see also the Gretl
Command Reference.
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This file contains data pertaining to a classic econometric “chestnut”, the consumption function.
The data window should now display the name of the current data file, the overall data range and
sample range, and the names of the variables along with brief descriptive tags — see Figure 2.2.

File Tools Data View Add Sample Variable Model ﬂelp|
data3-6.gdt

ID # |Variab|e name |De5criptive label |

0 const auto-generated constant
Personal consumption expenditures (1992 dollars)
2 Yt Per capita disposable personal income {1992 dollars)

Annual: Full range 1959 - 1994

W2rEaeRBEL 2B

Figure 2.2: Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explanatory. For
now we’ll dip into the Model menu; a brief tour of all the main window menus is given in Section 2.3
below.

Gretl’s Model menu offers numerous various econometric estimation routines. The simplest and

most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling for a
model specification—see Figure 2.3.

gretl: specify model

OLs

Dependent variable

Ct Ct
L

Set as default

Independent variables

% |
_& |

[] Robust standard errors  configure
lags...

I Help ‘ £ Clear

%gancel

<Jok |

Figure 2.3: Model specification dialog

To select the dependent variable, highlight the variable you want in the list on the left and click
the arrow that points to the Dependent variable slot. If you check the “Set as default” box this
variable will be pre-selected as dependent when you next open the model dialog box. Shortcut:
double-clicking on a variable on the left selects it as dependent and also sets it as the default. To
select independent variables, highlight them on the left and click the green arrow (or right-click the
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highlighted variable); to remove variables from the selected list, use the rad arrow. To select several
variable in the list box, drag the mouse over them; to select several non-contiguous variables, hold
down the Ctr1 key and click on the variables you want. To run a regression with consumption as
the dependent variable and income as independent, click Ct into the Dependent slot and add Yt to
the Independent variables list.

2.2 Estimation output

Once you've specified a model, a window displaying the regression output will appear. The output
is reasonably comprehensive and in a standard format (Figure 2.4).

[m] gretl: model 1

File Edit Tests Save Graphs Analysis LaTeX |

Model 1: OLS, using obserwations 1959-1994 (T = 36)
Dependent variable: Ct

coefficient std. error t-ratio p-value
const —384.105 151.330 —-2.538 0.0159 Aok
Yt 0.932738 0.0106966 87.20 1. 4de-41 *+*

Mean dependent var 12490.89 S.D. dependent var  2940.028

Sum squared resid 1346750 S.E. of regression 199. 0234
R-squared 0.995548 Adjusted R-sguared ©.995417
F(1, 34) 7603.702 P-value(F) 1.44e-41
Log-likelihood -240.6161 Akaike criterion 485.2323
Schwarz criterion 488.3993 Hannan - Quinn 486.3377
rho 0.768301 Durbin-Watson 0.513696

Figure 2.4: Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to print the regression output in KIgX format. See Chap-
ter 38 for details.

To import gretl output into a word processor, you may copy and paste from an output window,
using its Edit menu (or Copy button, in some contexts) to the target program. Many (not all) gretl
windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”) or as KIgX. If you are
pasting into a word processor, RTF may be a good option because the tabular formatting of the
output is preserved.? Alternatively, you can save the output to a (plain text) file then import the
file into the target program. When you finish a gretl session you are given the option of saving all
the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command to
send the output directly to a printer.

1= When pasting or importing plain text gretl output into a word processor, select a monospaced or typewriter-
style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font (10-point Courier
should do) to prevent the output lines from being broken in the wrong place.

2Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into ap-
plications that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also that
there appears to be a bug in some versions of Windows, whereby the paste will not work properly unless the “target”
application (e.g. MS Word) is already running prior to copying the material in question.
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2.3 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Tools, Data, View, Add,
Sample, Variable, Model and Help menus.

File

Tools Data View Add Sample Variable Model Help

¢ File menu

Open data: Open a native gretl data file or import from other formats. See Chapter 4.

Append data: Add data to the current working data set, from a gretl data file, a comma-
separated values file or a spreadsheet file.

Save data: Save the currently open native gretl data file.

Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

Export data: Write out the current data set in Comma Separated Values (CSV) format, or
the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix E.

Send to: Send the current data set as an e-mail attachment.

New data set: Allows you to create a blank data set, ready for typing in values or for
importing series from a database. See below for more on databases.

Clear data set: Clear the current data set out of memory. Generally you don’t have to do
this (since opening a new data file automatically clears the old one) but sometimes it’s
useful.

Script files: A “script” is a file containing a sequence of gretl commands. This item
contains entries that let you open a script you have created previously (“User file”), open
a sample script, or open an editor window in which you can create a new script.

Session files: A “session” file contains a snapshot of a previous gretl session, including
the data set used and any models or graphs that you saved. Under this item you can
open a saved session or save the current session.

Databases: Allows you to browse various large databases, either on your own computer
or, if you are connected to the internet, on the gretl database server. See Section 4.2 for
details.

Exit: Quit the program. You'll be prompted to save any unsaved work.

e Tools menu

Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin-Watson).

P-value finder: Look up p-values from the Gaussian, t, chi-square, F, gamma, binomial or
Poisson distributions. See also the pvalue command in the Gretl Command Reference.

Distribution graphs: Produce graphs of various probability distributions. In the resulting
graph window, the pop-up menu includes an item “Add another curve”, which enables
you to superimpose a further plot (for example, you can draw the t distribution with
various different degrees of freedom).

Test statistic calculator: Calculate test statistics and p-values for a range of common hy-
pothesis tests (population mean, variance and proportion; difference of means, variances
and proportions).

Nonparametric tests: Calculate test statistics for various nonparametric tests (Sign test,
Wilcoxon rank sum test, Wilcoxon signed rank test, Runs test).

Seed for random numbers: Set the seed for the random number generator (by default
this is set based on the system time when the program is started).
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- Command log: Open a window containing a record of the commands executed so far.

- Gretl console: Open a “console” window into which you can type commands as you would
using the command-line program, gretlcli (as opposed to using point-and-click).

- Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix E.

- Sort variables: Rearrange the listing of variables in the main window, either by ID number
or alphabetically by name.

- Function packages: Handles “function packages” (see Section 13.5), which allow you to
access functions written by other users and share the ones written by you.

- NIST test suite: Check the numerical accuracy of gretl against the reference results for
linear regression made available by the (US) National Institute of Standards and Technol-
ogy.

- Preferences: Set the paths to various files gretl needs to access. Choose the font in which
gretl displays text output. Activate or suppress gretl’s messaging about the availability
of program updates, and so on. See the Gretl Command Reference for further details.

e Data menu

- Select all: Several menu items act upon those variables that are currently selected in the
main window. This item lets you select all the variables.

- Display values: Pops up a window with a simple (not editable) printout of the values of
the selected variable or variables.

- Edit values: Opens a spreadsheet window where you can edit the values of the selected
variables.

- Add observations: Gives a dialog box in which you can choose a number of observations
to add at the end of the current dataset; for use with forecasting.

- Remove extra observations: Active only if extra observations have been added automati-
cally in the process of forecasting; deletes these extra observations.

- Read info, Edit info: “Read info” just displays the summary information for the current
data file; “Edit info” allows you to make changes to it (if you have permission to do so).

- Print description: Opens a window containing a full account of the current dataset, in-
cluding the summary information and any specific information on each of the variables.

- Add case markers: Prompts for the name of a text file containing “case markers” (short
strings identifying the individual observations) and adds this information to the data set.
See Chapter 4.

- Remove case markers: Active only if the dataset has case markers identifying the obser-
vations; removes these case markers.

- Dataset structure: invokes a series of dialog boxes which allow you to change the struc-
tural interpretation of the current dataset. For example, if data were read in as a cross
section you can get the program to interpret them as time series or as a panel. See also
section 4.4.

- Compact data: For time-series data of higher than annual frequency, gives you the option
of compacting the data to a lower frequency, using one of four compaction methods
(average, sum, start of period or end of period).

- Expand data: For time-series data, gives you the option of expanding the data to a higher
frequency.

- Transpose data: Turn each observation into a variable and vice versa (or in other words,
each row of the data matrix becomes a column in the modified data matrix); can be useful
with imported data that have been read in “sideways”.

¢ View menu
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Icon view: Opens a window showing the content of the current session as a set of icons;
see section 3.4.

Graph specified vars: Gives a choice between a time series plot, a regular X-Y scatter
plot, an X-Y plot using impulses (vertical bars), an X-Y plot “with factor separation” (i.e.
with the points colored differently depending to the value of a given dummy variable),
boxplots, and a 3-D graph. Serves up a dialog box where you specify the variables to
graph. See Chapter 6 for details.

Multiple graphs: Allows you to compose a set of up to six small graphs, either pairwise
scatter-plots or time-series graphs. These are displayed together in a single window.

Summary statistics: Shows a full set of descriptive statistics for the variables selected in
the main window.

Correlation matrix: Shows the pairwise correlation coefficients for the selected variables.

Cross Tabulation: Shows a cross-tabulation of the selected variables. This works only if
at least two variables in the data set have been marked as discrete (see Chapter 11).

Principal components: Produces a Principal Components Analysis for the selected vari-
ables.

Mahalanobis distances: Computes the Mahalanobis distance of each observation from
the centroid of the selected set of variables.

Cross-correlogram: Computes and graphs the cross-correlogram for two selected vari-
ables.

e Add menu Offers various standard transformations of variables (logs, lags, squares, etc.) that
you may wish to add to the data set. Also gives the option of adding random variables, and
(for time-series data) adding seasonal dummy variables (e.g. quarterly dummy variables for
quarterly data).

e Sample menu

Set range: Select a different starting and/or ending point for the current sample, within
the range of data available.

Restore full range: self-explanatory.

Define, based on dummy: Given a dummy (indicator) variable with values O or 1, this
drops from the current sample all observations for which the dummy variable has value
0.

Restrict, based on criterion: Similar to the item above, except that you don’t need a pre-
defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the sample is
restricted to observations satisfying that condition. See the entry for genr in the Gretl
Command Reference for details on the Boolean operators that can be used.

Random sub-sample: Draw a random sample from the full dataset.

Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see Section 4.6).

Count missing values: Give a report on observations where data values are missing. May
be useful in examining a panel data set, where it’'s quite common to encounter missing
values.

Set missing value code: Set a numerical value that will be interpreted as “missing” or “not
available”. This is intended for use with imported data, when gretl has not recognized
the missing-value code used.

e Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most options
will be self-explanatory. Note that you can rename a variable and can edit its descriptive label
under “Edit attributes”. You can also “Define a new variable” via a formula (e.g. involving
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some function of one or more existing variables). For the syntax of such formulae, look at the
online help for “Generate variable syntax” or see the genr command in the Gretl Command
Reference. One simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

e Model menu For details on the various estimators offered under this menu please consult the
Gretl Command Reference. Also see Chapter 22 regarding the estimation of nonlinear models.

e Help menu Please use this as needed! It gives details on the syntax required in various dialog
entries.

2.4 Keyboard shortcuts

When working in the main gretl window, some common operations may be performed using the
keyboard, as shown in the table below.

Return Opens a window displaying the values of the currently selected variables: it is
the same as selecting “Data, Display Values”.

Delete Pressing this key has the effect of deleting the selected variables. A confirma-
tion is required, to prevent accidental deletions.

e Has the same effect as selecting “Edit attributes” from the “Variable” menu.

F2 Same as “e”. Included for compatibility with other programs.

g Has the same effect as selecting “Define new variable” from the “Variable”
menu (which maps onto the genr command).

h Opens a help window for gretl commands.

F1 Same as “h”. Included for compatibility with other programs.

r Refreshes the variable list in the main window.

t Graphs the selected variable; a line graph is used for time-series datasets,

whereas a distribution plot is used for cross-sectional data.

2.5 The gretl toolbar

At the bottom left of the main window sits the toolbar.

O T i [ = R B =

The icons have the following functions, reading from left to right:

1. Launch a calculator program. A convenience function in case you want quick access to a
calculator when you're working in gretl. The default program is calc.exe under MS Win-
dows, or xcalc under the X window system. You can change the program under the “Tools,
Preferences, General” menu, “Programs” tab.

2. Start a new script. Opens an editor window in which you can type a series of commands to be
sent to the program as a batch.

3. Open the gretl console. A shortcut to the “Gretl console” menu item (Section 2.3 above).

4. Open the session icon window.
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5. Open a window displaying available gretl function packages.
6. Open this manual in PDF format.

7. Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

8. Open the dialog box for defining a graph.
9. Open the dialog box for estimating a model using ordinary least squares.

10. Open a window listing the sample datasets supplied with gretl, and any other data file collec-
tions that have been installed.
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Modes of working

3.1 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands are
recorded in the form of a “script” or batch file. Such scripts can be edited and re-run, using either
gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “Command log” under
the Tools menu. This log file is called session.inp and it is overwritten whenever you start a new
session. To preserve it, save the script under a different name. Script files will be found most easily,
using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Script files” menu item; to create a
script from scratch use the “File, Script files, New script” item or the “new script” toolbar button.
In either case a script window will open (see Figure 3.1).

B8f0AWE X
# Replicate Table 1, "Estimation of the Textbook :Z

# Solow model," in Mankiw, Romer and Weil, QJE 1992
open mrw.gdt

genr lny log(gdp85)

genr ngd 0.05 + (popgrow/100.0)

genr lngd = log(ngd)

genr linv = log(inv/100.0)

# generate variable for testing 5Solow restriction
genr x3 = linw - lngd

# set sample to non-oil producing countries

supl nonoil --dummy

modell =- ols lny const linv lngd =
genr essu = $ess

genr dful = $df

# restricted regression

ols lny const x3

genr Fl1 = ($ess - essu)/(essu/dful)

# set sample to the "better data" countries
smpl intermed --dummy --replace

model?2 =- ols lny ceonst linv lngd

genr essu = $ess

genr dfu2 = $df Ad|

Figure 3.1: Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1) Save
the file; (2) Save the file under a specified name; (3) Print the file (this option is not available on all
platforms); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste the selected text;
(7) Find and replace text; (8) Undo the last Paste or Replace action; (9) Help (if you place the cursor
in a command word and press the question mark you will get help on that command); (10) Close
the window.

When you execute the script, by clicking on the Execute icon or by pressing Ctrl-r, all output is
directed to a single window, where it can be edited, saved or copied to the clipboard. To learn
more about the possibilities of scripting, take a look at the gretl Help item “Command reference,”

12



Chapter 3. Modes of working 13

or start up the command-line program gretlcli and consult its help, or consult the Gretl Command
Reference.

If you run the script when part of it is highlighted, gretl will only run that portion. Moreover, if you
want to run just the current line, you can do so by pressing Ctrl-Enter.!

Clicking the right mouse button in the script editor window produces a pop-up menu. This gives
you the option of executing either the line on which the cursor is located, or the selected region of
the script if there’s a selection in place. If the script is editable, this menu also gives the option of
adding or removing comment markers from the start of the line or lines.

The gretl package includes over 70 “practice” scripts. Most of these relate to Ramanathan (2002),
but they may also be used as a free-standing introduction to scripting in gretl and to various points
of econometric theory. You can explore the practice files under “File, Script files, Practice file” There
you will find a listing of the files along with a brief description of the points they illustrate and the
data they employ. Open any file and run it to see the output. Note that long commands in a script
can be broken over two or more lines, using backslash as a continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting each
method where it offers greater convenience. Here are two suggestions.

e Open a data file in the GUI. Explore the data— generate graphs, run regressions, perform tests.
Then open the Command log, edit out any redundant commands, and save it under a specific
name. Run the script to generate a single file containing a concise record of your work.

o Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in the Gretl Command Reference).
Typically this sort of thing can be accomplished more efficiently via commands assembled
with forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the data
via the GUI. To revisit the data at a later point, open and rerun the “preparatory” script first.

Scripts and data files

One common way of doing econometric research with gretl is as follows: compose a script; execute
the script; inspect the output; modify the script; run it again—with the last three steps repeated as
many times as necessary. In this context, note that when you open a data file this clears out most
of gretl’s internal state. It’s therefore probably a good idea to have your script start with an open
command: the data file will be re-opened each time, and you can be confident you’re getting “fresh”
results.

One further point should be noted. When you go to open a new data file via the graphical interface,
you are always prompted: opening a new data file will lose any unsaved work, do you really want
to do this? When you execute a script that opens a data file, however, you are not prompted. The
assumption is that in this case you’re not going to lose any work, because the work is embodied
in the script itself (and it would be annoying to be prompted at each iteration of the work cycle
described above).

This means you should be careful if you’ve done work using the graphical interface and then decide
to run a script: the current data file will be replaced without any questions asked, and it’s your
responsibility to save any changes to your data first.

LThis feature is not unique to gretl; other econometric packages offer the same facility. However, experience shows
that while this can be remarkably useful, it can also lead to writing dinosaur scripts that are never meant to be executed
all at once, but rather used as a chaotic repository to cherry-pick snippets from. Since gretl allows you to have several
script windows open at the same time, you may want to keep your scripts tidy and reasonably small.
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3.2 Saving script objects

When you estimate a model using point-and-click, the model results are displayed in a separate
window, offering menus which let you perform tests, draw graphs, save data from the model, and
so on. Ordinarily, when you estimate a model using a script you just get a non-interactive printout
of the results. You can, however, arrange for models estimated in a script to be “captured”, so that
you can examine them interactively when the script is finished. Here is an example of the syntax
for achieving this effect:

Modell <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment arrow”,
then the model command. The assignment arrow is composed of the less-than sign followed by a
dash; it must be separated by spaces from both the preceding name and the following command.
The name for a saved object may include spaces, but in that case it must be wrapped in double
quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl icon view window (see Section 3.4) after
the script is executed. In addition, you can arrange to have a named model displayed (in its own
window) automatically as follows:

Modell.show
Again, if the name contains spaces it must be quoted:
"Model 1".show

The same facility can be used for graphs. For example the following will create a plot of Ct against
Yt, save it under the name “CrossPlot” (it will appear under this name in the icon view window),
and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

You can also save the output from selected commands as named pieces of text (again, these will
appear in the session icon window, from where you can open them later). For example this com-
mand sends the output from an augmented Dickey-Fuller test to a “text object” named ADF1 and
displays it in a window:

ADF1 <- adf 2 x1
ADF1.show

Objects saved in this way (whether models, graphs or pieces of text output) can be destroyed using
the command . free appended to the name of the object, as in ADF1. free.

3.3 The gretl console

A further option is available for your computing convenience. Under gretl’s “Tools” menu you will
find the item “Gretl console” (there is also an “open gretl console” button on the toolbar in the
main window). This opens up a window in which you can type commands and execute them one
by one (by pressing the Enter key) interactively. This is essentially the same as gretlcli’s mode of
operation, except that the GUI is updated based on commands executed from the console, enabling
you to work back and forth as you wish.
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In the console, you have “command history”; that is, you can use the up and down arrow keys to
navigate the list of command you have entered to date. You can retrieve, edit and then re-enter a
previous command.

In console mode, you can create, display and free objects (models, graphs or text) aa described
above for script mode.

3.4 The Session concept

Gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it later.
The basic idea is to provide an iconic space containing various objects pertaining to your current
working session (see Figure 3.2). You can add objects (represented by icons) to this space as you
go along. If you save the session, these added objects should be available again if you re-open the
session later.

gretl: current session

[ Hs
Data info Data set Notes Summary
[ B &N
[P
Correlations Model table Graph page Session
ok
Model 1 Graph 1

Figure 3.2: Icon view: one model and one graph have been added to the default icons

If you start gretl and open a data set, then select “Icon view” from the View menu, you should see
the basic default set of icons: these give you quick access to information on the data set (if any),
correlation matrix (“Correlations”) and descriptive summary statistics (“Summary”). All of these
are activated by double-clicking the relevant icon. The “Data set” icon is a little more complex:
double-clicking opens up the data in the built-in spreadsheet, but you can also right-click on the
icon for a menu of other actions.

To add a model to the Icon view, first estimate it using the Model menu. Then pull down the File
menu in the model window and select “Save to session as icon...” or “Save as icon and close”.
Simply hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the View menu, “Graph specified vars”, or via one of gretl’s
other graph-generating commands). Click on the graph window to bring up the graph menu, and
select “Save to session as icon”.

Once a model or graph is added its icon will appear in the Icon view window. Double-clicking on the
icon redisplays the object, while right-clicking brings up a menu which lets you display or delete
the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent
variable —the models differing in respect of which independent variables are included, or per-
haps in respect of the estimator used. In this situation it is convenient to present the regression
results in the form of a table, where each column contains the results (coefficient estimates and
standard errors) for a given model, and each row contains the estimates for a given variable across
the models. Note that some estimation methods are not compatible with the straightforward model
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table format, therefore gretl will not let those models be added to the model table. These methods
include non-linear least squares (n1s), generic maximum-likelihood estimators (m1e), generic GMM
(gmm), dynamic panel models (dpanel or its predecessor arbond), interval regressions (intreg),
bivariate probit models (biprobit), ARI)MA models (arima or arma), and (G)ARCH models (garch
and arch).

In the Icon view window gretl provides a means of constructing such a table (and copying it in plain
text, IKIEX or Rich Text Format). The procedure is outlined below. (The model table can also be built
non-interactively, in script mode — see the entry for modeltab in the Gretl Command Reference.)

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).

3. When you are done estimating the models, open the icon view of your gretl session, by se-
lecting “Icon view” under the View menu in the main gretl window, or by clicking the “session
icon view” icon on the gretl toolbar.

4. In the Icon view, there is an icon labeled “Model table”. Decide which model you wish to
appear in the left-most column of the model table and add it to the table, either by dragging
its icon onto the Model table icon, or by right-clicking on the model icon and selecting “Add
to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model selected
will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its icon.
Under the Edit menu in the window which appears, you have the option of copying the table
to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3.3.

gretl: model table

E &8 & m x

OLS estimates Z
Dependent variable: price
Model 1 Model 2 Model 3
const 129.1 121.2 52.35
(88.30) (80.18) (37.29)
sqft 0,1545%* 0,1483%* 0,13858%*
(8.03194) (8.02121) (8.01873)
bedrms -21.589 -23.91
(27.03) (24.64)
baths -12.19
(43.25)
h 14 14 14
Adj . R¥*32 0.7868 0.8046 0.8056
Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level ]
-

Close |

Figure 3.3: Example of model table
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The graph page

The “graph page” icon in the session window offers a means of putting together several graphs
for printing on a single page. This facility will work only if you have the KIEX typesetting system
installed, and are able to generate and view either PDF or PostScript output. The output format
is controlled by your choice of program for compiling TgX files, which can be found under the
“Programs” tab in the Preferences dialog box (under the “Tools” menu in the main window). Usually
this should be pdflatex for PDF output or latex for PostScript. In the latter case you must have a
working set-up for handling PostScript, which will usually include dvips, ghostscript and a viewer
such as gv, ggv or kghostview.

In the Icon view window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the icon (or right-click and select “Display”), a page containing the selected graphs
(in PDF or EPS format) will be composed and opened in your viewer. From there you should be able
to print the page.

To clear the graph page, right-click on its icon and select “Clear”.

As with the model table, it is also possible to manipulate the graph page via commands in script or
console mode —see the entry for the graphpg command in the Gretl Command Reference.

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before quitting
gretl select “Session files, Save session” from the File menu and give a name under which to save
the session. To re-open the session later, either

o Start gretl then re-open the session file by going to the “File, Session files, Open session”, or

e From the command line, type gret1 -r sessionfile, where sessionfile is the name under which
the session was saved, or

e Drag the icon representing a session file onto gretl.



Chapter 4

Data files

4.1 Data file formats

Gretl has its own native format for data files. Most users will probably not want to read or write
such files outside of gretl itself, but occasionally this may be useful and details on the file formats
are given in Appendix A. The program can also import data from a variety of other formats. In
the GUI program this can be done via the “File, Open Data, User file” menu—note the drop-down
list of acceptable file types. In script mode, simply use the open command. The supported import
formats are as follows.

¢ Plain text files (comma-separated or “CSV” being the most common type). For details on what
gretl expects of such files, see Section 4.3.

e Spreadsheets: MS Excel, Ghumeric and Open Document (ODS). The requirements for such files
are given in Section 4.3.

o Stata data files (.dta).
e SPSS data files (. sav).
e SAS “xport” files (. xpt).

o Eviews workfiles (.wf1).1

JMulTi data files.

When you import data from a plain text format, gretl opens a “diagnostic” window, reporting on its
progress in reading the data. If you encounter a problem with ill-formatted data, the messages in
this window should give you a handle on fixing the problem.

Note that gretl has a facility for writing out data in the native formats of GNU R, Octave, JMulTi and
PcGive (see Appendix E). In the GUI client this option is found under the “File, Export data” menu;
in the command-line client use the store command with the appropriate option flag.

4.2 Databases

For working with large amounts of data gretl is supplied with a database-handling routine. A
database, as opposed to a data file, is not read directly into the program’s workspace. A database
can contain series of mixed frequencies and sample ranges. You open the database and select
series to import into the working dataset. You can then save those series in a native format data
file if you wish. Databases can be accessed via the menu item “File, Databases”.

For details on the format of gretl databases, see Appendix A.

ISee http://ricardo.ecn.wfu.edu/~cottrell/eviews_format/.
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Online access to databases

Several gretl databases are available from Wake Forest University. Your computer must be con-
nected to the internet for this option to work. Please see the description of the “data” command
under the Help menu.

== Visit the gretl data page for details and updates on available data.

Foreign database formats

Thanks to Thomas Doan of Estima, who made available the specification of the database format
used by RATS 4 (Regression Analysis of Time Series), gretl can handle such databases—or at least,
a subset of same, namely time-series databases containing monthly and quarterly series.

Gretl can also import data from PcGive databases. These take the form of a pair of files, one
containing the actual data (with suffix .bn7) and one containing supplementary information (.in7).

In addition, gretl offers ODBC connectivity. Be warned: this feature is meant for somewhat ad-
vanced users; there is currently no graphical interface. Interested readers will find more info in
appendix B.

4.3 Creating a dataset from scratch

There are several ways of doing this:

1. Find, or create using a text editor, a plain text data file and open it via “Import”.

2. Use your favorite spreadsheet to establish the data file, save it in comma-separated format if
necessary (this may not be necessary if the spreadsheet format is MS Excel, Gnumeric or Open
Document), then use one of the “Import” options.

3. Use gretl’s built-in spreadsheet.
4. Select data series from a suitable database.

5. Use your favorite text editor or other software tools to a create data file in gretl format inde-
pendently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For the program to read such data
successfully, certain general conditions must be satisfied:

e The first row must contain valid variable names. A valid variable name is of 31 characters
maximum,; starts with a letter; and contains nothing but letters, numbers and the underscore
character, _. (Longer variable names will be truncated to 31 characters.) Qualifications to the
above: First, in the case of an plain text import, if the file contains no row with variable names
the program will automatically add names, v1, v2 and so on. Second, by “the first row” is
meant the first relevant row. In the case of plain text imports, blank rows and rows beginning
with a hash mark, #, are ignored. In the case of Excel, Ghumeric and ODS imports, you are
presented with a dialog box where you can select an offset into the spreadsheet, so that gretl
will ignore a specified number of rows and/or columns.

e Data values: these should constitute a rectangular block, with one variable per column (and
one observation per row). The number of variables (data columns) must match the number
of variable names given. See also section 4.6. Numeric data are expected, but in the case of
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importing from plain text, the program offers limited handling of character (string) data: if
a given column contains character data only, consecutive numeric codes are substituted for
the strings, and once the import is complete a table is printed showing the correspondence
between the strings and the codes.

e Dates (or observation labels): Optionally, the first column may contain strings such as dates,
or labels for cross-sectional observations. Such strings have a maximum of 15 characters (as
with variable names, longer strings will be truncated). A column of this sort should be headed
with the string obs or date, or the first row entry may be left blank.

For dates to be recognized as such, the date strings should adhere to one or other of a set of
specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002: 3, 1947Q1. For monthly data: a 4-digit year, followed by a period or
a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

Plain text (“CSV”) files can use comma, space, tab or semicolon as the column separator. When you
open such a file via the GUI you are given the option of specifying the separator, though in most
cases it should be detected automatically.

If you use a spreadsheet to prepare your data you are able to carry out various transformations of
the “raw” data with ease (adding things up, taking percentages or whatever): note, however, that
you can also do this sort of thing easily—perhaps more easily—within gretl, by using the tools
under the “Add” menu.

Appending imported data

You may wish to establish a dataset piece by piece, by incremental importation of data from other
sources. This is supported via the “File, Append data” menu items: gretl will check the new data for
conformability with the existing dataset and, if everything seems OK, will merge the data. You can
add new variables in this way, provided the data frequency matches that of the existing dataset. Or
you can append new observations for data series that are already present; in this case the variable
names must match up correctly. Note that by default (that is, if you choose “Open data” rather
than “Append data”), opening a new data file closes the current one.

Using the built-in spreadsheet

Under the “File, New data set” menu you can choose the sort of dataset you want to establish (e.g.
quarterly time series, cross-sectional). You will then be prompted for starting and ending dates (or
observation numbers) and the name of the first variable to add to the dataset. After supplying this
information you will be faced with a simple spreadsheet into which you can type data values. In
the spreadsheet window, clicking the right mouse button will invoke a popup menu which enables
you to add a new variable (column), to add an observation (append a row at the foot of the sheet),
or to insert an observation at the selected point (move the data down and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace using the
spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or formulas.
Data transformations are done via the “Add” or “Variable” menus in the main window.

Selecting from a database
Another alternative is to establish your dataset by selecting variables from a database.

Begin with the “File, Databases” menu item. This has four forks: “Gretl native”, “RATS 4”, “PcGive”
and “On database server”. You should be able to find the file fedst1.bin in the file selector that
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opens if you choose the “Gretl native” option since this file, which contains a large collection of US
macroeconomic time series, is supplied with the distribution.

You won’t find anything under “RATS 4” unless you have purchased RATS data.? If you do possess
RATS data you should go into the “Tools, Preferences, General” dialog, select the Databases tab,
and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake Forest
University) under “On database server”. You can browse these remotely; you also have the option
of installing them onto your own computer. The initial remote databases window has an item
showing, for each file, whether it is already installed locally (and if so, if the local version is up to
date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s workspace
by using the “Series, Import” menu item in the database window, or via the popup menu that ap-
pears if you click the right mouse button, or by dragging the series into the program’s main window.

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts
of data already in machine readable form. You will, of course, need to study these data formats
(XML-based or “traditional”) as described in Appendix A.

4.4 Structuring a dataset

Once your data are read by gretl, it may be necessary to supply some information on the nature of
the data. We distinguish between three kinds of datasets:

1. Cross section
2. Time series

3. Panel data

The primary tool for doing this is the “Data, Dataset structure” menu entry in the graphical inter-
face, or the setobs command for scripts and the command-line interface.

Cross sectional data

By a cross section we mean observations on a set of “units” (which may be firms, countries, indi-
viduals, or whatever) at a common point in time. This is the default interpretation for a data file:
if there is insufficient information to interpret data as time-series or panel data, they are automat-
ically interpreted as a cross section. In the unlikely event that cross-sectional data are wrongly
interpreted as time series, you can correct this by selecting the “Data, Dataset structure” menu
item. Click the “cross-sectional” radio button in the dialog box that appears, then click “Forward”.
Click “OK” to confirm your selection.

Time series data

When you import data from a spreadsheet or plain text file, gretl will make fairly strenuous efforts
to glean time-series information from the first column of the data, if it looks at all plausible that
such information may be present. If time-series structure is present but not recognized, again you
can use the “Data, Dataset structure” menu item. Select “Time series” and click “Forward”; select the
appropriate data frequency and click “Forward” again; then select or enter the starting observation

2 See www.estima.com
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and click “Forward” once more. Finally, click “OK” to confirm the time-series interpretation if it is
correct (or click “Back” to make adjustments if need be).

Besides the basic business of getting a data set interpreted as time series, further issues may arise
relating to the frequency of time-series data. In a gretl time-series data set, all the series must
have the same frequency. Suppose you wish to make a combined dataset using series that, in their
original state, are not all of the same frequency. For example, some series are monthly and some
are quarterly.

Your first step is to formulate a strategy: Do you want to end up with a quarterly or a monthly data
set? A basic point to note here is that “compacting” data from a higher frequency (e.g. monthly) to
a lower frequency (e.g. quarterly) is usually unproblematic. You lose information in doing so, but
in general it is perfectly legitimate to take (say) the average of three monthly observations to create
a quarterly observation. On the other hand, “expanding” data from a lower to a higher frequency is
not, in general, a valid operation.

In most cases, then, the best strategy is to start by creating a data set of the lower frequency, and
then to compact the higher frequency data to match. When you import higher-frequency data from
a database into the current data set, you are given a choice of compaction method (average, sum,
start of period, or end of period). In most instances “average” is likely to be appropriate.

You can also import lower-frequency data into a high-frequency data set, but this is generally not
recommended. What gretl does in this case is simply replicate the values of the lower-frequency
series as many times as required. For example, suppose we have a quarterly series with the value
35.5 in 1990:1, the first quarter of 1990. On expansion to monthly, the value 35.5 will be assigned
to the observations for January, February and March of 1990. The expanded variable is therefore
useless for fine-grained time-series analysis, outside of the special case where you know that the
variable in question does in fact remain constant over the sub-periods.

When the current data frequency is appropriate, gretl offers both “Compact data” and “Expand
data” options under the “Data” menu. These options operate on the whole data set, compacting or
exanding all series. They should be considered “expert” options and should be used with caution.

Panel data

Panel data are inherently three dimensional —the dimensions being variable, cross-sectional unit,
and time-period. For example, a particular number in a panel data set might be identified as the
observation on capital stock for General Motors in 1980. (A note on terminology: we use the
terms “cross-sectional unit”, “unit” and “group” interchangeably below to refer to the entities that
compose the cross-sectional dimension of the panel. These might, for instance, be firms, countries

Or persons.)

For representation in a textual computer file (and also for gretl’s internal calculations) the three
dimensions must somehow be flattened into two. This “flattening” involves taking layers of the
data that would naturally stack in a third dimension, and stacking them in the vertical dimension.

gretl always expects data to be arranged “by observation”, that is, such that each row represents an
observation (and each variable occupies one and only one column). In this context the flattening of
a panel data set can be done in either of two ways:

e Stacked time series: the successive vertical blocks each comprise a time series for a given
unit.
e Stacked cross sections: the successive vertical blocks each comprise a cross-section for a

given period.

You may input data in whichever arrangement is more convenient. Internally, however, gretl always
stores panel data in the form of stacked time series.
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4.5 Panel data specifics

When you import panel data into gretl from a spreadsheet or comma separated format, the panel
nature of the data will not be recognized automatically (most likely the data will be treated as
“undated”). A panel interpretation can be imposed on the data using the graphical interface or via
the setobs command.

In the graphical interface, use the menu item “Data, Dataset structure”. In the first dialog box
that appears, select “Panel”. In the next dialog you have a three-way choice. The first two options,
“Stacked time series” and “Stacked cross sections” are applicable if the data set is already organized
in one of these two ways. If you select either of these options, the next step is to specify the number
of cross-sectional units in the data set. The third option, “Use index variables”, is applicable if the
data set contains two variables that index the units and the time periods respectively; the next step
is then to select those variables. For example, a data file might contain a country code variable and
a variable representing the year of the observation. In that case gretl can reconstruct the panel
structure of the data regardless of how the observation rows are organized.

The setobs command has options that parallel those in the graphical interface. If suitable index
variables are available you can do, for example

setobs unitvar timevar --panel-vars

where unitvar is a variable that indexes the units and timevar is a variable indexing the periods.
Alternatively you can use the form setobs freq 1:1 structure, where freq is replaced by the “block
size” of the data (that is, the number of periods in the case of stacked time series, or the number
of units in the case of stacked cross-sections) and structure is either --stacked-time-series or
--stacked-cross-section. Two examples are given below: the first is suitable for a panel in
the form of stacked time series with observations from 20 periods; the second for stacked cross
sections with 5 units.

setobs 20 1:1 --stacked-time-series
setobs 5 1:1 --stacked-cross-section

Panel data arranged by variable

Publicly available panel data sometimes come arranged “by variable.” Suppose we have data on two
variables, x1 and x2, for each of 50 states in each of 5 years (giving a total of 250 observations
per variable). One textual representation of such a data set would start with a block for x1, with
50 rows corresponding to the states and 5 columns corresponding to the years. This would be
followed, vertically, by a block with the same structure for variable x2. A fragment of such a data
file is shown below, with quinquennial observations 1965-1985. Imagine the table continued for
48 more states, followed by another 50 rows for variable x2.

x1

1965 1970 1975 1980 1985
AR 100.0 110.5 118.7 131.2 160.4
AZ 100.0 104.3 113.8 120.9 140.6

If a datafile with this sort of structure is read into gretl,? the program will interpret the columns as
distinct variables, so the data will not be usable “as is.” But there is a mechanism for correcting the
situation, namely the stack function.

Consider the first data column in the fragment above: the first 50 rows of this column constitute a
cross-section for the variable x1 in the year 1965. If we could create a new series by stacking the

3Note that you will have to modify such a datafile slightly before it can be read at all. The line containing the variable
name (in this example x1) will have to be removed, and so will the initial row containing the years, otherwise they will be
taken as numerical data.
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first 50 entries in the second column underneath the first 50 entries in the first, we would be on the
way to making a data set “by observation” (in the first of the two forms mentioned above, stacked
cross-sections). That is, we'd have a column comprising a cross-section for x1 in 1965, followed by
a cross-section for the same variable in 1970.

The following gretl script illustrates how we can accomplish the stacking, for both x1 and x2. We
assume that the original data file is called panel. txt, and that in this file the columns are headed
with “variable names” v1, v2, ..., v5. (The columns are not really variables, but in the first instance
we “pretend” that they are.)

open panel.txt

series x1 = stack(vl..v5) --length=50

series x2 = stack(vl..v5) --offset=50 --Tength=50
setobs 50 1:1 --stacked-cross-section

store panel.gdt x1 x2

The second line illustrates the syntax of the stack function. The double dots within the parenthe-
ses indicate a range of variables to be stacked: here we want to stack all 5 columns (for all 5 years).*
The full data set contains 100 rows; in the stacking of variable x1 we wish to read only the first 50
rows from each column: we achieve this by adding --Tength=50. Note that if you want to stack a
non-contiguous set of columns you can give a comma-separated list of variable names, as in

series x = stack(vl,v3,v5)

or you can provide within the parentheses the name of a previously created list (see chapter 14).

On line 3 we do the stacking for variable x2. Again we want a Tength of 50 for the components of
the stacked series, but this time we want gretl to start reading from the 50th row of the original
data, and we specify --offset=50. Line 4 imposes a panel interpretation on the data; finally, we
save the data in gretl format, with the panel interpretation, discarding the original “variables” v1
through v5.

The illustrative script above is appropriate when the number of variables to be processed is small.
When then are many variables in the data set it will be more efficient to use a loop to accomplish
the stacking, as shown in the following script. The setup is presumed to be the same as in the
previous section (50 units, 5 periods), but with 20 variables rather than 2.

open panel.txt
Tloop i=1..20
scalar k = (i - 1) * 50
series x$i = stack(vl..v5) --offset=k --Tength=50
endTloop
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 \
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Panel data marker strings

It can be helpful with panel data to have the observations identified by mnemonic markers. A
special function in the genr command is available for this purpose.

In the example above, suppose all the states are identified by two-letter codes in the left-most
column of the original datafile. When the stacking operation is performed, these codes will be
stacked along with the data values. If the first row is marked AR for Arkansas, then the marker AR
will end up being shown on each row containing an observation for Arkansas. That’s all very well,
but these markers don’t tell us anything about the date of the observation. To rectify this we could
do:

4You can also specify a list of series using the wildcard “*’; for example stack(v*) would stack all series whose
names begin with ‘v’
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genr time
series year = 1960 + (5 * time)
genr markers = "%s:%d", marker, year

The first line generates a 1-based index representing the period of each observation, and the second
line uses the time variable to generate a variable representing the year of the observation. The
third line contains this special feature: if (and only if) the name of the new “variable” to generate is
markers, the portion of the command following the equals sign is taken as a C-style format string
(which must be wrapped in double quotes), followed by a comma-separated list of arguments.
The arguments will be printed according to the given format to create a new set of observation
markers. Valid arguments are either the names of variables in the dataset, or the string marker
which denotes the pre-existing observation marker. The format specifiers which are likely to be
useful in this context are %s for a string and %d for an integer. Strings can be truncated: for
example %.3s will use just the first three characters of the string. To chop initial characters off
an existing observation marker when constructing a new one, you can use the syntax marker + n,
where n is a positive integer: in the case the first n characters will be skipped.

After the commands above are processed, then, the observation markers will look like, for example,
AR:1965, where the two-letter state code and the year of the observation are spliced together with
a colon.

Panel dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following sorts:
(a) dummies as unique identifiers for the units or groups, and (b) dummies as unique identifiers for
the time periods. The former may be used to allow the intercept of the regression to differ across
the units, the latter to allow the intercept to differ across periods.

Two special functions are available to create such dummies. These are found under the “Add”
menu in the GUI, or under the genr command in script mode or gretlcli.

1. “unit dummies” (script command genr unitdum). This command creates a set of dummy
variables identifying the cross-sectional units. The variable du_1 will have value 1 in each
row corresponding to a unit 1 observation, 0 otherwise; du_2 will have value 1 in each row
corresponding to a unit 2 observation, 0 otherwise; and so on.

2. “time dummies” (script command genr timedum). This command creates a set of dummy
variables identifying the periods. The variable dt_1 will have value 1 in each row correspond-
ing to a period 1 observation, 0 otherwise; dt_2 will have value 1 in each row corresponding
to a period 2 observation, 0 otherwise; and so on.

If a panel data set has the YEAR of the observation entered as one of the variables you can create a
periodic dummy to pick out a particular year, e.g. genr dum = (YEAR==1960). You can also create
periodic dummy variables using the modulus operator, %. For instance, to create a dummy with
value 1 for the first observation and every thirtieth observation thereafter, O otherwise, do

genr index
series dum = ((index-1) % 30) ==

Lags, differences, trends

If the time periods are evenly spaced you may want to use lagged values of variables in a panel
regression (but see also chapter 21); you may also wish to construct first differences of variables of
interest.

Once a dataset is identified as a panel, gretl will handle the generation of such variables correctly.
For example the command genr x1_1 = x1(-1) will create a variable that contains the first lag
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of x1 where available, and the missing value code where the lag is not available (e.g. at the start of
the time series for each group). When you run a regression using such variables, the program will
automatically skip the missing observations.

When a panel data set has a fairly substantial time dimension, you may wish to include a trend in
the analysis. The command genr time creates a variable named time which runs from 1 to T for
each unit, where T is the length of the time-series dimension of the panel. If you want to create an
index that runs consecutively from 1 to m X T, where m is the number of units in the panel, use
genr index.

Basic statistics by unit

gretl contains functions which can be used to generate basic descriptive statistics for a given vari-
able, on a per-unit basis; these are pnobs () (number of valid cases), pmin() and pmax () (minimum
and maximum) and pmean() and psd() (mean and standard deviation).

As a brief illustration, suppose we have a panel data set comprising 8 time-series observations on
each of N units or groups. Then the command

series pmx = pmean(x)

creates a series of this form: the first 8 values (corresponding to unit 1) contain the mean of x for
unit 1, the next 8 values contain the mean for unit 2, and so on. The psd() function works in a
similar manner. The sample standard deviation for group i is computed as

2 = x0)?
it T 1

where T; denotes the number of valid observations on x for the given unit, X; denotes the group
mean, and the summation is across valid observations for the group. If T; < 2, however, the
standard deviation is recorded as O.

One particular use of psd() may be worth noting. If you want to form a sub-sample of a panel that
contains only those units for which the variable x is time-varying, you can either use
smpl pmin(x) < pmax(x) --restrict

or

smpl psd(x) > 0 --restrict

4.6 Missing data values

Representation and handling

Missing values are represented internally as NaN (“not a number”), as defined in the IEEE 754
floating-point standard. In a native-format data file they should be represented as NA. When im-
porting CSV data gretl accepts several common representations of missing values including —999,
the string NA (in upper or lower case), a single dot, or simply a blank cell. Blank cells should, of
course, be properly delimited, e.g. 120.6,,5.38, in which the middle value is presumed missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:
¢ In calculating descriptive statistics (mean, standard deviation, etc.) under the summary com-
mand, missing values are simply skipped and the sample size adjusted appropriately.

e In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
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time series work due to the inclusion of lags, first differences and so on; missing values at the
end of the range are not uncommon due to differential updating of series and possibly the
inclusion of leads.

If gretl detects any missing values “inside” the (possibly truncated) sample range for a regression,
the result depends on the character of the dataset and the estimator chosen. In many cases, the
program will automatically skip the missing observations when calculating the regression results.
In this situation a message is printed stating how many observations were dropped. On the other
hand, the skipping of missing observations is not supported for all procedures: exceptions include
all autoregressive estimators, system estimators such as SUR, and nonlinear least squares. In the
case of panel data, the skipping of missing observations is supported only if their omission leaves
a balanced panel. If missing observations are found in cases where they are not supported, gretl
gives an error message and refuses to produce estimates.

Manipulating missing values

Some special functions are available for the handling of missing values. The Boolean function
missing() takes the name of a variable as its single argument; it returns a series with value 1 for
each observation at which the given variable has a missing value, and value 0 otherwise (that is, if
the given variable has a valid value at that observation). The function ok () is complementary to
missing; it is just a shorthand for !missing (where ! is the Boolean NOT operator). For example,
one can count the missing values for variable x using

scalar nmiss_x = sum(missing(x))

The function zeromiss (), which again takes a single series as its argument, returns a series where
all zero values are set to the missing code. This should be used with caution—one does not want
to confuse missing values and zeros—but it can be useful in some contexts. For example, one can
determine the first valid observation for a variable x using

genr time
scalar x0 = min(zeromiss(time * ok(x)))

The function misszero() does the opposite of zeromiss, that is, it converts all missing values to
Zero.

If missing values get involved in calculations, they propagate according to the IEEE rules: notably,
if one of the operands to an arithmetical operation is a NaN, the result will also be NaN.

4.7 Maximum size of data sets

Basically, the size of data sets (both the number of variables and the number of observations per
variable) is limited only by the characteristics of your computer. gretl allocates memory dynami-
cally, and will ask the operating system for as much memory as your data require. Obviously, then,
you are ultimately limited by the size of RAM.

Aside from the multiple-precision OLS option, gretl uses double-precision floating-point numbers
throughout. The size of such numbers in bytes depends on the computer platform, but is typically
eight. To give a rough notion of magnitudes, suppose we have a data set with 10,000 observations
on 500 variables. That’s 5 million floating-point numbers or 40 million bytes. If we define the
megabyte (MB) as 1024 x 1024 bytes, as is standard in talking about RAM, it’s slightly over 38 MB.
The program needs additional memory for workspace, but even so, handling a data set of this size
should be quite feasible on a current PC, which at the time of writing is likely to have at least 256
MB of RAM.
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If RAM is not an issue, there is one further limitation on data size (though it’s very unlikely to
be a binding constraint). That is, variables and observations are indexed by signed integers, and
on a typical PC these will be 32-bit values, capable of representing a maximum positive value of
231 — 1 =12,147,483,647.

The limits mentioned above apply to gretl’s “native” functionality. There are tighter limits with
regard to two third-party programs that are available as add-ons to gretl for certain sorts of time-
series analysis including seasonal adjustment, namely TRAMO/SEATS and X-12-ARIMA. These pro-
grams employ a fixed-size memory allocation, and can’t handle series of more than 600 observa-
tions.

4.8 Data file collections

If you're using gretl in a teaching context you may be interested in adding a collection of data files
and/or scripts that relate specifically to your course, in such a way that students can browse and
access them easily.

There are three ways to access such collections of files:

o For data files: select the menu item “File, Open data, Sample file”, or click on the folder icon
on the gretl toolbar.

o For script files: select the menu item “File, Script files, Practice file”.
When a user selects one of the items:

e The data or script files included in the gretl distribution are automatically shown (this includes
files relating to Ramanathan’s Introductory Econometrics and Greene’s Econometric Analysis).

e The program looks for certain known collections of data files available as optional extras,
for instance the datafiles from various econometrics textbooks (Davidson and MacKinnon,
Gujarati, Stock and Watson, Verbeek, Wooldridge) and the Penn World Table (PWT 5.6). (See
the data page at the gretl website for information on these collections.) If the additional files
are found, they are added to the selection windows.

e The program then searches for valid file collections (not necessarily known in advance) in
these places: the “system” data directory, the system script directory, the user directory,
and all first-level subdirectories of these. For reference, typical values for these directories
are shown in Table 4.1. (Note that PERSONAL is a placeholder that is expanded by Windows,
corresponding to “My Documents” on English-language systems.)

Linux MS Windows
system data dir /usr/share/gretl/data c:\Program Files\gretl\data
system script dir /usr/share/gretl1/scripts c:\Program Files\gretl\scripts
user dir $HOME /gret] PERSONAL\gret1

Table 4.1: Typical locations for file collections

Any valid collections will be added to the selection windows. So what constitutes a valid file collec-
tion? This comprises either a set of data files in gretl XML format (with the .gdt suffix) or a set of
script files containing gretl commands (with .1np suffix), in each case accompanied by a “master
file” or catalog. The gretl distribution contains several example catalog files, for instance the file
descriptions in the misc sub-directory of the gretl data directory and ps_descriptions in the
misc sub-directory of the scripts directory.


http://gretl.sourceforge.net/gretl_data.html
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If you are adding your own collection, data catalogs should be named descriptions and script
catalogs should be be named ps_descriptions. In each case the catalog should be placed (along
with the associated data or script files) in its own specific sub-directory (e.g. /usr/share/gretl1/
data/mydata or c:\userdata\gretl\data\mydata).

The catalog files are plain text; if they contain non-ASCII characters they must be encoded as UTF-
8. The syntax of such files is straightforward. Here, for example, are the first few lines of gretl’s
“misc” data catalog:

# Gretl: various illustrative datafiles
"arma","artificial data for ARMA script example"
"ects_nls","Nonlinear least squares example"

"hamilton","Prices and exchange rate, U.S. and Italy"

The first line, which must start with a hash mark, contains a short name, here “Gretl”, which
will appear as the label for this collection’s tab in the data browser window, followed by a colon,
followed by an optional short description of the collection.

Subsequent lines contain two elements, separated by a comma and wrapped in double quotation
marks. The first is a datafile name (leave off the .gdt suffix here) and the second is a short de-
scription of the content of that datafile. There should be one such line for each datafile in the
collection.

A script catalog file looks very similar, except that there are three fields in the file lines: a filename
(without its .1inp suffix), a brief description of the econometric point illustrated in the script, and
a brief indication of the nature of the data used. Again, here are the first few lines of the supplied
“misc” script catalog:

# Gretl: various sample scripts
"arma","ARMA modeling","artificial data"
"ects_nls","Nonlinear least squares (Davidson)","artificial data"

non non

"leverage","Influential observations","artificial data"

non non

"longley","Multicollinearity","US employment"
If you want to make your own data collection available to users, these are the steps:

1. Assemble the data, in whatever format is convenient.

2. Convert the data to gretl format and save as gdt files. It is probably easiest to convert the data
by importing them into the program from plain text, CSV, or a spreadsheet format (MS Excel
or Gnumeric) then saving them. You may wish to add descriptions of the individual variables
(the “Variable, Edit attributes” menu item), and add information on the source of the data (the
“Data, Edit info” menu item).

3. Write a descriptions file for the collection using a text editor.

4. Put the datafiles plus the descriptions file in a subdirectory of the gretl data directory (or user
directory).

5. If the collection is to be distributed to other people, package the data files and catalog in some
suitable manner, e.g. as a zipfile.

If you assemble such a collection, and the data are not proprietary, we would encourage you to
submit the collection for packaging as a gretl optional extra.


/usr/share/gretl/data/mydata
/usr/share/gretl/data/mydata
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4.9 Assembling data from multiple sources

In many contexts researchers need to bring together data from multiple source files, and in some
cases these sources are not organized such that the data can simply be “stuck together” by append-
ing rows or columns to a base dataset. In gretl, the join command can be used for this purpose;
this command is discussed in detail in chapter 7.



Chapter 5

Sub-sampling a dataset

5.1 Introduction

Some subtle issues can arise here; this chapter attempts to explain the issues.

A sub-sample may be defined in relation to a full dataset in two different ways: we will refer to these
as “setting” the sample and “restricting” the sample; these methods are discussed in sections 5.2
and 5.3 respectively. In addition section 5.4 discusses some special issues relating to panel data,
and section 5.5 covers resampling with replacement, which is useful in the context of bootstrapping
test statistics.

The following discussion focuses on the command-line approach. But you can also invoke the
methods outlined here via the items under the Sample menu in the GUI program.

5.2 Setting the sample

By “setting” the sample we mean defining a sub-sample simply by means of adjusting the starting
and/or ending point of the current sample range. This is likely to be most relevant for time-series
data. For example, one has quarterly data from 1960:1 to 2003:4, and one wants to run a regression
using only data from the 1970s. A suitable command is then

smp1 1970:1 1979:4

Or one wishes to set aside a block of observations at the end of the data period for out-of-sample
forecasting. In that case one might do

smp1 ; 2000:4
where the semicolon is shorthand for “leave the starting observation unchanged”. (The semicolon
may also be used in place of the second parameter, to mean that the ending observation should be
unchanged.) By “unchanged” here, we mean unchanged relative to the last smp1 setting, or relative

to the full dataset if no sub-sample has been defined up to this point. For example, after

smpl 1970:1 2003:4
smp1 ; 2000:4

the sample range will be 1970:1 to 2000:4.

An incremental or relative form of setting the sample range is also supported. In this case a relative
offset should be given, in the form of a signed integer (or a semicolon to indicate no change), for
both the starting and ending point. For example

smpl +1 ;
will advance the starting observation by one while preserving the ending observation, and
smpl +2 -1

31
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will both advance the starting observation by two and retard the ending observation by one.

An important feature of “setting” the sample as described above is that it necessarily results in
the selection of a subset of observations that are contiguous in the full dataset. The structure of
the dataset is therefore unaffected (for example, if it is a quarterly time series before setting the
sample, it remains a quarterly time series afterwards).

5.3 Restricting the sample

By “restricting” the sample we mean selecting observations on the basis of some Boolean (logical)
criterion, or by means of a random number generator. This is likely to be most relevant for cross-
sectional or panel data.

Suppose we have data on a cross-section of individuals, recording their gender, income and other
characteristics. We wish to select for analysis only the women. If we have a male dummy variable
with value 1 for men and O for women we could do

smpl male==0 --restrict

to this effect. Or suppose we want to restrict the sample to respondents with incomes over $50,000.
Then we could use

smp1 income>50000 --restrict

A question arises: if we issue the two commands above in sequence, what do we end up with in
our sub-sample: all cases with income over 50000, or just women with income over 500007 By
default, the answer is the latter: women with income over 50000. The second restriction augments
the first, or in other words the final restriction is the logical product of the new restriction and any
restriction that is already in place. If you want a new restriction to replace any existing restrictions
you can first recreate the full dataset using

smpl --full
Alternatively, you can add the replace option to the smp1 command:
smp1l income>50000 --restrict --replace

This option has the effect of automatically re-establishing the full dataset before applying the new
restriction.

Unlike a simple “setting” of the sample, “restricting” the sample may result in selection of non-
contiguous observations from the full data set. It may therefore change the structure of the data
set.

This can be seen in the case of panel data. Say we have a panel of five firms (indexed by the variable
f1irm) observed in each of several years (identified by the variable year). Then the restriction

smpl year==1995 --restrict
produces a dataset that is not a panel, but a cross-section for the year 1995. Similarly
smpl firm==3 --restrict

produces a time-series dataset for firm number 3.

For these reasons (possible non-contiguity in the observations, possible change in the structure of
the data), gretl acts differently when you “restrict” the sample as opposed to simply “setting” it. In
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the case of setting, the program merely records the starting and ending observations and uses these
as parameters to the various commands calling for the estimation of models, the computation of
statistics, and so on. In the case of restriction, the program makes a reduced copy of the dataset
and by default treats this reduced copy as a simple, undated cross-section—but see the further
discussion of panel data in section 5.4.

If you wish to re-impose a time-series interpretation of the reduced dataset you can do so using the
setobs command, or the GUI menu item “Data, Dataset structure”.

The fact that “restricting” the sample results in the creation of a reduced copy of the original
dataset may raise an issue when the dataset is very large. With such a dataset in memory, the
creation of a copy may lead to a situation where the computer runs low on memory for calculating
regression results. You can work around this as follows:

1. Open the full data set, and impose the sample restriction.
2. Save a copy of the reduced data set to disk.
3. Close the full dataset and open the reduced one.

4. Proceed with your analysis.

Random sub-sampling

Besides restricting the sample on some deterministic criterion, it may sometimes be useful (when
working with very large datasets, or perhaps to study the properties of an estimator) to draw a
random sub-sample from the full dataset. This can be done using, for example,

smp1l 100 --random

to select 100 cases. If you want the sample to be reproducible, you should set the seed for the
random number generator first, using the set command. This sort of sampling falls under the
“restriction” category: a reduced copy of the dataset is made.

5.4 Panel data

Consider for concreteness the Arellano-Bond dataset supplied with gretl (abdata.gdt). This com-
prises data on 140 firms (n = 140) observed over the years 1976-1984 (T = 9). The dataset is
“nominally balanced” in the sense that that the time-series length is the same for all countries (this
being a requirement for a dataset to count as a panel in gretl), but in fact there are many missing
values (NAs).

You may want to sub-sample such a dataset in either the cross-sectional dimension (limit the sam-
ple to a subset of firms) or the time dimension (e.g. use data from the 1980s only). One way to
sub-sample on firms keys off the notation used by gretl for panel observations. The full data range
is printed as 1:1 (firm 1, period 1) to 140:9 (firm 140, period 9). The effect of

smpl 1:1 80:9

is to limit the sample to the first 80 firms. Note that if you instead tried smp1 1:1 80:4 this would
provoke an error: you cannot use this syntax to sub-sample in the time dimension of the panel.
Alternatively, and perhaps more naturally, you can use the --unit option with the smpT command
to limit the sample in the cross-sectional dimension, as in

smpl 1 80 --unit

The firms in the Arellano-Bond dataset are anonymous, but suppose you had a panel with five
named countries. With such a panel you can inform gretl of the names of the groups using the
setobs command. For example, given



Chapter 5. Sub-sampling a dataset 34

string cstr = "Portugal Italy Ireland Greece Spain"
setobs country cstr --panel-groups

gretl creates a string-valued series named country with group names taken from the variable cstr.
Then, to include only Italy and Spain you could do

smp1 country=="Italy" || country=="Spain" --restrict
or to exclude one country,
smpl country!="Ireland" --restrict

To sub-sample in the time dimension, use of --restrict is required. For example, the Arellano-
Bond dataset contains a variable named YEAR that records the year of the observations and if one
wanted to omit the first two years of data one could do

smpl YEAR >= 1978 --restrict

If a dataset does not already incude a suitable variable for this purpose one can use the command
genr time to create a simple 1-based time index.

Note that if you apply a sample restriction that just selects certain units (firms, countries or what-
ever), or selects certain contiguous time-periods —such that n > 1, T > 1 and the time-series length
is still the same across all included units —your sub-sample will still be interpreted by gretl as a
panel.

Unbalancing restrictions

In some cases one wants to sub-sample according to a criterion that “cuts across the grain” of
a panel dataset. For instance, suppose you have a micro dataset with thousands of individuals
observed over several years and you want to restrict the sample to observations on employed
women.

If we simply extracted from the total nT rows of the dataset those that pertain to women who were
employed at time t (t = 1,...,T) we would likely end up with a dataset that doesn’t count as a
panel in gretl (because the specific time-series length, T;, would differ across individuals). In some
contexts it might be OK that gretl doesn’t take your sub-sample to be a panel, but if you want to
apply panel-specific methods this is a problem. You can solve it by giving the --balanced option
with smp1. For example, supposing your dataset contained dummy variables gender (with the value
1 coding for women) and employed, you could do

smpl gender==1 & & employed==1 --restrict --balanced

What exactly does this do? Well, let’s say the years of your data are 2000, 2005 and 2010, and that
some women were employed in all of those years, giving a maximum T; value of 3. But individual
526 is a women who was employed only in the year 2000 (T; = 1). The effect of the --balanced
option is then to insert “padding rows” of NAs for the years 2005 and 2010 for individual 526, and
similarly for all individuals with 0 < T; < 3. Your sub-sample then qualifies as a panel.

5.5 Resampling and bootstrapping

Given an original data series x, the command

series xr = resample(x)
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creates a new series each of whose elements is drawn at random from the elements of x. If the
original series has 100 observations, each element of x is selected with probability 1/100 at each
drawing. Thus the effect is to “shuffle” the elements of x, with the twist that each element of x may
appear more than once, or not at all, in xr.

The primary use of this function is in the construction of bootstrap confidence intervals or p-values.
Here is a simple example. Suppose we estimate a simple regression of  on x via OLS and find that
the slope coefficient has a reported t-ratio of 2.5 with 40 degrees of freedom. The two-tailed p-
value for the null hypothesis that the slope parameter equals zero is then 0.0166, using the t(40)
distribution. Depending on the context, however, we may doubt whether the ratio of coefficient to
standard error truly follows the t(40) distribution. In that case we could derive a bootstrap p-value
as shown in Listing 5.1.

Under the null hypothesis that the slope with respect to x is zero, y is simply equal to its mean plus
an error term. We simulate y by resampling the residuals from the initial OLS and re-estimate the
model. We repeat this procedure a large number of times, and record the number of cases where
the absolute value of the t-ratio is greater than 2.5: the proportion of such cases is our bootstrap
p-value. For a good discussion of simulation-based tests and bootstrapping, see Davidson and
MacKinnon (2004, chapter 4); Davidson and Flachaire (2001) is also instructive.

Listing 5.1: Calculation of bootstrap p-value

ols y 0 x
# save the residuals
genr ui = $uhat
scalar ybar = mean(y)
# number of replications for bootstrap
scalar replics = 10000
scalar tcount = 0
series ysim
loop replics --quiet
# generate simulated y by resampling
ysim = ybar + resample(ui)
ols ysim 0 x
scalar tsim = abs($coeff(x) / $stderr(x))
tcount += (tsim > 2.5)
endloop
printf "proportion of cases with |[t| > 2.5 = %g\n", tcount / replics
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Graphs and plots

6.1 Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured graphing
program with myriad options. It is available from www.gnuplot.info (but note that a suitable copy
of gnuplot is bundled with the packaged versions of gretl for MS Windows and Mac OS X). Gretl
gives you direct access, via a graphical interface, to a subset of gnuplot’s options and it tries to
choose sensible values for you; it also allows you to take complete control over graph details if you
wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the following
options.

e Save as PNG: Save the graph in Portable Network Graphics format (the same format that you
see on screen).

e Save as postscript: Save in encapsulated postscript (EPS) format.
¢ Save as Windows metafile: Save in Enhanced Metafile (EMF) format.

e Save to session as icon: The graph will appear in iconic form when you select “Icon view” from
the View menu.

e Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

e Print: (Current GTK or MS Windows only) lets you print the graph directly.

e Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications such
as MS Word.

¢ Edit: Opens a controller for the plot which lets you adjust many aspects of its appearance.

e Close: Closes the graph window.

Displaying data labels

For simple X-Y scatter plots, some further options are available if the dataset includes “case mark-
ers” (that is, labels identifying each observation).! With a scatter plot displayed, when you move
the mouse pointer over a data point its label is shown on the graph. By default these labels are
transient: they do not appear in the printed or copied version of the graph. They can be removed by
selecting “Clear data labels” from the graph pop-up menu. If you want the labels to be affixed per-
manently (so they will show up when the graph is printed or copied), select the option “Freeze data
labels” from the pop-up menu; “Clear data labels” cancels this operation. The other label-related
option, “All data labels”, requests that case markers be shown for all observations. At present the
display of case markers is disabled for graphs containing more than 250 data points.

IFor an example of such a dataset, see the Ramanathan file data4-10: this contains data on private school enrollment
for the 50 states of the USA plus Washington, DC; the case markers are the two-letter codes for the states.
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GUI plot editor

Selecting the Edit option in the graph popup menu opens an editing dialog box, shown in Figure 6.1.
Notice that there are several tabs, allowing you to adjust many aspects of a graph’s appearance:
font, title, axis scaling, line colors and types, and so on. You can also add lines or descriptive labels
to a graph (under the Lines and Labels tabs). The “Apply” button applies your changes without
closing the editor; “OK” applies the changes and closes the dialog.

1E| X-axis |Y—axi5 | Lines | Labels | Palette |

Title of plot |price versus sqft (with least squares |
key position left top - |
fitted line linear: y = a + b*x - |

Show full berder

font: Sans 8 |

[] set as default

I{ Help </ Apply <Jok | 3¢ Close

Figure 6.1: gretl’s gnuplot controller

Publication-quality graphics: advanced options

The GUI plot editor has two limitations. First, it cannot represent all the myriad options that
gnuplot offers. Users who are sufficiently familiar with gnuplot to know what they’re missing in
the plot editor presumably don’t need much help from gretl, so long as they can get hold of the
gnuplot command file that gretl has put together. Second, even if the plot editor meets your needs,
in terms of fine-tuning the graph you see on screen, a few details may need further work in order
to get optimal results for publication.

Either way, the first step in advanced tweaking of a graph is to get access to the graph command
file.

In the graph display window, right-click and choose “Save to session as icon”.

If it’s not already open, open the icon view window — either via the menu item View/Icon view,
or by clicking the “session icon view” button on the main-window toolbar.

Right-click on the icon representing the newly added graph and select “Edit plot commands”
from the pop-up menu.

You get a window displaying the plot file (Figure 6.2).

Here are the basic things you can do in this window. Obviously, you can edit the file you just
opened. You can also send it for processing by gnuplot, by clicking the “Execute” (cogwheel) icon
in the toolbar. Or you can use the “Save as” button to save a copy for editing and processing as you
wish.
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QL4 BEARS O X

# set term pngcairo font "Vera,Q" =
set encoding utfs
set style line 1 lec rgb "#ffoooo"
set style line 2 lc rgb "#o0OOff"
set style line 3 lc rgb "#S0caso"
set style line 4 lc rgb "#bf2shz"
set style line 5 lc rgb "#8faab3"
set style line 6 lc rgb "#ffasoo"
set style increment user
# X ="'Z3" (4)
#Y ="'y (1)
set xlabel 'z
set xzeroaxis
set datafile missing "7"
# plot includes automatic fit: OLS
set title "Y versus Z3 (with least squares fit)"
set ylabel 'v!
set key left top
set xrange [0:15.371875]
plot
oloneina 12022 tatla 1w mainte A hdl

4 3

Figure 6.2: Plot commands editor

Unless you're a gnuplot expert, most likely you’ll only need to edit a couple of lines at the top of
the file, specifying a driver (plus options) and an output file. We offer here a brief summary of some
points that may be useful.

First, gnuplot’s output mode is set via the command set term followed by the name of a supported
driver (“terminal” in gnuplot parlance) plus various possible options. (The top line in the plot
commands window shows the set term line that gretl used to make a PNG file, commented out.)
The graphic formats that are most suitable for publication are PDF and EPS. These are supported
by the gnuplot term types pdf, pdfcairo and postscript (with the eps option). The pdfcairo
driver has the virtue that is behaves in a very similar manner to the PNG one, the output of which
you see on screen. This is provided by the version of gnuplot that is included in the gretl packages
for MS Windows and Mac OS X; if you're on Linux it may or may be supported. If pdfcairo is not
available, the pdf terminal may be available; the postscript terminal is almost certainly available.

Besides selecting a term type, if you want to get gnuplot to write the actual output file you need
to append a set output line giving a filename. Here are a few examples of the first two lines you
might type in the window editing your plot commands. We’ll make these more “realistic” shortly.

set term pdfcairo
set output ’'mygraph.pdf’

set term pdf
set output ’'mygraph.pdf’

set term postscript eps
set output ’mygraph.eps’

There are a couple of things worth remarking here. First, you may want to adjust the size of the
graph, and second you may want to change the font. The default sizes produced by the above
drivers are 5 inches by 3 inches for pdfcairo and pdf, and 5 inches by 3.5 inches for postscript
eps. In each case you can change this by giving a size specification, which takes the form XX, YY
(examples below).
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You may ask, why bother changing the size in the gnuplot command file? After all, PDF and EPS are
both vector formats, so the graphs can be scaled at will. True, but a uniform scaling will also affect
the font size, which may end looking wrong. You can get optimal results by experimenting with
the font and size options to gnuplot’s set term command. Here are some examples (comments
follow below).

# pdfcairo, regular size, slightly amended
set term pdfcairo font "Sans,6" size 5in,3.51in
# or small size

set term pdfcairo font "Sans,5" size 3in,2in

# pdf, regular size, slightly amended

set term pdf font "Helvetica,8" size 5in,3.5in
# or small

set term pdf font "Helvetica,6" size 3in,2in

# postscript, regular

set term post eps solid font "Helvetica,1l6"

# or small

set term post eps solid font "Helvetica,1l2" size 3in,2in

On the first line we set a sans serif font for pdfcairo at a suitable size for a 5 x 3.5 inch plot
(which you may find looks better than the rather “letterboxy” default of 5 x 3). And on the second
we illustrate what you might do to get a smaller 3 X 2 inch plot. You can specify the plot size in
centimeters if you prefer, as in

set term pdfcairo font "Sans,6" size 6cm,4cm

We then repeat the exercise for the pdf terminal. Notice that here we're specifying one of the 35
standard PostScript fonts, namely Helvetica. Unlike pdfcairo, the plain pdf driver is unlikely to
be able to find fonts other than these.

In the third pair of lines we illustrate options for the postscript driver (which, as you see, can
be abbreviated as post). Note that here we have added the option solid. Unlike most other
drivers, this one uses dashed lines unless you specify the solid option. Also note that we've
(apparently) specified a much larger font in this case. That's because the eps option in effect tells
the postscript driver to work at half-size (among other things), so we need to double the font
size.

Table 6.1 summarizes the basics for the three drivers we have mentioned.

Terminal  default size (inches) suggested font

pdfcairo 5x%x3 Sans,6
pdf 5x%x3 Helvetica,8
post eps 5% 3.5 Helvetica,16

Table 6.1: Drivers for publication-quality graphics

To find out more about gnuplot visit www.gnuplot.info. This site has documentation for the current
version of the program in various formats.

Additional tips

To be written. Line widths, enhanced text. Show a “before and after” example.


http://www.gnuplot.info/
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6.2 Plotting graphs from scripts

When working with scripts, you may want to have a graph shown onto your display or saved into a
file. In fact, if in your usual workflow you find yourself creating similar graphs over and over again,
you might want to consider the option of writing a script which automates this process for you.
Gretl gives you two main tools for doing this: one is a command called gnuplot, whose main use
is to create standard plot quickly. The other one is the plot command block, which has a more
elaborate syntax but offers you more control on output.

The gnuplot command

The gnuplot command is described at length in the Gretl Command Reference and the online help
system. Here, we just summarize its main features: basically, it consists of the gnuplot keyword,
followed by a list of items, telling the command what you want plotted and a list of options, telling
it how you want it plotted.

For example, the line
gnuplot yl y2 x

will give you a basic XY plot of the two series y1 and y2 on the vertical axis versus the series x on
the horizontal axis. In general, the arguments to the gnuplot command is a list of series, the last
of which goes on the x-axis, while all the other ones go onto the y-axis. By default, the gnupTlot
command gives you a scatterplot. If you just have one variable on the y-axis, then gretl will also
draw a the OLS interpolation, if the fit is good enough.?

Several aspects of the behavior described above can be modified. You do this by appending options
to the command. Most options can be broadly grouped in three categories:

1. Plot styles: we support points (the default choice), lines, lines and points together, and im-
pulses (vertical lines).

2. Algorithm for the fitted line: here you can choose between linear, quadratic and cubic inter-
polation, but also more exotic choices, such as semi-log, inverse or loess (non-parametric). Of
course, you can also turn this feature off.

3. Input and output: you can choose whether you want your graph on your computer screen
(and possibly use the in-built graphical widget to further customize it — see above, page 37),
or rather save it to a file. We support several graphical formats, among which PNG and PDF,
to make it easy to incorporate your plots into text documents.

The following script uses the AWM dataset to exemplify some traditional plots in macroeconomics:

open AWM.gdt --quiet

# --- consumption and income, different styles -----——————-
gnupTot PCR YER

gnupTot PCR YER --output=display

gnuplot PCR YER --output=display --time-series

gnuplot PCR YER --output=display --time-series --with-Tines

# --- Phillips’ curve, different fitted lines -----—-—————-—-—-

gnupTot INFQ URX --output=display

2The technical condition for this is that the two-tailed p-value for the slope coefficient should be under 10%.
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gnupTot INFQ URX --suppress-fitted --output=display
gnuplot INFQ URX --inverse-fit --output=display
gnuplot INFQ URX --Toess-fit --output=display

FIXME: comment on the above

For more detail, consult the Gretl Command Reference.

The plot command block

The plot environment is a way to pass information to Gnuplot in a more structured way, so that
customization of basic plots becomes easier. It has the following characteristics:

The block starts with the plot keyword, followed by a required parameter: the name of a list, a
single series or a matrix. This parameter specifies the data to be plotted. The starting line may be
prefixed with the savename <- apparatus to save a plot as an icon in the GUI program. The block
ends with end plot.

Inside the block you have zero or more lines of these types, identified by an initial keyword:

option: specify a single option (details below)

options: specify multiple options on a single line; if more than one option is given on a line, the
options should be separated by spaces.

Titeral: a command to be passed to gnuplot literally

printf: a printf statement whose result will be passed to gnuplot literally; this allows the use of
string variables without having to resort to @-style string substitution.

The options available are basically those of the current gnuplot command, but with a few dif-
ferences. For one thing you don’t need the leading double-dash in an "option" (or "options") line.
Besides that,

e You can’t use the option --matrix=whatever with plot: that possibility is handled by pro-
viding the name of a matrix on the initial plot line.

e The --input=filename option is not supported: use gnuplot for the case where you're
supplying the entire plot specification yourself.

e The several options pertaining to the presence and type of a fitted line, are replaced in plot
by a single option f1it which requires a parameter. Supported values for the parameter are:
none, linear, quadratic, cubic, inverse, semilog and loess. Example:

option fit=quadratic

As with gnupTot, the default is to show a linear fit in an X-Y scatter if it’s significant at the 10
percent level.

Here’s a simple example, the plot specification from the “bandplot” package, which shows how
to achieve the same result via the gnuplot command and a pTlot block, respectively—the latter
occupies a few more lines but is clearer

gnuplot 1 2 3 4 --with-Tines --matrix=plotmat \

--suppress-fitted --output=display \

{ set Tinetype 3 1c rgb "#0000ff"; set title "@title"; \
set nokey; set xlabel "@xname"; }
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plot plotmat
options with-Tines fit=none
Titeral set Tinetype 3 1c rgb "#0000ff"
Titeral set nokey
printf "set title \"%s\"", title
printf "set xlabel \"%s\"", xname

end plot --output=display

Note that --output=display is appended to end pTlot; also note that if you give a matrix to pTot
it’s assumed you want to plot all the columns. In addition, if you give a single series and the dataset
is time series, it’s assumed you want a time-series plot.

Script 6.1 contains a slightly more elaborate example: here we load the Mroz example dataset and
calculate the log of the individual’s wage. Then, we match the histogram of a discretized version
of the same variable (obtained via the aggregate() function) versus the theoretical density if data
were Gaussian.

There are a few points to note:

e The data for the plot are passed through a matrix in which we set column names via the
cnameset function; those names are then automatically used by the plot environment.

¢ In this example, we make extensive use of the set Titeral construct for refining the plot by
passing instruction to gnuplot; the power of gnuplot is impossible to overstate. We encourage
you to visit the “demos” version of gnuplot’s website (http://gnuplot.sourceforge.net/)
and revel in amazement.

e In the pTot environment you can use all the quantities you have in your script. This is the
way we calibrate the histogram width (try setting the scalar k in the script to different values).
Note that the printf command has a special meaning inside a plot environment.

e The script displays the plot on your screen. If you want to save it to a file instead, replace
--output=display at the end with --output=fiTlename.

e It’s OK to insert comments in the plot environment; actually, it’s a rather good idea to com-
ment as much as possible (as always)!

The output from the script is shown in Figure 6.3.


http://gnuplot.sourceforge.net/
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Listing 6.1: Plotting the log wage from the Mroz example dataset

set verbose off
open mroz87.gdt --quiet

series TWW = Tog(Ww)
scalar m = mean(1Ww)
scalar s = sd(Tww)

###
### prepare matrix with data for plot
###

# number of valid observations

scalar n = nobs(1Ww)

# discretize Tog wage

scalar k = 4

series disc_TWW = round(TWW*k)/k

# get frequencies

matrix f = aggregate(null, disc_Tww)
# add density

phi = dnorm((f[,1] - m)/s) / (s*k)

# put columns together and add Tlabels
plotmat = f[,2]./n ~ phi ~ f[,1]
strings cnames = defarray("frequency", "density", "log wage")
cnameset(plotmat, cnames)

###
### create plot
###

plot plotmat
# move Tlegend
Titeral set key outside rmargin
# set Tine style
Titeral set linetype 2 dashtype 2 Tinewidth 2
# set histogram color
Titeral set Tinetype 1 lc rgb "#777777"
# set histogram style
Titeral set style fill solid 0.25 border
# set histogram width
printf "set boxwidth %4.2f\n", 0.5/k
options with-Tines=2 with-boxes=1

end plot --output=display

43
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Figure 6.3: Output from listing 6.1

6.3 Boxplots

These plots (after Tukey and Chambers) display the distribution of a variable. Its shape depends
on a few quantities, defined as follows:

Xmin Sample minimum
Q: first quartile
m median
X mean
Q3 third quartile
Xmax Sample maximum
R =Q3 - Q; interquartile range

The central box encloses the middle 50 percent of the data, i.e. goes from Q; to Q3; therefore, its
height equals R. A line is drawn across the box at the median m and a “+” sign identifies the mean
X.

The length of the “whiskers” depends on the presence of outliers. The top whisker extends from
the top of the box up to a maximum of 1.5 times the interquartile range, but can be shorter if the
sample maximum is lower than that value; that is, it reaches min[xmax, Q3 + 1.5R]. Observations
larger than Q3 + 1.5R, if any, are considered outliers and represented individually via dots.> The
bottom whisker obeys the same logic, with obvious adjustments. Figure 6.4 provides an example
of all this by using the variable FAMINC from the sample dataset mroz87.

In the case of boxplots with confidence intervals, dotted lines show the limits of an approximate 90
percent confidence interval for the median. This is obtained by the bootstrap method, which can
take a while if the data series is very long. For details on constructing boxplots, see the entry for

3To give you an intuitive idea, if a variable is normally distributed, the chances of picking an outlier by this definition
are slightly below 0.7%.
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Figure 6.4: Sample boxplot

boxpTot in the Gretl Command Reference or use the Help button that appears when you select one
of the boxplot items under the menu item “View, Graph specified vars” in the main gretl window.

Factorized boxplots

A nice feature which is quite useful for data visualization is the conditional, or factorized boxplot.
This type of plot allows you to examine the distribution of a variable conditional on the value of
some discrete factor.

As an example, we’ll use one of the datasets supplied with gretl, that is rac3d, which contains an
example taken from Cameron and Trivedi (2013) on the health conditions of 5190 people. The
script below compares the unconditional (marginal) distribution of the number of illnesses in the
past 2 weeks with the distribution of the same variable, conditional on age classes.

open rac3d.gdt

# unconditional boxplot

boxpTot ILLNESS --output=display

# create a discrete variable for age class:

# 0 = below 20, 1 = between 20 and 39, etc

series age_class = floor(AGE/0.2)

# conditional boxplot

boxplot ILLNESS age_class --factorized --output=display

After running the code above, you should see two graphs similar to Figure 6.5. By comparing the
marginal plot to the factorized one, the effect of age on the mean number of illnesses is quite
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evident: by joining the green crosses you get what is technically known as the conditional mean
function, or regression function if you prefer.

ILLNESS Distribution of ILLNESS by age_class

ILLNESS

age_class

Figure 6.5: Conditional and unconditional distribution of illnesses
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Joining data sources

7.1 Introduction

Gretl provides two commands for adding data from file to an existing dataset in the program’s
workspace, namely append and join. The append command, which has been available for a long
time, is relatively simple and is described in the Gretl Command Reference. Here we focus on the
join command, which is much more flexible and sophisticated. This chapter gives an overview
of the functionality of join along with a detailed account of its syntax and options. We provide
several toy examples and discuss one real-world case at length.

First, a note on terminology: in the following we use the terms “left-hand” and “inner” to refer
to the dataset that is already in memory, and the terms “right-hand” and “outer” to refer to the
dataset in the file from which additional data are to be drawn.

Two main features of join are worth emphasizing at the outset:

e “Key” variables can be used to match specific observations (rows) in the inner and outer
datasets, and this match need not be 1 to 1.

¢ A row filter may be applied to screen out unwanted observations in the outer dataset.

As will be explained below, these features support rather complex concatenation and manipulation
of data from different sources.

A further aspect of join should be noted—one that makes this command particularly useful when
dealing with very large data files. That is, when gretl executes a join operation it does not, in gen-
eral, read into memory the entire content of the right-hand side dataset. Only those columns that
are actually needed for the operation are read in full. This makes join faster and less demanding
of computer memory than the methods available in most other software. On the other hand, gretl’s
asymmetrical treatment of the “inner” and “outer” datasets in join may require some getting used
to, for users of other packages.

7.2 Basic syntax

The minimal invocation of joinis
join filename varname

where filename is the name of a data file and varname is the name of a series to be imported.
Only two sorts of data file are supported at present: delimited text files (where the delimiter may
be comma, space, tab or semicolon) and “native” gretl data files (gdt or gdtb). A series named
varname may already be present in the left-hand dataset, but that is not required. The series to be
imported may be numerical or string-valued. For most of the discussion below we assume that just
a single series is imported by each join command, but see section 7.7 for an account of multiple
imports.

The effect of the minimal version of join is this: gretl looks for a data column labeled varname in
the specified file; if such a column is found and the number of observations on the right matches
the number of observations in the current sample range on the left, then the values from the right
are copied into the relevant range of observations on the left. If varname does not already exist

47
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on the left, any observations outside of the current sample are set to NA; if it exists already then
observations outside of the current sample are left unchanged.

The case where you want to rename a series on import is handled by the --data option. This option
has one required argument, the name by which the series is known on the right. At this point we
need to explain something about right-hand variable names (column headings).

Right-hand names

We accept on input arbitrary column heading strings, but if these strings do not qualify as valid
gretl identifiers they are automatically converted, and in the context of join you must use the
converted names. A gretl identifier must start with a letter, contain nothing but (ASCII) letters,
digits and the underscore character, and must not exceed 31 characters. The rules used in name
conversion are:

1. Skip any leading non-letters.

2. Until the 31-character is reached or the input is exhausted: transcribe “legal” characters; skip
“illegal” characters apart from spaces; and replace one or more consecutive spaces with an
underscore, unless the last character transcribed is an underscore in which case space is
skipped.

In the unlikely event that this policy yields an empty string, we replace the original with coln,
where n is replaced by the 1-based index of the column in question among those used in the
join operation. If you are in doubt regarding the converted name of a given column, the function
fixname() can be used as a check: it takes the original string as an argument and returns the
converted name. Examples:

? eval fixname('"valid_identifier")
valid_identifier

? eval fixname("12. Some name'")
Some_name

Returning to the use of the --data option, suppose we have a column headed "12. Some name"
on the right and wish to import it as x. After figuring how the right-hand name converts, we can do

join foo.csv x --data="Some_name"

No right-hand names?

Some data files have no column headings; they jump straight into the data (and you need to deter-
mine from accompanying documentation what the columns represent). Since gretl expects column
headings, you have to take steps to get the importation right. It is generally a good idea to insert a
suitable header row into the data file. However, if for some reason that’s not practical, you should
give the --no-header option, in which case gretl will name the columns on the right as co11, co12
and so on. If you do not do either of these things you will likely lose the first row of data, since
gretl will attempt to make variable names out of it, as described above.

7.3 Filtering

Rows from the outer dataset can be filtered using the --filter option. The required parameter
for this option is a Boolean condition, that is, an expression which evaluates to non-zero (true,
include the row) or zero (false, skip the row) for each of the outer rows. The filter expression may
include any of the following terms: up to three “right-hand” series (under their converted names as
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explained above); scalar or string variables defined “on the left”; any of the operators and functions
available in gretl (including user-defined functions); and numeric or string constants.

Here are a few simple examples of potentially valid filter options (assuming that the specified right-
hand side columns are found):

# 1. relationship between two right-hand variables
--filter="x15<=x17"

# 2. comparison of right-hand variable with constant
--filter="nkids>2"

# 3. comparison of string-valued right-hand variable with string constant
--fiTter="SEX==\"F\""

# 4. filter on valid values of a right-hand variable
--filter=Imissing(income)

# 5. compound condition
--filter="x < 100 && (x > 0 || y > 0O)"

Note that if you are comparing against a string constant (as in example 3 above) it is necessary
to put the string in “escaped” double-quotes (each double-quote preceded by a backslash) so the
interpreter knows that F is not supposed to be the name of a variable.

It is safest to enclose the whole filter expression in double quotes, however this is not strictly
required unless the expression contains spaces or the equals sign.

In general, an error is flagged if a missing value is encountered in a series referenced in a filter
expression. This is because the condition then becomes indeterminate; taking example 2 above, if
the nkids value is NA on any given row we are not in a position to evaluate the condition nkids>2.
However, you can use the missing() function—or ok (), which is a shorthand for !missing() —if
you need a filter that keys off the missing or non-missing status of a variable.

7.4 Matching with keys

Things get interesting when we come to key-matching. The purpose of this facility is perhaps best
introduced by example. Suppose that (as with many survey and census-based datasets) we have a
dataset that is composed of two or more related files, each having a different unit of observation;
for example we have a “persons” data file and a “households” data file. Table 7.1 shows a simple,
artificial case. The file people.csv contains a unique identifier for the individuals, pid. The
households file, hholds. csv, contains the unique household identifier hid, which is also present
in the persons file.

As a first example of join with keys, let’'s add the household-level variable xh to the persons
dataset:

open people.csv --quiet
join hholds.csv xh --ikey=hid
print --byobs

The basic key option is named ikey; this indicates “inner key”, that is, the key variable found in the
left-hand or inner dataset. By default it is assumed that the right-hand dataset contains a column of
the same name, though as we’ll see below that assumption can be overridden. The join command
above says, find a series named xh in the right-hand dataset and add it to the left-hand one, using
the values of hid to match rows. Looking at the data in Table 7.1 we can see how this should
work. Persons 1 and 2 are both members of household 1, so they should both get values of 1 for
xh; persons 3 and 4 are members of household 2, so that xh = 4; and so on. Note that the order
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in which the key values occur on the right-hand side does not matter. The gretl output from the
print command is shown in the lower panel of Table 7.1.

people.csv hholds.csv

pid,hid,gender,age,xp hid, country,xh

1,1,M,50,1 1,Us,1

2,1,F,40,2 6,IT,12

3,2,M,30,3 3,UK,6

4,2,F,25,2 4,1IT,8

5,3,M,40,3 2,US,4

6,4,F,35,4 5,IT,10

7,4,M,70,3

8,4,F,60,3

9,5,F,20,4

10,6,M,40,4

pid hid xh

1 1 1
2 1 1
3 2 4
4 2 4
5 3 6
6 4 8
7 4 8
8 4 8
9 5 10
10 6 12

Table 7.1: Two linked CSV data files, and the effect of a join

Note that key variables are treated conceptually as integers. If a specified key contains fractional
values these are truncated.

Two extensions of the basic key mechanism are available.

o If the outer dataset contains a relevant key variable but it goes under a different name from
the inner key, you can use the --okey option to specify the outer key. (As with other right-
hand names, this does not have to be a valid gretl identifier.) So, for example, if hholds.csv
contained the hid information, but under the name HHOLD, the join command above could
be modified as

join hholds.csv xh --ikey=hid --okey=HHOLD

o If a single key is not sufficient to generate the matches you want, you can specify a double key
in the form of two series names separated by a comma; in this case the importation of data is
restricted to those rows on which both keys match. The syntax here is, for example

join foo.csv x --ikey=keyl,key2

Again, the --okey option may be used if the corresponding right-hand columns are named
differently. The same number of keys must be given on the left and the right, but when a
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double key is used and only one of the key names differs on the right, the name that is in
common may be omitted (although the comma separator must be retained). For example, the
second of the following lines is acceptable shorthand for the first:

join foo.csv x --ikey=keyl,Lkey2 --okey=keyl,Rkey?2
join foo.csv x --ikey=keyl,Lkey2 --okey=,Rkey2

The number of key-matches

The example shown in Table 7.1 is an instance of a 1 to 1 match: applying the matching criterion
produces exactly one value of the variable xh corresponding to each row of the inner dataset. Two
other possibilities arise: it may be that some rows in the inner dataset have no match on the right,
and/or some rows on the left have multiple matches on the right. The latter case (“1 to n matching”)
is addressed in detail in the next section; here we discuss the former.

The case where there’s no match on the right is handled differently depending on whether the join
operation is adding a new series to the inner dataset or modifying an existing one. If it’'s a new
series, then the unmatched rows automatically get NA for the imported data. If, on the other hand,
the join is pulling in values for a series that is already present on the left, only matched rows will
be updated —or in other words, we do not overwite an existing value on the left with NA in the case
where there’s no match on the right.

These defaults may not produce the desired results in every case but gretl provides the means to
modify the effect if need be. We will illustrate with two scenarios.

First, consider adding a new series recording “number of hours worked” when the inner dataset
contains individuals and the outer file contains data on jobs. If an individual does not appear in
the jobs file, we may want to take her hours worked as implicitly zero rather than NA. In this case
gretl’s misszero() function can be used to turn NA into 0 in the imported series.

Second, consider updating a series via join, when the outer file is presumed to contain all available
updated values, such that “no match” should be taken as an implicit NA. In this case we want the
(presumably out-of-date) values on any unmatched rows to be overwritten with NA. Let the series
in question be called x (both on the left and the right) and let the common key be called pid. The
solution is then

join update.csv tmpvar --data=x --ikey=pid
X = tmpvar

As a new variable, tmpvar will get NA for all unmatched rows; we then transcribe its values into
x. In a more complicated case one might use the smp1 command to limit the sample range before
assigning tmpvar to x, or use the conditional assignment operator ?:.

One further point should be mentioned here. Given some missing values in an imported series you
may sometimes want to know whether (a) the NAs were explicitly represented in the outer data file
or (b) they arose due to “no match”. You can find this out by using a method described in the
following section, namely the count variant of the aggregation option: this will give you a series
with 0 values for all and only unmatched rows.

7.5 Aggregation

In the case of 1 to n matching of rows (n > 1) the user must specify an “aggregation method”; that
is, a method for mapping from n rows down to one. This is handled by the --aggr option which
requires a single argument from the following list:
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Code Value returned

count count of matches

avg mean of matching values

sum sum of matching values

min minimum of matching values

max maximum of matching values
seq:i the i matching value (e.g. seq:2)

min(aux) minimum of matching values of auxiliary variable
max (aux) maximum of matching values of auxiliary variable

Note that the count aggregation method is special, in that there is no need for a “data series” on
the right; the imported series is simply a function of the specified key(s). All the other methods
require that “actual data” are found on the right. Also note that when count is used, the value
returned when no match is found is (as one might expect) zero rather than NA.

The basic use of the seq method is shown above: following the colon you give a positive integer rep-
resenting the (1-based) position of the observation in the sequence of matched rows. Alternatively,
a negative integer can be used to count down from the last match (seq:-1 selects the last match,
seq: -2 the second-last match, and so on). If the specified sequence number is out of bounds for a
given observation this method returns NA.

Referring again to the data in Table 7.1, suppose we want to import data from the persons file into
a dataset established at household level. Here’s an example where we use the individual age data
from people.csv to add the average and minimum age of household members.

open hholds.csv --quiet
join people.csv avgage --ikey=hid --data=age --aggr=avg
join people.csv minage --ikey=hid --data=age --aggr=min

Here’s a further example where we add to the household data the sum of the personal data xp, with
the twist that we apply filters to get the sum specifically for household members under the age of
40, and for women.

open hholds.csv --quiet
join people.csv young_xp --ikey=hid --filter="age<40" --data=xp --aggr=sum
join people.csv female_xp --ikey=hid --filter="gender==\"F\"" --data=xp --aggr=sum

The possibility of using an auxiliary variable with the min and max modes of aggregation gives extra
flexibility. For example, suppose we want for each household the income of its oldest member:

open hholds.csv --quiet
join people.csv oldest_xp --ikey=hid --data=xp --aggr=max(age)

7.6 String-valued key variables

The examples above use numerical variables (household and individual ID numbers) in the match-
ing process. It is also possible to use string-valued variables, in which case a match means that the
string values of the key variables compare equal (with case sensitivity). When using double keys,
you can mix numerical and string keys, but naturally you cannot mix a string variable on the left
(via ikey) with a numerical one on the right (via okey), or vice versa.

Here’s a simple example. Suppose that alongside hholds.csv we have a file countries.csv with
the following content:
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country,GDP
UK, 100
us, 500
IT,150
FR,180

The variable country, which is also found in hholds.csv, is string-valued. We can pull the GDP of
the country in which the household resides into our households dataset with

open hholds.csv -q
join countries.csv GDP --ikey=country

which gives
hid country GDP

500
150
100
150
500
150

AUV h WN R
VNN WO R
NEFEFNWNR

7.7 Importing multiple series

The examples given so far have been limited in one respect. While several columns in the outer data
file may be referenced (as keys, or in filtering or aggregation) only one column has actually provided
data—and correspondingly only one series in the inner dataset has been created or modified —per
invocation of join. However, join can handle the importation of several series at once. This
section gives an account of the required syntax along with certain restrictions that apply to the
multiple-import case.

There are two ways to specify more than one series for importation:

1. The varname field in the command can take the form of a space-separated list of names rather
than a single name.

2. Alternatively, you can give the name of an array of strings in place of varname: the elements
of this array should be the names of the series to import.

Here are the limitations:

1. The --data option, which permits the renaming of a series on import, is not available. When
importing multiple series you are obliged to accept their “outer” names, fixed up as described
in section 7.2.

2. While the other join options are available, they necessarily apply uniformly to all the series
imported via a given command. This means that if you want to import several series but using
different keys, filters or aggregation methods you must use a sequence of commands.

Here are a couple of examples of multiple imports.

# open base datafile containing keys
open PUMSdata.gdt

# join using a 1ist of import names
join ss13pnc.csv SCHL WAGP WKHP --ikey=SERIALNO,SPORDER
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# using a strings array: may be worthwhile if the array
# will be used for more than one purpose

strings S = defarray("SCHL", "WAGP", "WKHP")

join ss13pnc.csv S --ikey=SERIALNO, SPORDER

7.8 A real-world case

For a real use-case for join with cross-sectional data, we turn to the Bank of Italy’s Survey on House-
hold Income and Wealth (SHIW).! In ASCII form the 2010 survey results comprise 47 MB of data in
29 files. In this exercise we will draw on five of the SHIW files to construct a replica of the dataset
used in Thomas Mroz’s famous paper (Mroz, 1987) on women’s labor force participation, which
contains data on married women between the age of 30 and 60 along with certain characteristics
of their households and husbands.

Our general strategy is as follows: we create a “core” dataset by opening the file carcoml0.csv,
which contains basic data on the individuals. After dropping unwanted individuals (all but married
women), we use the resulting dataset as a base for pulling in further data via the join command.

The complete script to do the job is given in the Appendix to this chapter; here we walk through
the script with comments interspersed. We assume that all the relevant files from the Bank of Italy
survey are contained in a subdirectory called SHIW.

Starting with carcoml0.csv, we use the --cols option to the open command to import specific
series, namely NQUEST (household ID number), NORD (sequence number for individuals within each
household), SEX (male = 1, female = 2), PARENT (status in household: 1 = head of household, 2 =
spouse of head, etc.), STACIV (marital status: married = 1), STUDIO (educational level, coded from
1 to 8), ETA (age in years) and ACOM4C (size of town).

open SHIW/carcomlO.csv --cols=1,2,3,4,9,10,29,41

We then restrict the sample to married women from 30 to 60 years of age, and additionally restrict
the sample of women to those who are either heads of households or spouses of the head.

smp1 SEX==2 && ETA>=30 &% ETA<=60 &% STACIV==1 --restrict
smpl PARENT<3 --restrict

For compatibility with the Mroz dataset as presented in the gretl data file mroz87.gdt, we rename
the age and education variables as WA and WE respectively, we compute the CIT dummy and finally
we store the reduced base dataset in gretl format.

rename ETA WA
rename STUDIO WE
series CIT = (ACOM4C > 2)

store mroz_rep.gdt

The next step will be to get data on working hours from the jobs file al1bl.csv. There’s a com-
plication here. We need the total hours worked over the course of the year (for both the women
and their husbands). This is not available as such, but the variables ORETOT and MESILAV give,
respectively, average hours worked per week and the number of months worked in 2010, each on a
per-job basis. If each person held at most one job over the year we could compute his or her annual
hours as

HRS = ORETOT * 52 * MESILAV/12

IDetails of the survey can be found at http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro.
The ASCII (CSV) data files for the 2010 survey are available at http://www.bancaditalia.it/statistiche/indcamp/
bilfait/dismicro/annuale/ascii/ind1l0_ascii.zip.


http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro
http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro/annuale/ascii/ind10_ascii.zip
http://www.bancaditalia.it/statistiche/indcamp/bilfait/dismicro/annuale/ascii/ind10_ascii.zip
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However, some people had more than one job, and in this case what we want is the sum of annual
hours across their jobs. We could use join with the seq aggregation method to construct this sum,
but it is probably more straightforward to read the al1b1l data, compute the HRS values per job as
shown above, and save the results to a temporary CSV file.

open SHIW/allbl.csv --cols=1,2,8,11 --quiet
series HRS = misszero(ORETOT) * 52 * misszero(MESILAV)/12
store HRS.csv NQUEST NORD HRS

Now we can reopen the base dataset and join the hours variable from HRS. csv. Note that we need
a double key here: the women are uniquely identified by the combination of NQUEST and NORD. We
don’t need an okey specification since these keys go under the same names in the right-hand file.
We define labor force participation, LFP, based on hours.

open mroz_rep.gdt

join HRS.csv WHRS --1ikey=NQUEST,NORD --data=HRS --aggr=sum
WHRS = misszero(WHRS)

LFP = WHRS > 0

For reference, here’s how we could have used seq to avoid writing a temporary file:

join SHIW/allbl.csv njobs --ikey=NQUEST,NORD --data=ORETOT --aggr=count

series WHRS = 0

Toop i=1..max(njobs) -q
join SHIW/allbl.csv htmp --ikey=NQUEST,NORD --data=ORETOT --aggr="seq:$i"
join SHIW/allbl.csv mtmp --ikey=NQUEST,NORD --data=MESILAV --aggr="seq:$i"
WHRS += misszero(Chtmp) * 52 * misszero(mtmp)/12

endloop

To generate the work experience variable, AX, we use the file Tavoro.csv: this contains a variable
named ETALAV which records the age at which the person first started work.

join SHIW/lavoro.csv ETALAV --1ikey=NQUEST,NORD
series AX = misszero(WA - ETALAV)

We compute the woman’s hourly wage, WW, as the ratio of total employment income to annual
working hours. This requires drawing the series YL (payroll income) and YM (net self-employment
income) from the persons file rper10.csv.

join SHIW/rperlO.csv YL YM --ikey=NQUEST,NORD --aggr=sum
series WW = LFP ? (YL + YM)/WHRS : O

The family’s net disposable income is available as Y in the file rfaml0.csv; we import this as
FAMINC.

join SHIW/rfamlO.csv FAMINC --ikey=NQUEST --data=Y

Data on number of children are now obtained by applying the count method. For the Mroz repli-
cation we want the number of children under the age of 6, and also the number aged 6 to 18.

join SHIW/carcoml0.csv KIDS --ikey=NQUEST --aggr=count --filter="ETA<=18"
join SHIW/carcoml0.csv KL6 --ikey=NQUEST --aggr=count --filter=ETA<6
series K618 = KIDS - KL6

We want to add data on the women’s husbands, but how do we find them? To do this we create an
additional inner key which we’ll call H_ID (husband ID), by sub-sampling in turn on the observations
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falling into each of two classes: (a) those where the woman is recorded as head of household and
(b) those where the husband has that status. In each case we want the individual ID (NORD) of the
household member whose status is complementary to that of the woman in question. So for case
(a) we subsample using PARENT==1 (head of household) and filter the join using PARENT==2 (spouse
of head); in case (b) we do the converse. We thus construct H_ID piece-wise.

# for women who are household heads

smp1 PARENT==1 --restrict --replace

join SHIW/carcoml0.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==2"
# for women who are not household heads

smp1 PARENT==2 --restrict --replace

join SHIW/carcoml0.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==1"
smp1 full

Now we can use our new inner key to retrieve the husbands’ data, matching H_ID on the left with
NORD on the right within each household.

join SHIW/carcomlO.csv HA --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=ETA
join SHIW/carcoml0.csv HE --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=STUDIO
join HRS.csv HHRS --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=HRS --aggr=sum
HHRS = misszero(HHRS)

The remainder of the script is straightforward and does not require discussion here: we recode
the education variables for compatibility; delete some intermediate series that are not needed any
more; add informative labels; and save the final product. See the Appendix for details.

To compare the results from this dataset with those from the earlier US data used by Mroz, one can
copy the input file hecki t.inp (supplied with the gretl package) and substitute mroz_rep.gdt for
mroz87.gdt. It turns out that the results are qualitatively very similar.

7.9 The representation of dates

Up to this point all the data we have considered have been cross-sectional. In the following sections
we discuss data that have a time dimension, and before proceeding it may be useful to say some-
thing about the representation of dates. Gretl takes the ISO 8601 standard as its reference point
but provides mean of converting dates provided in other formats; it also offers a set of calendrical
functions for manipulating dates (isodate, isoconv, epochday and others).

ISO 8601 recognizes two formats for daily dates, “extended” and “basic”. In both formats dates
are given as 4-digit year, 2-digit month and 2-digit day, in that order. In extended format a dash
is inserted between the fields—as in 2013-10-21 or more generally YYYY-MM-DD —while in basic
format the fields are run together (YYYYMMDD). Extended format is more easily parsed by human
readers while basic format is more suitable for computer processing, since one can apply ordinary
arithmetic to compare dates as equal, earlier or later. The standard also recognizes YYYY-MM as
representing year and month, e.g. 2010-11 for November 2010, as well as a plain four-digit number
for year alone.

One problem for economists is that the “quarter” is not a period covered by ISO 8601. This could
be presented by YYYY-Q (with only one digit following the dash) but in gretl output we in fact use a
colon, as in 2013: 2 for the second quarter of 2013. (For printed output of months gretl also uses
a colon, as in 2013:06. A difficulty with following ISO here is that in a statistical context a string
such as 1980-10 may look more like a subtraction than a date.) Anyway, at present we are more
interested in the parsing of dates on input rather than in what gretl prints. And in that context note
that “excess precision” is acceptable: a month may be represented by its first day (e.g. 2005-05-01
for May, 2005), and a quarter may be represented by its first month and day (2005-07-01 for the
third quarter of 2005).

2The form YYYYMM is not recognized for year and month.
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Some additional points regarding dates will be taken up as they become relevant in practical cases
of joining data.

7.10 Time-series data

Suppose our left-hand dataset is recognized by gretl as time series with a supported frequency
(annual, quarterly, monthly, weekly, daily or hourly). This will be the case if the original data were
read from a file that contained suitable time or date information, or if a time-series interpretation
has been imposed using either the setobs command or its GUI equivalent. Then—apart, perhaps,
from some very special cases—joining additional data is bound to involve matching observations
by time-period.

In this case, contrary to the cross-sectional case, the inner dataset has a natural ordering which
gretl is aware of; hence, no “inner key” is required. All we need is a means of identifying the period
on the right and this is why, in a time-series context, we’ll refer to the outer key as the “time key”.
Most likely, this information will appear in a single column in the outer data file, often but not
always the first column.

The join command provides a simple (but limited) default for extracting period information from
the outer data file, plus an option that can be used if the default is not applicable, as follows.

e The default assumptions are: (1) the time key appears in the first column; (2) the heading
of this column is either left blank or is one of obs, date, year, period, observation, or
observation_date (on a case-insensitive comparison); and (3) the time format conforms
to ISO 8601 where applicable (“extended” daily date format YYYY-MM-DD, monthly format
YYYY-MM, or annual format YYYY).

o If dates do not appear in the first column of the outer file, or if the column heading or format
is not as just described, the --tkey option can be used to indicate which column should be
used and/or what format should be assumed.

Setting the time-key column and/or format

The --tkey option requires a parameter holding the name of the column in which the time key
is located and/or a string specifying the format in which dates/times are written in the time-key
column. This parameter should be enclosed in double-quotes. If both elements are present they
should be separated by a comma; if only a format is given it should be preceded by a comma. Some
examples:

--tkey="Period,%m/%d/%Y"
--tkey="Period"
--tkey="obsperiod"
--tkey=",%Ym%m"

The first of these applies if Period is not the first column on the right, and dates are given in the
US format of month, day, year, separated by slashes. The second implies that although Period is
not the first column, the date format is ISO 8601. The third again implies that the date format is
OK; here the name is required even if obsperiod is the first column since this heading is not one
recognized by gretl’s heuristic. The last example implies that dates are in the first column (with
one of the recognized headings), but are given in the non-standard format year, “m”, month.

The date format string should be composed using the codes employed by the POSIX function
strptime; Table 7.2 contains a list of the most relevant codes.?

3The %q code for quarter is not present in strptime; it is added for use with join since quarterly data are common
in macroeconomics.
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Code

Meaning

%26
%b

%C
%d
%D

%H
%3
%m
%n
%q
%w
%y

%Y

The % character.

The month name according to the current locale, either abbreviated
or in full.

The century number (0-99).
The day of month (1-31).

Equivalent to %m/%d/%y. (This is the American style date, very con-
fusing to non-Americans, especially since %d/%m/%y is widely used in
Europe. The ISO 8601 standard format is %Y-%m-%d.)

The hour (0-23).

The day number in the year (1-366).

The month number (1-12).

Arbitrary whitespace.

The quarter (1-4).

The weekday number (0-6) with Sunday = 0.

The year within century (0-99). When a century is not otherwise spec-
ified, values in the range 69-99 refer to years in the twentieth century
(1969-1999); values in the range 00-68 refer to years in the twenty-
first century (2000-2068).

The year, including century (for example, 1991).

Table 7.2: Date format codes

Example: daily stock prices

58

We show below the first few lines of a file named IBM.csv containing stock-price data for IBM

corporation.

Date,Open,High,Low,Close,Volume,Adj Close

2013-08-02,195.50,195.50,193.22,195.16,3861000,195.16
2013-08-01,196.65,197.17,195.41,195.81,2856900,195.81
2013-07-31,194.49,196.91,194.49,195.04,3810000,195.04

Note that the data are in reverse time-series order —that won’t matter to join, the data can appear
in any order. Also note that the first column is headed Date and holds daily dates as ISO 8601
extended. That means we can pull the data into gretl very easily. In the following fragment we
create a suitably dimensioned empty daily dataset then rely on the default behavior of join with
time-series data to import the closing stock price.

nulldata 500

setobs 5 2012-01-01
join IBM.csv Close

To make explicit what we’re doing, we could accomplish exactly the same using the --tkey option:

join IBM.csv Close --tkey="Date,%Y-%m-%d"

Example: OECD quarterly data

Table 7.3 shows an excerpt from a CSV file provided by the OECD statistical site (stat.oecd.org)
in response to a request for GDP at constant prices for several countries.?

4Retrieved 2013-08-05. The OECD files in fact contain two leading columns with very long labels; these are irrelevant
to the present example and can be omitted without altering the sample script.


stat.oecd.org
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Frequency,Period,Country,Value,Flags
"Quarterly","Q1l-1960","France",463876.148126845,E
"Quarterly","Q1-1960","Germany",768802.119278467 ,E
"Quarterly","Ql-1960","Italy",414629.791450547,E
"Quarterly","Q1-1960","United Kingdom",578437.090291889,E
"Quarterly","Q2-1960","France",465618.977328614,E
"Quarterly","Q2-1960","Germany",782484.138122549,E
"Quarterly","Q2-1960","Italy",420714.910290157,E
"Quarterly","Q2-1960","United Kingdom",572853.474696578,E
"Quarterly","Q3-1960","France",469104.41925852,E
"Quarterly","Q3-1960","Germany",809532.161494483,E
"Quarterly","Q3-1960","Italy",426893.675840156,E
"Quarterly","Q3-1960","United Kingdom",581252.066618986,E
"Quarterly","Q4-1960","France",474664.327992619,E
"Quarterly","Q4-1960","Germany",817806.132384948 ,E
"Quarterly","Q4-1960","Italy",427221.338414114,E

Table 7.3: Example of CSV file as provided by the OECD statistical website

This is an instance of data in what we call atomic format, that is, a format in which each line of the
outer file contains a single data-point and extracting data mainly requires filtering the appropriate
lines. The outer time key is under the Period heading, and has the format Q<quarter>-<year>.
Assuming that the file in Table 7.3 has the name oecd.csv, the following script reconstructs the
time series of Gross Domestic Product for several countries:

nulldata 220

setobs 4 1960:1

join oecd.csv FRA --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"France\""
join oecd.csv GER --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"Germany\
join oecd.csv ITA --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"Italy\""
join oecd.csv UK --tkey="Period,Q%q-%Y" --data=Value --filter="Country==\"United Kingdom\""

Note the use of the format codes %q for the quarter and %Y for the 4-digit year. A touch of elegance
could have been added by storing the invariant options to join using the setopt command, as in

setopt join persist --tkey="Period,Q%q-%Y" --data=Value
join oecd.csv FRA --filter="Country==\"France\""

join oecd.csv GER --filter="Country==\"Germany\
join oecd.csv ITA --filter="Country==\"Italy\""
join oecd.csv UK --filter="Country==\"United Kingdom\""
setopt join clear

If one were importing a large number of such series it might be worth rewriting the sequence of
joins as a loop, as in

string countries = sprintf("France Germany Italy \"United Kingdom\"")
string vnames = "FRA GER ITA UK"
setopt join persist --tkey="Period,Q%q-%Y" --data=Value

Toop foreach i @countries

string vname = strsplit(vnames, i)

join oecd.csv @vname --filter="Country==\"$1i\
endloop
setopt join clear
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7.11 Special handling of time columns

When dealing with straight time series data the tkey mechanism described above should suffice
in almost all cases. In some contexts, however, time enters the picture in a more complex way;
examples include panel data (see section 7.12) and so-called realtime data (see chapter 8). To handle
such cases join provides the --tconvert option. This can be used to select certain columns in
the right-hand data file for special treatment: strings representing dates in these columns will be
converted to numerical values: 8-digit numbers on the pattern YYYYMMDD (ISO basic daily format).
Once dates are in this form it is easy to use them in key-matching or filtering.

By default it is assumed that the strings in the selected columns are in ISO extended format,
YYYY-MM-DD. If that is not the case you can supply a time-format string using the --tconv-fmt
option. The format string should be written using the codes shown in Table 7.2.

Here are some examples:

# select one column for treatment
--tconvert=start_date

# select two columns for treatment
--tconvert="start_date,end_date"

# specify US-style daily date format
--tconv-fmt="%m/%d/%Y"

# specify quarterly date-strings (as in 2004ql)
--tconv-fmt="%Yq%q"

Some points to note:

o If a specified column is not selected for a substantive role in the join operation (as data to be
imported, as a key, or as an auxiliary variable for use in aggregation) the column in question
is not read and so no conversion is carried out.

e If a specified column contains numerical rather than string values, no conversion is carried
out.

o If a string value in a selected column fails parsing using the relevant time format (user-
specified or default), the converted value is NA.

¢ On successful conversion, the output is always in daily-date form as stated above. If you
specify a monthly or quarterly time format, the converted date is the first day of the month
or quarter.

7.12 Panel data

In section 7.10 we gave an example of reading quarterly GDP data for several countries from an
OECD file. In that context we imported each country’s data as a distinct time-series variable. Now
suppose we want the GDP data in panel format instead (stacked time series). How can we do this
with join?

As a reminder, here’s what the OECD data look like:

Frequency,Period,Country,Value,Flags
"Quarterly","Q1-1960","France",463876.148126845,E
"Quarterly","Q1-1960","Germany",768802.119278467 ,E
"Quarterly","Q1-1960","Italy",414629.791450547 ,E
"Quarterly","Q1-1960","United Kingdom",578437.090291889,E
"Quarterly","Q2-1960","France",465618.977328614,E
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and so on. If we have four countries and quarterly observations running from 1960:1 to 2013:2 (T
= 214 quarters) we might set up our panel workspace like this:

scalar N = 4

scalar T = 214

scalar NT = N*T

nulldata NT --preserve

setobs T 1.1 --stacked-time-series

The relevant outer keys are obvious: Country for the country and Period for the time period. Our
task is now to construct matching keys in the inner dataset. This can be done via two panel-specific
options to the setobs command. Let’s work on the time dimension first:

setobs 4 1960:1 --panel-time
series quarter = $obsdate

This variant of setobs allows us to tell gretl that time in our panel is quarterly, starting in the
first quarter of 1960. Having set that, the accessor $obsdate will give us a series of 8-digit dates
representing the first day of each quarter— 19600101, 19600401, 19600701, and so on, repeating
for each country. As we explained in section 7.11, we can use the --tconvert option on the outer
series Period to get exactly matching values (in this case using a format of Q%q-%Y for parsing the
Period values).

Now for the country names:

string cstrs = sprintf("France Germany Italy \"United Kingdom\"")
setobs country cstrs --panel-groups

Here we write into the string cstrs the names of the countries, using escaped double-quotes to
handle the space in “United Kingdom”, then pass this string to setobs with the --panel-groups
option, preceded by the identifier country. This asks gretl to construct a string-valued series
named country, in which each name will repeat T times.

We’re now ready to join. Assuming the OECD file is named oecd.csv we do

join oecd.csv GDP --data=Value \
--ikey=country,quarter --okey=Country,Period \
--tconvert=Period --tconv-fmt="Q%q-%Y"

Other input formats

The OECD file discussed above is in the most convenient format for join, with one data-point per
line. But sometimes we may want to make a panel from a data file structured like this:

# Real GDP
Period,France,Germany,Italy,"United Kingdom"
"Q1-1960",463863,768757,414630,578437
"Q2-1960",465605,782438,420715,572853
"Q3-1960",469091,809484,426894,581252
"Q4-1960",474651,817758,427221,584779
"Q1-1961",482285,826031,442528,594684

Call this file side_by_side.csv. Assuming the same initial set-up as above, we can panelize the
data by setting the sample to each country’s time series in turn and importing the relevant column.
The only point to watch here is that the string “United Kingdom”, being a column heading, will
become United_Kingdom on importing (see section 7.2) so we'll need a slightly different set of
country strings.
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string cstrs = "France Germany Italy United_Kingdom"
setobs country cstrs --panel-groups
loop foreach i @cstrs --quiet
smpl country=="$i" --restrict --replace
join side_by_side.csv GDP --data=$i \
--ikey=quarter --okey=Period \
--tconvert=Period --tconv-fmt="Q%q-%Y"
endloop
smp1 full

If our working dataset and the outer data file are dimensioned such that there are just as many
time-series observations on the right as there are time slots on the left—and the observations
on the right are contiguous, in chronological order, and start on the same date as the working
dataset—we could dispense with the key apparatus and just use the first line of the join command
shown above. However, in general it is safer to use keys to ensure that the data end up in correct
registration.

7.13 Memo: join options

Basic syntax: join filename varname(s) [ options ]

flag effect

--data Give the name of the data column on the right, in case it differs from
varname (7.2); single import only

--filter Specify a condition for filtering data rows (7.3)

--ikey Specify up to two keys for matching data rows (7.4)

--okey Specify outer key name(s) in case they differ the inner ones (7.4)

--aggr Select an aggregation method for 1 to n joins (7.5)

--tkey Specify right-hand time key (7.10)

--tconvert Select outer date columns for conversion to numeric form (7.11)
--tconv-fmt Specify a format for use with tconvert (7.11)

--no-header Treat the first row on the right as data (7.2)

--verbose Report on progress in reading the outer data
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Appendix: the full Mroz data script

# start with everybody; get gender, age and a few other variables
# directly while we’re at it
open SHIW/carcomlO.csv --cols=1,2,3,4,9,10,29,41

# subsample on married women between the ages of 30 and 60

smpl SEX==2 && ETA>=30 && ETA<=60 && STACIV==1 --restrict

# for simplicity, restrict to heads of households and their spouses
smpl PARENT<3 --restrict

# rename the age and education variables for compatibility; compute
# the "city" dummy and finally save the reduced base dataset

rename ETA WA

rename STUDIO WE

series CIT = (ACOM4C>2)

store mroz_rep.gdt

# make a temp file holding annual hours worked per job
open SHIW/allbl.csv --cols=1,2,8,11 --quiet

series HRS = misszero(ORETOT) * 52 * misszero(MESILAV) /12
store HRS.csv NQUEST NORD HRS

# reopen the base dataset and begin drawing assorted data in
open mroz_rep.gdt

# women’s annual hours (summed across jobs)
join HRS.csv WHRS --ikey=NQUEST,NORD --data=HRS --aggr=sum
WHRS = misszero(WHRS)

# Tabor force participation
LFP = WHRS > 0

# work experience: ETALAV = age when started first job
join SHIW/lavoro.csv ETALAV --1ikey=NQUEST,NORD
series AX = misszero(WA - ETALAV)

# women’s hourly wages
join SHIW/rperl0.csv YL YM --ikey=NQUEST,NORD --aggr=sum
series WW = LFP ? (YL + YM)/WHRS : O

# family income (Y = net disposable income)
join SHIW/rfaml0.csv FAMINC --ikey=NQUEST --data=Y

# get data on children using the "count" method

join SHIW/carcoml0.csv KIDS --ikey=NQUEST --aggr=count --filter="ETA<=18"
join SHIW/carcomlO.csv KL6 --ikey=NQUEST --aggr=count --filter=ETA<6
series K618 = KIDS - KL6

# data on husbands: we first construct an auxiliary inner key for

# husbands, using the Tittle trick of subsampling the inner dataset

#

# for women who are household heads

smpl PARENT==1 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==2"
# for women who are not household heads

smpl PARENT==2 --restrict --replace

join SHIW/carcomlO.csv H_ID --ikey=NQUEST --data=NORD --filter="PARENT==1"
smp1l full
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# add husbands’ data via the newly-added secondary inner key

join SHIW/carcomlO.csv HA --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=ETA
join SHIW/carcoml0.csv HE --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=STUDIO
join HRS.csv HHRS --ikey=NQUEST,H_ID --okey=NQUEST,NORD --data=HRS --aggr=sum
HHRS = misszero(HHRS)

# final cleanup begins

# recode educational attainment as years of education
matrix eduyrs = {0, 5, 8, 11, 13, 16, 18, 21}

series WE = replace(WE, seq(1,8), eduyrs)

series HE replace(HE, seq(l,8), eduyrs)

# cut some cruft
delete SEX STACIV KIDS YL YM PARENT H_ID ETALAV

# add some Tlabels for the series

setinfo LFP -d "1 if woman worked in 2010"

setinfo WHRS -d "Wife’s hours of work in 2010"

setinfo KL6 -d "Number of children Tess than 6 years old in household"
setinfo K618 -d "Number of children between ages 6 and 18 in household"
setinfo WA -d "Wife’s age"

setinfo WE -d "Wife’s educational attainment, in years"

setinfo WW -d "Wife’s average hourly earnings, in 2010 euros"

setinfo HHRS -d "Husband’s hours worked in 2010"

setinfo HA -d "Husband’s age"

setinfo HE -d "Husband’s educational attainment, in years"

setinfo FAMINC -d "Family income, in 2010 euros"

setinfo AX -d "Actual years of wife’s previous Tabor market experience"
setinfo CIT -d "1 if live in large city"

# save the final product
store mroz_rep.gdt
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Realtime data

8.1 Introduction

As of gretl version 1.9.13 the join command (see chapter 7) has been enhanced to deal with so-
called realtime datasets in a straightforward manner. Such datasets contain information on when
the observations in a time series were actually published by the relevant statistical agency and how
they have been revised over time. Probably the most popular sources of such data are the “Alfred”
online database at the St. Louis Fed (http://alfred.stlouisfed.org/) and the OECD’s StatEx-
tracts site, http://stats.oecd.org/. The examples in this chapter deal with files downloaded
from these sources, but should be easy to adapt to files with a slightly different format.

As already stated, join requires a column-oriented plain text file, where the columns may be sepa-
rated by commas, tabs, spaces or semicolons. Alfred and the OECD provide the option to download
realtime data in this format (tab-delimited files from Alfred, comma-delimited from the OECD). If
you have a realtime dataset in a spreadsheet file you must export it to a delimited text file before
using it with join.

Representing revision histories is more complex than just storing a standard time series, because
for each observation period you have in general more than one published value over time, along
with the information on when each of these values were valid or current. Sometimes this is repre-
sented in spreadsheets with two time axes, one for the observation period and another one for the
publication date or “vintage”. The filled cells then form an upper triangle (or a “guillotine blade”
shape, if the publication dates do not reach back far enough to complete the triangle). This format
can be useful for giving a human reader an overview of realtime data, but it is not optimal for
automatic processing; for that purpose “atomic” format is best.

8.2 Atomic format for realtime data

What we are calling atomic format is exactly the format used by Alfred if you choose the option
“Observations by Real-Time Period”, and by the OECD if you select all editions of a series for
download as plain text (CSV).! A file in this format contains one actual data-point per line, together
with associated metadata. This is illustrated in Table 8.1, where we show the first three lines from
an Alfred file and an OECD file (slightly modified).?

Consider the first data line in the Alfred file: in the observation_date column we find 1960-01-01,
indicating that the data-point on this line, namely 112.0, is an observation or measurement (in this
case, of the US index of industrial production) that refers to the period starting on January 1st
1960. The realtime_start_date value of 1960-02-16 tells us that this value was published on
February 16th 1960, and the realtime_end_date value says that this vintage remained current
through March 15th 1960. On the next day (as we can see from the following line) this data-point
was revised slightly downward to 111.0.

Daily dates in Alfred files are given in ISO extended format, YYYY-MM-DD, but below we describe
how to deal with differently formatted dates. Note that daily dates are appropriate for the last

LIf you choose to download in Excel format from OECD you get a file in the triangular or guillotine format mentioned
above.

2In the Alfred file we have used commas rather than tabs as the column delimiter; in the OECD example we have
shortened the name in the Variable column.
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Alfred: monthly US industrial production

observation_date,INDPRO, realtime_start_date,realtime_end_date
1960-01-01,112.0000,1960-02-16,1960-03-15
1960-01-01,111.0000,1960-03-16,1961-10-15

OECD: monthly UK industrial production

Country,Variable,Frequency,Time,Edition,Value,Flags
"United Kingdom","INDPRO","Monthly","Jan-1990","February 1999",100,
"United Kingdom","INDPRO","Monthly","Feb-1990","February 1999",99.3,

Table 8.1: Variant atomic formats for realtime data

two columns, which jointly record the interval over which a given data vintage was current. Daily
dates might, however, be considered overly precise for the first column, since the data period may
well be the year, quarter or month (as it is in fact here). However, following Alfred’s practice it is
acceptable to specify a daily date, indicating the first day of the period, even for non-daily data.3

Compare the first data line of the OECD example. There’s a greater amount of leading metadata,
which is left implicit in the Alfred file. Here Time is the equivalent of Alfred’s observation_date,
and Edition the equivalent of Alfred’s realtime_start_date. So we read that in February 1999
a value of 100 was current for the UK index of industrial production for January 1990, and from
the next line we see that in the same vintage month a value of 99.3 was current for industrial
production in February 1990.

Besides the different names and ordering of the columns, there are a few more substantive differ-
ences between Alfred and OECD files, most of which are irrelevant for join but some of which are
(possibly) relevant.

The first (irrelevant) difference is the ordering of the lines. It appears (though we're not sure how
consistent this is) that in Alfred files the lines are sorted by observation date first and then by
publication date—so that all revisions of a given observation are grouped together —while OECD
files are sorted first by revision date (Edi tion) and then by observation date (Time). If we want the
next revision of UK industrial production for January 1990 in the OECD file we have to scan down
several lines until we find

"United Kingdom","INDPRO","Monthly","Jan-1990","March 1999",100,

This difference is basically irrelevant because join can handle the case where the lines appear in
random order, although some operations can be coded more conveniently if we're able to assume
chronological ordering (either on the Alfred or the OECD pattern, it doesn’t matter).

The second (also irrelevant) difference is that the OECD seems to include periodic “Edition” lines
even when there is no change from the previous value (as illustrated above, where the UK industrial
production index for January 1990 is reported as 100 as of March 1999, the same value that we saw
to be current in February 1999), while Alfred reports a new value only when it differs from what
was previously current.

A third difference lies in the dating of the revisions or editions. As we have seen, Alfred gives
a specific daily date while (in the UK industrial production file at any rate), the OECD just dates
each edition to a month. This is not necessarily relevant for join, but it does raise the question of
whether the OECD might date revisions to a finer granularity in some of their files, in which case
one would have to be on the lookout for a different date format.

The final difference is that Alfred supplies an “end date” for each data vintage while the OECD

3Notice that this implies that in the Alfred example it is not clear without further information whether the observation
period is the first quarter of 1960, the month January 1960, or the day January 1st 1960. However, we assume that this
information is always available in context.



Chapter 8. Realtime data 67

supplies only a starting date. But there is less to this difference than meets the eye: according to
the Alfred webmaster, “by design, a new vintage must start immediately following (the day after)
the lapse of the old vintage” —so the end date conveys no independent information.*

8.3 More on time-related options

Before we get properly started it is worth saying a little more about the --tkey and --tconvert
options to join (first introduced in section 7.11), as they apply in the case of realtime data.

When you’re working with regular time series data tkey is likely to be useful while tconvert is
unlikely to be applicable (see section 7.10). On the other hand, when you’'re working with panel data
tkey is definitely not applicable but tconvert may well be helpful (section 7.12). When working
with realtime data, however, depending on the task in hand both options may be useful. You will
likely need tkey; you may well wish to select at least one column for tconvert treatment; and in
fact you may want to name a given column in both contexts—that is, include the tkey variable
among the tconvert columns.

Why might this make sense? Well, think of the --tconvert option as a “preprocessing” directive:
it asks gretl to convert date strings to numerical values (8-digit ISO basic dates) “at source”, as they
are read from the outer datafile. The --tkey option, on the other hand, singles out a column as
the one to use for matching rows with the inner dataset. So you would want to name a column in
both roles if (a) it should be used for matching periods and also (b) it is desirable to have the values
from this column in numerical form, most likely for use in filtering.

As we have seen, you can supply specific formats in connection with both tkey and tconvert (in
the latter case via the companion option --tconv-fmt) to handle the case where the date strings on
the right are not ISO-friendly at source. This raises the question of how the format specifications
work if a given column is named under both options. Here are the rules that gretl applies:

1. If a format is given with the --tkey option it always applies to the tkey column alone; and
for that column it overrides any format given via the --tconv-fmt option.

2. If a format is given via tconv-fmt it is assumed to apply to all the tconvert columns, unless
this assumption is overriden by rule 1.

8.4 Getting a certain data vintage

The most common application of realtime data is to “travel back in time” and retrieve the data that
were current as of a certain date in the past. This would enable you to replicate a forecast or other
statistical result that could have been produced at that date.

For example, suppose we are interested in a variable of monthly frequency named INDPRO, realtime
data on which is stored in an Alfred file named INDPRO. txt, and we want to check the status quo
as of June 15th 2011.

If we don’t already have a suitable dataset into which to import the INDPRO data, our first steps will
be to create an appropriately dimensioned empty dataset using the nulldata command and then
specify its time-series character via setobs, as in

nulldata 132
setobs 12 2004:01

For convenience we can put the name of our realtime file into a string variable. On Windows this
might look like

4Email received from Travis May of the Federal Reserve Bank of St. Louis, 2013-10-17. This closes off the possibility
that a given vintage could lapse or expire some time before the next vintage becomes available, hence giving rise to a
“hole” in an Alfred realtime file.
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string fname = "C:/Users/yourname/Downloads/INDPRO.txt"

We can then import the data vintage 2011-06-15 using jo1in, arbitrarily choosing the self-explanatory
identifier ip_asof_20110615.

join @fname ip_asof_20110615 --tkey=observation_date --data=INDPRO \
--tconvert="realtime_start_date" \
--filter="realtime_start_date<=20110615" --aggr=max(realtime_start_date)

Here some detailed explanations of the various options are warranted:

e The --tkey option specifies the column which should be treated as holding the observation
period identifiers to be matched against the periods in the current gretl dataset.” The more
general form of this option is --tkey="colname, format" (note the double quotes here), so
if the dates do not come in standard format, we can tell gretl how to parse them by using
the appropriate conversion specifiers as shown in Table 7.2. For example, here we could have
written --tkey="observation_date,%Y-%m-%d".

e Next, --data=INDPRO tells gretl that we want to retrieve the entries stored in the column
named INDPRO.

e As explained in section 7.11 the --tconvert option selects certain columns in the right-hand
data file for conversion from date strings to 8-digit numbers on the pattern YYYYMMDD. We’ll
need this for the next step, filtering, since the transformation to numerical values makes
it possible to perform basic arithmetic on dates. Note that since date strings in Alfred files
conform to gretl’s default assumption it is not necessary to use the --tconv-fmt option here.

e The --fiTlter option specification in combination with the subsequent --aggr aggregation
treatment is the central piece of our data retrieval; notice how we use the date constant
20110615 in ISO basic form to do numerical comparisons, and how we perform the numerical
max operation on the converted column realtime_start_date. It would also have been
possible to predefine a scalar variable, as in

vintage = 20110615

and then use vintage in the join command instead. Here we tell join that we only want to
extract those publications that (1) already appeared before (and including) June 15th 2011,
and (2) were not yet obsoleted by a newer release.5

As a result, your dataset will now contain a time series named ip_asof_20110615 with the values
that a researcher would have had available on June 15th 2011. Of course, all values for the observa-
tions after June 2011 will be missing (and probably a few before that, too), because they only have
become available later on.

8.5 Getting the n-th release for each observation period

For some purposes it may be useful to retrieve the n-th published value of each observation, where
n is a fixed positive integer, irrespective of when each of these n-th releases was published. Sup-
pose we are interested in the third release, then the relevant join command becomes:

join @fname ip_3rdpub --tkey=observation_date --data=INDPRO --aggr="seq:3"

SStrictly speaking, using --tkey is unnecessary in this example because we could just have relied on the default,
which is to use the first column in the source file for the periods. However, being explicit is often a good idea.

6By implementing the second condition through the max aggregation on the realtime_start_date column alone,
without using the realtime_end_date column, we make use of the fact that Alfred files cannot have “holes” as explained
before.
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Since we do not need the realtime_start_date information for this retrieval, we have dropped
the --tconvert option here. Note that this formulation assumes that the source file is ordered
chronologically, otherwise using the option --aggr="seq: 3", which retrieves the third value from
each sequence of matches, could have yielded a result different from the one intended. However,
this assumption holds for Alfred files and is probably rather safe in general.

The values of the variable imported as ip_3rdpub in this way were published at different dates,
so the variable is effectively a mix of different vintages. Depending on the type of variable, this
may also imply drastic jumps in the values; for example, index numbers are regularly re-based
to different base periods. This problem also carries over to inflation-adjusted economic variables,
where the base period of the price index changes over time. Mixing vintages in general also means
mixing different scales in the output, with which you would have to deal appropriately.’

8.6 Getting the values at a fixed lag after the observation period

New data releases may take place on any day of the month, and as we have seen the specific day
of each release is recorded in realtime files from Alfred. However, if you are working with, say,
monthly or quarterly data you may sometimes want to adjust the granularity of your realtime axis
to a monthly or quarterly frequency. For example, in order to analyse the data revision process for
monthly industrial production you might be interested in the extent of revisions between the data
available two and three months after each observation period.

This is a relatively complicated task and there is more than one way of accomplishing it. Either you
have to make several passes through the outer dataset or you need a sophisticated filter, written
as a hansl function. Either way you will want to make use of some of gretl’s built-in calendrical
functions.

We’ll assume that a suitably dimensioned workspace has been set up as described above. Given
that, the key ingredients of the join are a filtering function which we’ll call rel1_ok (for “release is
OK”) and the join command which calls it. Here’s the function:

function series rel_ok (series obsdate, series reldate, int p)
series y_obs, m_obs, y_rel, m_rel
# get year and month from observation date
isoconv(obsdate, &y_obs, &m_obs)
# get year and month from release date
isoconv(reldate, &y_rel, &m_rel)
# find the delta in months
series dm = (12*y_rel + m_rel) - (12*y_obs + m_obs)
# and implement the filter
return dm <= p

end function

And here’s the command:

scalar lag = 3 # choose your fixed lag here

join @fname ip_plus3 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(observation_date, realtime_start_date, lag)" \
--aggr=max(realtime_start_date)

Note that we use --tconvert to convert both the observation date and the realtime start date (or
release date) to 8-digit numerical values. Both of these series are passed to the filter, which uses the

7Some user-contributed functions may be available that address this issue, but it is beyond our scope here. Another
even more complicated issue in the realtime context is that of “benchmark revisions” applied by statistical agencies,
where the underlying definition or composition of a variable changes on some date, which goes beyond a mere rescaling.
However, this type of structural change is not, in principle, a feature of realtime data alone, but applies to any time-series
data.
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built-in function isoconv to extract year and month. We can then calculate dm, the “delta months”
since the observation date, for each release. The filter condition is that this delta should be no
greater than the specified lag, p.8

This filter condition may be satisfied by more than one release, but only the latest of those will
actually be the vintage that was current at the end of the n-th month after the observation period,
so we add the option --aggr=max(realtime_start_date). If instead you want to target the
release at the beginning of the n-th month you would have to use a slightly more complicated filter
function.

An illustration

Figure 8.1 shows four time series for the monthly index of US industrial production from October
2005 to June 2009: the value as of first publication plus the values current 3, 6 and 12 months out
from the observation date.? From visual inspection it would seem that over much of this period
the Federal reserve was fairly consistently overestimating industrial production at first release and
shortly thereafter, relative to the figure they arrived at with a lag of a year.

The script that produced this Figure is shown in full in Listing 8.1. Note that in this script we are
using a somewhat more efficient version of the rel_ok function shown above, where we pass the
required series arguments in “pointer” form to avoid having to copy them (see chapter 13).
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Figure 8.1: Successive revisions to US industrial production

8.7 Getting the revision history for an observation

For our final example we show how to retrieve the revision history for a given observation (again
using Alfred data on US industrial production). In this exercise we are switching the time axis: the
observation period is a fixed point and time is “vintage time”.

A suitable script is shown in Listing 8.2. We first select an observation to track (January 1970). We
start the clock in the following month, when a data-point for this period was first published, and let

8The filter is written on the assumption that the lag is expressed in months; on that understanding it could be used
with annual or quarterly data as well as monthly. The idea could be generalized to cover weekly or daily data without
much difficulty.

9Why not a longer series? Because if we try to extend it in either direction we immediately run into the index re-basing
problem mentioned in section 8.5, with big (staggered) leaps downward in all the series.
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Listing 8.1: Retrieving successive realtime lags of US industrial production

function series rel_ok (series *obsdate, series *reldate, int p)
series y_obs, m_obs, y_rel, m_rel
isoconv(obsdate, &y_obs, &m_obs)
isoconv(reldate, &y_rel, &m_rel)
series dm = (12*y_rel + m_rel) - (12*y_obs + m_obs)
return dm <= p
end function

nulldata 45
setobs 12 2005:10

string fname = "INDPRO.txt"

# initial published values
join @fname firstpub --data=INDPRO --tkey=observation_date \
--tconvert=realtime_start_date --aggr=min(realtime_start_date)

# plus 3 months

join @fname plus3 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 3)" \
--aggr=max(realtime_start_date)

# plus 6 months

join @fname plus6 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 6)" \
--aggr=max(realtime_start_date)

# plus 12 months

join @fname plusl2 --data=INDPRO --tkey=observation_date \
--tconvert="observation_date,realtime_start_date" \
--filter="rel_ok(&observation_date, &realtime_start_date, 12)" \
--aggr=max(realtime_start_date)

setinfo firstpub --graph-name="First publication"
setinfo plus3 --graph-name="Plus 3 months"
setinfo plus6 --graph-name="Plus 6 months"
setinfo plusl2 --graph-name="Plus 12 months"

gnupTlot firstpub plus3 plus6 plusl2 --time --with-Tlines \
--output=realtime.pdf { set key left bottom; }
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it run to the end of the vintage history (in this file, March 2013). Our outer time key is the realtime
start date and we filter on observation date; we name the imported INDPRO values as ip_jan70.
Since it sometimes happens that more than one revision occurs in a given month we need to select
an aggregation method: here we choose to take the last revision in the month.

Recall from section 8.2 that Alfred records a new revision only when the data-point in question
actually changes. This means that our imported series will contain missing values for all months
when no real revision took place. However, we can apply a simple autoregressive procedure to fill
in the data: each missing value equals the prior non-missing value.

Figure 8.2 displays the revision history. Over this sample period the periodic re-basing of the index
overshadows amendments due to accrual of new information.

Listing 8.2: Retrieving a revision history

# choose the observation to track here (YYYYMMDD)
scalar target = 19700101

nulldata 518 --preserve
setobs 12 1970:02

join INDPRO.txt ip_jan70 --data=INDPRO --tkey=realtime_start_date \
--tconvert=observation_date \

--filter="observation_date==target" --aggr=seq:-1

ip_jan70 = ok(ip_jan70) ? dip_jan70 : ip_jan70(-1)

180 [~ ‘ ‘ : : : : x x
160 |- -
140 | i
120 | -

100 | B
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Figure 8.2: Vintages of the index of US industrial production for January 1970



Chapter 9

Special functions in genr

9.1 Introduction

The genr command provides a flexible means of defining new variables. It is documented in the
Gretl Command Reference. This chapter offers a more expansive discussion of some of the special
functions available via genr and some of the finer points of the command.

9.2 Long-run variance

As is well known, the variance of the average of T random variables x1, x», ..., xt with equal vari-
ance o2 equals 02/T if the data are uncorrelated. In this case, the sample variance of x; over the
sample size provides a consistent estimator.

If, however, there is serial correlation among the x;s, the variance of X = T~! Zthl X¢ must be
estimated differently. One of the most widely used statistics for this purpose is a nonparametric
kernel estimator with the Bartlett kernel defined as

T-k[ k
@*k)=T7"> [ > wilxy — X) (x—i —X)] : (9.1)
t=k Li=—k
where the integer k is known as the window size and the w; terms are the so-called Bartlett weights,
defined as w; = 1 — % It can be shown that, for k large enough, @?(k)/T yields a consistent

estimator of the variance of X.

Gretl implements this estimator by means of the function 1rvar(). This function takes one re-
quired argument, namely the series whose long-run variance is to be estimated, followed by two
optional arguments. The first of these can be used to supply a value for k; if it is omitted or nega-
tive, the popular choice T'/3 is used. The second allows specification of an assumed value for the
population mean of X, which then replaces X in the variance calculation. Usage is illustrated below.

# automatic window size; use xbar for mean

Trs2 = Trvar(x)

# set a window size of 12

1rs2 = 1rvar(x, 12)

# set window size and impose assumed mean of zero
Trs2 = 1rvar(x, 12, 0)

# impose mean zero, automatic window size

1rs2 = 1rvar(x, -1, 0)

9.3 Cumulative densities and p-values

The two functions cdf and pvalue provide complementary means of examining values from several
probability distributions: the standard normal, Student’s ¢, x2, F, gamma, and binomial. The syntax
of these functions is set out in the Gretl Command Reference; here we expand on some subtleties.

The cumulative density function or CDF for a random variable is the integral of the variable’s
density from its lower limit (typically either —co or 0) to any specified value x. The p-value (at
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least the one-tailed, right-hand p-value as returned by the pvalue function) is the complementary
probability, the integral from x to the upper limit of the distribution, typically + .

In principle, therefore, there is no need for two distinct functions: given a CDF value p( you could
easily find the corresponding p-value as 1 — po (or vice versa). In practice, with finite-precision
computer arithmetic, the two functions are not redundant. This requires a little explanation. In
gretl, as in most statistical programs, floating point numbers are represented as “doubles” —
double-precision values that typically have a storage size of eight bytes or 64 bits. Since there are
only so many bits available, only so many floating-point numbers can be represented: doubles do
not model the real line. Typically doubles can represent numbers over the range (roughly) +1.7977 %
1039 but only to about 15 digits of precision.

Suppose you're interested in the left tail of the x2 distribution with 50 degrees of freedom: you'd
like to know the CDF value for x = 0.9. Take a look at the following interactive session:

? scalar pl = cdf(X, 50, 0.9)
Generated scalar pl = 8.94977e-35
? scalar p2 = pvalue(X, 50, 0.9)
Generated scalar p2 = 1

? scalar test =1 - p2

Generated scalar test = 0

The cdf function has produced an accurate value, but the pvalue function gives an answer of 1,
from which it is not possible to retrieve the answer to the CDF question. This may seem surprising
at first, but consider: if the value of p1 above is correct, then the correct value for p2 is 1-8.94977 x
1073, But there’s no way that value can be represented as a double: that would require over 30
digits of precision.

Of course this is an extreme example. If the x in question is not too far off into one or other tail
of the distribution, the cdf and pvalue functions will in fact produce complementary answers, as
shown below:

? scalar pl = cdf(X, 50, 30)
Generated scalar pl = 0.0111648

? scalar p2 = pvalue(X, 50, 30)
Generated scalar p2 = 0.988835

? scalar test =1 - p2

Generated scalar test = 0.0111648

But the moral is that if you want to examine extreme values you should be careful in selecting the
function you need, in the knowledge that values very close to zero can be represented as doubles
while values very close to 1 cannot.

9.4 Retrieving internal variables

The genr command provides a means of retrieving various values calculated by the program in
the course of estimating models or testing hypotheses. The variables that can be retrieved in this
way are listed in the Gretl Command Reference; here we say a bit more about the special variables
$test and $pvalue.

These variables hold, respectively, the value of the last test statistic calculated using an explicit
testing command and the p-value for that test statistic. If no such test has been performed at the
time when these variables are referenced, they will produce the missing value code. The “explicit
testing commands” that work in this way are as follows: add (joint test for the significance of vari-
ables added to a model); adf (Augmented Dickey-Fuller test, see below); arch (test for ARCH); chow
(Chow test for a structural break); coeffsum (test for the sum of specified coefficients); cusum (the
Harvey-Collier t-statistic); kpss (KPSS stationarity test, no p-value available); Tmtest (see below);
meantest (test for difference of means); omit (joint test for the significance of variables omitted
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from a model); reset (Ramsey’s RESET); restrict (general linear restriction); runs (runs test for
randomness); testuhat (test for normality of residual); and vartest (test for difference of vari-
ances). In most cases both a $test and a $pvalue are stored; the exception is the KPSS test, for
which a p-value is not currently available.

An important point to notice about this mechanism is that the internal variables $test and $pvalue
are over-written each time one of the tests listed above is performed. If you want to reference these
values, you must do so at the correct point in the sequence of gretl commands.

A related point is that some of the test commands generate, by default, more than one test statistic
and p-value; in these cases only the last values are stored. To get proper control over the retrieval
of values via $test and $pvalue you should formulate the test command in such a way that the
result is unambiguous. This comment applies in particular to the adf and Tmtest commands.

e By default, the adf command generates three variants of the Dickey-Fuller test: one based
on a regression including a constant, one using a constant and linear trend, and one using a
constant and a quadratic trend. When you wish to reference $test or $pvalue in connection
with this command, you can control the variant that is recorded by using one of the flags
--nc, --¢, --ct or --ctt with adf.

e By default, the Tmtest command (which must follow an OLS regression) performs several
diagnostic tests on the regression in question. To control what is recorded in $test and
$pvalue you should limit the test using one of the flags --Togs, --autocorr, --squares or
--white.

9.5 The discrete Fourier transform

The discrete Fourier transform can be best thought of as a linear, invertible transform of a complex
vector. Hence, if x is an n-dimensional vector whose k-th element is xy = ay + iby, then the output
of the discrete Fourier transform is a vector f = F(x) whose k-th element is

n-1
i 3 eteliby,
j=0

where w (j, k) = 2771’%. Since the transformation is invertible, the vector x can be recovered from
f via the so-called inverse transform

1 n-1.
Xk = ﬁ Z elw(],k)fj_
j=0

The Fourier transform is used in many diverse situations on account of this key property: the
convolution of two vectors can be performed efficiently by multiplying the elements of their Fourier
transforms and inverting the result. If

Zk = Z XjVk—js
j=1
then
F(z) = F(x) o F(y).

Thatis, F(z)x = FX)kF (V)k.

For computing the Fourier transform, gretl uses the external library fftw3: see Frigo and Johnson
(2005). This guarantees extreme speed and accuracy. In fact, the CPU time needed to perform
the transform is O (nlogn) for any n. This is why the array of numerical techniques employed in
fftw3 is commonly known as the Fast Fourier Transform.
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Gretl provides two matrix functions! for performing the Fourier transform and its inverse: fft and
ffti. In fact, gretl’s implementation of the Fourier transform is somewhat more specialized: the
input to the fft function is understood to be real. Conversely, ffti takes a complex argument and
delivers a real result. For example:

matrix x1 = {1 ; 2 ; 3}

# perform the transform

matrix f = fft(a)

# perform the inverse transform
matrix x2 = ffti(f)

yields
1 6 0 1
x1=1| 2 f=1 -1.5 0.866 x2=1 2
3 -1.5 -0.866 3

where the first column of f holds the real part and the second holds the complex part. In general,
if the input to fft has n columns, the output has 2n columns, where the real parts are stored in
the odd columns and the complex parts in the even ones. Should it be necessary to compute the
Fourier transform on several vectors with the same number of elements, it is numerically more
efficient to group them into a matrix rather than invoking fft for each vector separately.

As an example, consider the multiplication of two polynomials:

a(x) = 1+0.5x
b(x) = 1+0.3x -0.8x?
c(x) =a(x) - b(x) 1+ 0.8x — 0.65x2 — 0.4x3

The coefficients of the polynomial c(x) are the convolution of the coefficients of a(x) and b(x);
the following gretl code fragment illustrates how to compute the coefficients of c(x):

# define the two polynomials

a={1, 0.5,0,0%

b=4{1, 0.3, -0.8, 0 }’

# perform the transforms

fa = fft(a)

fb = fft(b)

# complex-multiply the two transforms

fc = cmult(fa, fb)

# compute the coefficients of c via the inverse transform
c = ffti(fo)

Maximum efficiency would have been achieved by grouping a and b into a matrix. The computa-
tional advantage is so little in this case that the exercise is a bit silly, but the following alternative
may be preferable for a large number of rows/columns:

# define the two polynomials

a={1;0.5;0;01}

b={1; 0.3; -0.8; 01}

# perform the transforms jointly

f = fft(a ~ b)

# complex-multiply the two transforms

fc = ecmult(f[,1:2], f[,3:4])

# compute the coefficients of c via the inverse transform
c = ffti(fo)

LSee chapter 16.
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Traditionally, the Fourier transform in econometrics has been mostly used in time-series analysis,
the periodogram being the best known example. Listing 9.1 shows how to compute the periodogram
of a time series via the fft function.

Listing 9.1: Periodogram via the Fourier transform

nulldata 50

# generate an AR(1) process
series e = normal()

series x = 0

x = 0.9%*%%(-1) + e

# compute the periodogram
scale = 2*pi*$nobs

X={x1}

F = fft(X)

S = sumr(F.A2)

S = S[2:($nobs/2)+1]/scale
omega = seq(l, ($nobs/2))’ .* (2*pi/$nobs)
omega = omega ~ S

# compare the built-in command
pergm x

print omega



Chapter 10

Gretl data types

10.1 Introduction

Gretl offers the following data types:

scalar holds a single numerical value
series holds n numerical values, where n is the number of observations in the current

dataset
matrix holds a rectangular array of numerical values, of any (two) dimensions
Tist holds the ID numbers of a set of series

string holds an array of characters
bundle holds zero or more objects of various types
array  holds zero or more objects of a given type

The “numerical values” mentioned above are all double-precision floating point numbers.

In this chapter we give a run-down of the basic characteristics of each of these types and also
explain their “life cycle” (creation, modification and destruction). The list and matrix types, whose
uses are relatively complex, are discussed at greater length in chapters 14 and 16 respectively.

10.2 Series

We begin with the series type, which is the oldest and in a sense the most basic type in gretl. When
you open a data file in the gretl GUI, what you see in the main window are the ID numbers, names
(and descriptions, if available) of the series read from the file. All the series existing at any point in
a gretl session are of the same length, although some may have missing values. The variables that
can be added via the items under the Add menu in the main window (logs, squares and so on) are
also series.

For a gretl session to contain any series, a common series length must be established. This is
usually achieved by opening a data file, or importing a series from a database, in which case the
length is set by the first import. But one can also use the nulldata command, which takes as it
single argument the desired length, a positive integer.

Each series has these basic attributes: an ID number, a name, and of course n numerical values.
A series may also have a description (which is shown in the main window and is also accessible
via the Tabels command), a “display name” for use in graphs, a record of the compaction method
used in reducing the variable’s frequency (for time-series data only) and a flag marking the variable
as discrete. These attributes can be edited in the GUI by choosing Edit Attributes (either under the
Variable menu or via right-click), or by means of the setinfo command.

In the context of most commands you are able to reference series by name or by ID number as you
wish. The main exception is the definition or modification of variables via a formula; here you must
use names since ID numbers would get confused with numerical constants.

Note that series ID numbers are always consecutive, and the ID number for a given series will change
if you delete a lower-numbered series. In some contexts, where gretl is liable to get confused by
such changes, deletion of low-numbered series is disallowed.
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Discrete series

It is possible to mark variables of the series type as discrete. The meaning and uses of this facility
are explained in chapter 11.

String-valued series

It is generally expected that series in gretl will be “properly numeric” (on a ratio or at least an
ordinal scale), or the sort of numerical indicator variables (0/1 “dummies”) that are traditional
in econometrics. However, there is some support for “string-valued” series—see chapter 15 for
details.

10.3 Scalars

The scalar type is relatively simple: just a convenient named holder for a single numerical value.
Scalars have none of the additional attributes pertaining to series, do not have ID numbers, and
must be referenced by name. A common use of scalar variables is to record information made
available by gretl commands for further processing, as in scalar s2 = $sigma”2 to record the
square of the standard error of the regression following an estimation command such as ols.

You can define and work with scalars in gretl without having any dataset in place.

In the gretl GUI, scalar variables can be inspected and their values edited via the “Icon view” (see
the View menu in the main window).

10.4 Matrices

Matrices in gretl work much as in other mathematical software (e.g. MATLAB, Octave). Like scalars
they have no ID numbers and must be referenced by name, and they can be used without any
dataset in place. Matrix indexing is 1-based: the top-left element of matrix A is A[1,1]. Matrices
are discussed at length in chapter 16; advanced users of gretl will want to study this chapter in
detail.

Matrices have two optional attribute beyond their numerical content: they may have column and/or
row names attached; these are displayed when the matrix is printed. See the colnames and
rownames functions for details.

In the gretl GUI, matrices can be inspected, analysed and edited via the Icon view item under the
View menu in the main window: each currently defined matrix is represented by an icon.

10.5 Lists

As with matrices, lists merit an explication of their own (see chapter 14). Briefly, named lists can
(and should!) be used to make command scripts less verbose and repetitious, and more easily
modifiable. Since lists are in fact lists of series ID numbers they can be used only when a dataset is
in place.

In the gretl GUI, named lists can be inspected and edited under the Data menu in the main window,
via the item Define or edit list.

10.6 Strings

String variables may be used for labeling, or for constructing commands. They are discussed in
chapter 14. They must be referenced by name; they can be defined in the absence of a dataset.

Such variables can be created and modified via the command-line in the gretl console or via script;
there is no means of editing them via the gretl GUI.
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10.7 Bundles

A bundTe is a container or wrapper for various sorts of objects—primarily scalars, matrices,
strings, arrays and bundles. (Yes, a bundle can contain other bundles). Secondarily, series and
lists can be placed in bundles but this is subject to important qualifications noted below.

A bundle takes the form of a hash table or associative array: each item placed in the bundle is
associated with a key which can used to retrieve it subsequently. We begin by explaining the
mechanics of bundles then offer some thoughts on what they are good for.

To use a bundle you first either “declare” it, as in
bundle foo

or define an empty bundle using the nul1 keyword:

bundle foo = null

These two formulations are basically equivalent, in that they both create an empty bundle. The
difference is that the second variant may be reused—if a bundle named foo already exists the
effect is to empty it—while the first may only be used once in a given gretl session; it is an error to
declare a variable that already exists.

To add an object to a bundle you assign to a compound left-hand value: the name of the bundle
followed by the key. Two forms of syntax are acceptable in this context. The currently recom-
mended syntax (for most uses) is bundlename.key; that is, the name of the bundle followed by a
dot, then the key. Both the bundle name and the key must be valid gretl identifiers.! For example,
the statement

foo.matrixl = m

adds an object called m (presumably a matrix) to bundle foo under the key matrix1. The original
syntax (and the only form supported prior to version 1.9.12 of gretl) requires that the key be given
as a quoted string literal enclosed in square brackets, as in

foo["matrix1"] = m

This syntax is still acceptable, and it offers greater flexibility in that the key string does not have to
be a valid identifier (for example it can include spaces). In addition, when using the square bracket
syntax it is possible to use a string variable to define or access the key in question. For example:

string s = "matrix 1"
foo[s] = m # matrix is added under key "matrix 1"

To get an item out of a bundle, again use the name of the bundle followed by the key, as in

matrix bm = foo.matrixl

# or using the alternative notation
matrix bm = foo["matrixl1l"]

# or using a string variable
matrix bm = foo[s]

Note that the key identifying an object within a given bundle is necessarily unique. If you reuse an
existing key in a new assignment, the effect is to replace the object which was previously stored
under the given key. It is not required that the type of the replacement object is the same as that
of the original.

1 As a reminder: 31 characters maximum, starting with a letter and composed of just letters, numbers or underscore.
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Also note that when you add an object to a bundle, what in fact happens is that the bundle acquires
a copy of the object. The external object retains its own identity and is unaffected if the bundled
object is replaced by another. Consider the following script fragment:

bundle foo
matrix m = I(3)
foo.mykey = m
scalar x = 20
foo.mykey = x

After the above commands are completed bundle foo does not contain a matrix under mykey, but
the original matrix m is still in good health.

To delete an object from a bundle use the delete command, with the bundle/key combination, as
in

delete foo.mykey

This destroys the object associated with the key and removes the key from the hash table.

To determine whether a bundle contains an object associated with a given key, use the inbundle()
function. This takes two arguments: the name of the bundle and the key string. The value returned
by this function is an integer which codes for the type of the object (0 for no match, 1 for scalar, 2
for series, 3 for matrix, 4 for string, 5 for bundle and 6 for array). The function typestr() may be
used to get the string corresponding to this code. For example:

scalar type = inbundle(foo, x)

if type ==

print "x: no such object”
else

printf "x is of type %s\n", typestr(type)
endif

Besides adding, accessing, replacing and deleting individual items, the other operations that are
supported for bundles are union, printing and deletion. As regards union, if bundles b1 and b2 are
defined you can say

bundle b3 = bl + b2

to create a new bundle that is the union of the two others. The algorithm is: create a new bundle
that is a copy of b1, then add any items from b2 whose keys are not already present in the new
bundle. (This means that bundle union is not commutative if the bundles have one or more key
strings in common.)

If b is a bundle and you say print b, you get a listing of the bundle’s keys along with the types of
the corresponding objects, as in

? print b
bundle b:

x (scalar)

mat (matrix)
inside (bundle)

Series and lists as bundle members

It is possible to add both series and lists to a bundle, as in
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open data4-10

Tist X = const CATHOL INCOME
bundle b

b.y = ENROLL

b.X = X

eval b.y

eval b.X

However, it is important to bear in mind the following limitations.

e A series, as such, is inherently a member of a dataset, and a bundle can “survive” the replace-
ment or destruction of the dataset from which a series was added. It may then be impossible
(or, even if possible, meaningless) to extract a bundled series as a series. However it’s always
possible to retrieve the values of the series in the form of a matrix (column vector).

e In gretl commands that call for series arguments you cannot give a bundled series without
first extracting it. In the little example above the series ENROLL was added to bundle b under
the key y, but b.y is not itself a series (member of a dataset), it’s just an anonymous array
of values. It therefore cannot be given as, say, the dependent variable in a call to gretl’s o1s
command.

e A gretl list is just an array of ID numbers of series in a given dataset, a “macro” if you like.
So as with series, there’s no guarantee that a bundled list can be extracted as a list (though it
can always be extracted as a row vector).

The points made above are illustrated in Listing 10.1. In “Case 1” we open a little dataset with just
14 cross-sectional observations and put a series into a bundle. We then open a time-series dataset
with 64 observations, while preserving the bundle, and extract the bundled series. This instance is
legal, since the stored series does not overflow the length of the new dataset (it gets written into
the first 14 observations), but it’s probably not meaningful. It’s up to the user to decide if such
operations make sense.

In “Case 2” a similar sequence of statements leads to an error (trapped by catch) because this time
the stored series will not fit into the new dataset. We can nonetheless grab the data as a vector.

In “Case 3” we put a list of three series into a bundle. This does not put any actual data values into
the bundle, just the ID numbers of the specified series, which happen to be 4, 5 and 6. We then
switch to a dataset that contains just 4 series, so the list cannot be extracted as such (IDs 5 and 6
are out of bounds). Once again, however, we can retrieve the ID numbers in matrix form if we want.

In some cases putting a gretl list as such into a bundle may be appropriate, but in others you are
better off adding the content of the list, in matrix form, as in

open data4-10

Tist X = const CATHOL INCOME
bundle b

matrix b.X = {X}

In this case we’re adding a matrix with three columns and as many rows as there are in the dataset;
we have the actual data, not just a reference to the data that might “go bad”. See chapter 16 for
more on this.

What are bundles good for?

Bundles are unlikely to be of interest in the context of standalone gretl scripts, but they can be
very useful in the context of complex function packages where a good deal of information has to
be passed around between the component functions (see Cottrell and Lucchetti, 2016). Instead of
using a lengthy list of individual arguments, function A can bundle up the required data and pass
it to functions B and C, where relevant information can be extracted via a mnemonic key.
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Listing 10.1: Series and lists in bundles

# Case 1: store and retrieve series, OK?
open data4-1

bundle b

series b.x = sqft

open data9-7 --preserve

series x = b.x

print x --byobs

# Case 2: store and retrieve series: gives an error,
# but the data can be retrieved in matrix form
open data9-7
bundle b
series b.x = QNC
open data4-1 --preserve
catch series x = b.x # wrong, won’t fit!
if S$error
matrix mx = b.x
print mx
else
print x
endif

# Case 3: store and retrieve 1list: gives an error,
# but the ID numbers in the 1list can be retrieved
# as a row vector
open data9-7
Tist L = PRIME UNEMP STOCK
bundle b
Tist b.L = L
open data4-1 --preserve
catch 1ist L = b.L
if S$error
matrix mL = b.L
print mL # prints "4 5 6"
endif
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In this context bundles should be passed in “pointer” form (see chapter 13) as illustrated in the fol-
lowing trivial example, where a bundle is created at one level then filled out by a separate function.

# modification of bundle (pointer) by user function

function void fill_out_bundle (bundle *b)
b.mat = I(3)
b.str = "foo"
b.x = 32

end function

bundle my_bundle
fi11_out_bundle(&my_bundle)

The bundle type can also be used to advantage as the return value from a packaged function, in
cases where a package writer wants to give the user the option of accessing various results. In
the gretl GUI, function packages that return a bundle are treated specially: the output window that
displays the printed results acquires a menu showing the bundled items (their names and types),
from which the user can save items of interest. For example, a function package that estimates a
model might return a bundle containing a vector of parameter estimates, a residual series and a
covariance matrix for the parameter estimates, among other possibilities.

As a refinement to support the use of bundles as a function return type, the setnote function can
be used to add a brief explanatory note to a bundled item —such notes will then be shown in the
GUI menu. This function takes three arguments: the name of a bundle, a key string, and the note.
For example

setnote(b, "vcv'", "covariance matrix'")

After this, the object under the key vcv in bundle b will be shown as “covariance matrix” in a GUI
menu.

10.8 Arrays

The gretl array type was developed in summer 2014 and is first documented in gretl 1.10. Arrays
are intended for scripting use only: they have no GUI representation and they're unlikely ever
to acquire one.? Since this type is a relative newcomer there are at present relatively few built-in
functions that take arrays as arguments or that return arrays; further development can be expected.

A gretl array is, as you might expect, a container which can hold zero or more objects of a certain
type, indexed by consecutive integers starting at 1. It is one-dimensional. This type is implemented
by a quite “generic” back-end. The types of object that can be put into arrays are strings, matrices
and bundles; a given array can hold only one of these types.

Of gretl’s “primary” types, then, neither scalars nor series are supported by the array mechanism.
There would be little point in supporting arrays of scalars as such since the matrix type already
plays that role, and more flexibly. As for series, they have a special status as elements of a dataset
(which is in a sense an “array of series” already) and in addition we have the list type which already
functions as a sort of array for subsets of the series in a dataset.

Creating an array

An array can be brought into existence in any of four ways: bare declaration, assignment from nulT,
or using one of the functions array() or defarray(). In each case one of the specific type-words
strings, matrices or bundles must be used. Here are some examples:

2However, it's possible to save arrays “invisibly” in the context of a GUI session, by virtue of the fact that they can be
packed into bundles (see below), and bundles can be saved as part of a “session”.
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# make an empty array of strings

strings S

# make an empty array of matrices

matrices M = null

# make an array with space for four bundles
bundles B = array(4)

# make an array with three specified strings
strings P = defarray("foo", "bar", "baz")

The “bare declaration” form and the “= nul11” form have the same effect of creating an empty array,
but the second can be used in contexts where bare declaration is not allowed (and it can also be
used to destroy the content of an existing array and reduce it to size zero). The array() function
expects a positive integer argument and can be used to create an array of pre-given size; in this
case the elements are initialized appropriately as empty strings, null matrices or empty bundles.
The defarray () function takes a variable number of arguments (one or more), each of which may
be the name of a variable of the appropriate type or an expression which evaluates to an object of
the appropriate type.

Setting and getting elements

There are two ways to set the value of an array element: you can set a particular element using the
array index, or you can append an element using the += operator:

# first case

strings S = array(3)

S[2] = "string the second"
# alternative

matrices M = null

M += mnormal (T, k)

In the first method the index must (of course) be within bounds; that is, greater than zero and
no greater than the current length of the array. When the second method is used it automatically
extends the length of the array by 1.

To get hold of an element, the array index must be used:

# for S an array of strings
string s = S[5]

# for M an array of matrices
printf "\n%#12.5g\n", M[1]

Operations on whole arrays

At present only one operation is available for arrays as a whole, namely appending. You can do, for
example

# for S1 and S2 both arrays of strings
strings BigS = S1 + S2

# or

S1 += S2

In each case the result is an array of strings whose length is the sum of the lengths of S1 and
S2 —and similarly for the other supported types.

Arrays as function arguments

One can write hansl functions that take as arguments any of the array types, and it is possible to
pass arrays as function arguments in “pointerized” form. In addition hansl functions may return
any of the array types. Here is a trivial example for strings:
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function void printstrings (strings *S)
Toop i=1..nelem(S) -q
printf "element %d: ’%s’\n", 1, S[i]
endTloop
end function

function strings mkstrs (int n)
strings S = array(n)
Toop i=1..n -q
S[i] = sprintf("member %d", i)
endloop
return S
end function

strings Foo = mkstrs(5)
print Foo
printstrings(&Foo)

A couple of points are worth noting here. First, the nelem() function works to give the number of
elements in any of the “container” types (lists, arrays, bundles, matrices). Second, if you do “print
Foo” for Foo an array, you'll see something like:

? print Foo
Array of strings, length 5

Arrays and bundles

As mentioned, the bundTe type is supported by the array mechanism. In addition, arrays (of what-
ever type) can be put into bundles:

matrices M = array(8)

# set values of M[i] here...
bundle b

b.M =M

The mutual “packability” of bundles and arrays means that it’s possible to go quite far down the
rabbit-hole... users are advised not to get carried away.

10.9 The life cycle of gretl objects
Creation

The most basic way to create a new variable of any type is by declaration, where one states the type
followed by the name of the variable to create, as in

scalar x
series y
matrix A

and so forth. In that case the object in question is given a default initialization, as follows: a new
scalar has value NA (missing); a new series is filled with NAs; a new matrix is null (zero rows and
columns); a new string is empty; a new list has no members, and a new bundle is empty.

Declaration can be supplemented by a definite initialization, as in
scalar x = pi

series y = log(x)
matrix A zeros(10,4)
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The traditional way of creating a new variable in gretl was via the genr command (which is still
supported), as in

genr x = y/100

Here the type of x is left implicit and will be determined automatically depending on the context: if
y is a scalar, a series or a matrix x will inherit y’s type (otherwise an error will be generated, since
division is applicable to these types only). Moreover, the type of a new variable can be left implicit
without use of genr:3

x = y/100

In “modern” gretl scripting we recommend that you state the type of a new variable explicitly.
This makes the intent clearer to a reader of the script and also guards against errors that might
otherwise be difficult to understand (i.e. a certain variable turns out to be of the wrong type for
some subsequent calculation, but you don’t notice at first because you didn’t say what type you
needed). An exception to this rule might reasonably be granted for clear and simple cases where
there’s little possibility of confusion.

Modification

Typically, the values of variables of all types are modified by assignment, using the = operator with
the name of the variable on the left and a suitable value or formula on the right:

z = normal()
x = 100 * Tlog(y) - log(y(-1))
M = gform(a, X)

By a “suitable” value we mean one that is conformable for the type in question. A gretl variable
acquires its type when it is first created and this cannot be changed via assignment; for example, if
you have a matrix A and later want a string A, you will have to delete the matrix first.

= One point to watch out for in gretl scripting is type conflicts having to do with the names of series brought
in from a data file. For example, in setting up a command loop (see chapter 12) it is very common to call
the loop index i. Now a loop index is a scalar (typically incremented each time round the loop). If you open
a data file that happens to contain a series named i you will get a type error (“Types not conformable for
operation”) when you try to use i as a loop index.

Although the type of an existing variable cannot be changed on the fly, gretl nonetheless tries to be
as “understanding” as possible. For example if x is a series and you say

x = 100

gretl will give the series a constant value of 100 rather than complaining that you are trying to
assign a scalar to a series. This issue is particularly relevant for the matrix type —see chapter 16
for details.

Besides using the regular assignment operator you also have the option of using an “inflected”
equals sign, as in the C programming language. This is shorthand for the case where the new value
of the variable is a function of the old value. For example,

x + 100
x * 100

X += 100 # in Tonghand: x
x *= 100 # in Tonghand: x

3 Apart from the bundle type: that must always be specified.
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For scalar variables you can use a more condensed shorthand for simple increment or decrement
by 1, namely trailing ++ or -- respectively:

x = 100
X-— # x now equals 99
X++ # x now equals 100

In the case of objects holding more than one value — series, matrices and bundles—you can mod-
ify particular values within the object using an expression within square brackets to identify the
elements to access. We have discussed this above for the bundle type and chapter 16 goes into
details for matrices. As for series, there are two ways to specify particular values for modification:
you can use a simple 1-based index, or if the dataset is a time series or panel (or if it has marker
strings that identify the observations) you can use an appropriate observation string. Such strings
are displayed by gretl when you print data with the --byobs flag. Examples:

x[13] 100 # simple index: the 13th observation

x[1995:4] 100 # date: quarterly time series

x[2003:08] = 100 # date: monthly time series

x["AZ"] 100 # the observation with marker string "AZ"
x[3:15] 100 # panel: the 15th observation for the 3rd unit

Note that with quarterly or monthly time series there is no ambiguity between a simple index
number and a date, since dates always contain a colon. With annual time-series data, however,
such ambiguity exists and it is resolved by the rule that a number in brackets is always read as a
simple index: x[1905] means the nineteen-hundred and fifth observation, not the observation for
the year 1905. You can specify a year by quotation, as in x["1905"].

Destruction

Objects of the types discussed above, with the important exception of named lists, are all destroyed
using the delete command: deTete objectname.

Lists are an exception for this reason: in the context of gretl commands, a named list expands to
the ID numbers of the member series, so if you say

delete L

for L a list, the effect is to delete all the series in L; the list itself is not destroyed, but ends up
empty. To delete the list itself (without deleting the member series) you must invert the command
and use the 1ist keyword:

Tist L delete

Note that the deTete command cannot be used within a Toop construct (see chapter 12).
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Discrete variables

When a variable can take only a finite, typically small, number of values, then it is said to be discrete.
In gretl, variables of the series type (only) can be marked as discrete. (When we speak of “variables”
below this should be understood as referring to series.) Some gretl commands act in a slightly
different way when applied to discrete variables; moreover, gretl provides a few commands that
only apply to discrete variables. Specifically, the dummify and xtab commands (see below) are
available only for discrete variables, while the freq (frequency distribution) command produces
different output for discrete variables.

11.1 Declaring variables as discrete

Gretl uses a simple heuristic to judge whether a given variable should be treated as discrete, but
you also have the option of explicitly marking a variable as discrete, in which case the heuristic
check is bypassed.

The heuristic is as follows: First, are all the values of the variable “reasonably round”, where this
is taken to mean that they are all integer multiples of 0.25? If this criterion is met, we then ask
whether the variable takes on a “fairly small” set of distinct values, where “fairly small” is defined
as less than or equal to 8. If both conditions are satisfied, the variable is automatically considered
discrete.

To mark a variable as discrete you have two options.

1. From the graphical interface, select “Variable, Edit Attributes” from the menu. A dialog box
will appear and, if the variable seems suitable, you will see a tick box labeled “Treat this
variable as discrete”. This dialog box can also be invoked via the context menu (right-click on
a variable) or by pressing the F2 key.

2. From the command-line interface, via the discrete command. The command takes one or
more arguments, which can be either variables or list of variables. For example:

Tist x1list = x1 x2 x3
discrete z1 xlist z2

This syntax makes it possible to declare as discrete many variables at once, which cannot
presently be done via the graphical interface. The switch --reverse reverses the declaration
of a variable as discrete, or in other words marks it as continuous. For example:

discrete foo

# now foo is discrete
discrete foo --reverse
# now foo is continuous

The command-line variant is more powerful, in that you can mark a variable as discrete even if it
does not seem to be suitable for this treatment.

Note that marking a variable as discrete does not affect its content. It is the user’s responsibility
to make sure that marking a variable as discrete is a sensible thing to do. Note that if you want to
recode a continuous variable into classes, you can use gretl’s arithmetical functionality, as in the
following example:
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nulldata 100

# generate a series with mean 2 and variance 1
series x = normal() + 2

# split into 4 classes

series z = (x>0) + (x>2) + (x>4)

# now declare z as discrete

discrete z

Once a variable is marked as discrete, this setting is remembered when you save the data file.

11.2 Commands for discrete variables

The dummify command

The dummify command takes as argument a series x and creates dummy variables for each distinct
value present in x, which must have already been declared as discrete. Example:

open greene22_2
discrete Z5 # mark Z5 as discrete
dummify Z5

The effect of the above command is to generate 5 new dummy variables, labeled DZ5_1 through
DZ5_5, which correspond to the different values in Z5. Hence, the variable DZ5_4 is 1 if Z5 equals
4 and 0 otherwise. This functionality is also available through the graphical interface by selecting
the menu item “Add, Dummies for selected discrete variables”.

The dummify command can also be used with the following syntax:
Tist dlist = dummify(x)

This not only creates the dummy variables, but also a named list (see section 14.1) that can be used
afterwards. The following example computes summary statistics for the variable Y for each value
of Z5:

open greene22_2

discrete Z5 # mark Z5 as discrete

Tist foo = dummify(Z5)

loop foreach i foo
smpl $i --restrict --replace
summary Y

endTloop

smp1 --full

Since dummi fy generates a list, it can be used directly in commands that call for a list as input, such
as ols. For example:

open greene22_2
discrete Z5 # mark Z5 as discrete
ols Y O dummify(Z5)

The freq command

The freq command displays absolute and relative frequencies for a given variable. The way fre-
quencies are counted depends on whether the variable is continuous or discrete. This command is
also available via the graphical interface by selecting the “Variable, Frequency distribution” menu
entry.
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For discrete variables, frequencies are counted for each distinct value that the variable takes. For
continuous variables, values are grouped into “bins” and then the frequencies are counted for each
bin. The number of bins, by default, is computed as a function of the number of valid observations
in the currently selected sample via the rule shown in Table 11.1. However, when the command is
invoked through the menu item “Variable, Frequency Plot”, this default can be overridden by the
user.

Observations Bins
8<n<16 5
16 < <50 7

50<n <850 [ n]

n > 850 29

Table 11.1: Number of bins for various sample sizes

For example, the following code

open greenel9_1

freq TUCE

discrete TUCE # mark TUCE as discrete
freq TUCE

yields
Read datafile /usr/local/share/gretl/data/greene/greenel9_1.gdt
periodicity: 1, maxobs: 32,

observations range: 1-32

Listing 5 variables:
0) const 1) GPA 2) TUCE 3) PSI 4) GRADE

? freq TUCE

Frequency distribution for TUCE, obs 1-32
number of bins = 7, mean = 21.9375, sd = 3.90151

interval midpt  frequency rel. cum.
< 13.417 12.000 1 3.12% 3.12% *
13.417 - 16.250 14.833 1 3.12% 6.25% *
16.250 - 19.083 17.667 6 18.75%  25.00% **
19.083 - 21.917 20.500 6 18.75%  43.75% **
21.917 - 24.750 23.333 9 28.12%  71.88% ** ®
24.750 - 27.583 26.167 7 21.88% 93.75%
>= 27.583 29.000 2 6.25% 100.00% **

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

? discrete TUCE # mark TUCE as discrete

? freq TUCE

Frequency distribution for TUCE, obs 1-32

frequency rel. cum.
12 1 3.12% 3.12% *
14 1 3.12% 6.25% *

17 3 9.38%  15.62% *¥*
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19 3 9.38%  25.00% ***
20 2 6.25%  31.25% **
21 4 12.50%  43.75% *¥**
22 2 6.25% 50.00% *
23 4 12.50%  62.50% *
24 3 9.38% 71.88% *
25 4 12.50%  84.38% *
26 2 6.25%  90.62% **
27 1 3.12%  93.75% *
28 1 3.12% 96.88% *
29 1 3.12% 100.00% *

Test for null hypothesis of normal distribution:
Chi-square(2) = 1.872 with p-value 0.39211

As can be seen from the sample output, a Doornik-Hansen test for normality is computed auto-
matically. This test is suppressed for discrete variables where the number of distinct values is less
than 10.

This command accepts two options: --quiet, to avoid generation of the histogram when invoked
from the command line and --gamma, for replacing the normality test with Locke’s nonparametric
test, whose null hypothesis is that the data follow a Gamma distribution.

If the distinct values of a discrete variable need to be saved, the values () matrix construct can be
used (see chapter 16).

The xtab command

The xtab command cab be invoked in either of the following ways. First,
xtab ylist ; xTist

where y1list and xTist are lists of discrete variables. This produces cross-tabulations (two-way
frequencies) of each of the variables in yTist (by row) against each of the variables in x1ist (by
column). Or second,

xtab xTist

In the second case a full set of cross-tabulations is generated; that is, each variable in x11ist is tabu-
lated against each other variable in the list. In the graphical interface, this command is represented
by the “Cross Tabulation” item under the View menu, which is active if at least two variables are
selected.

Here is an example of use:
open greene22_2

discrete Z* # mark Z1-Z8 as discrete
xtab 71 74 ; 75 76

which produces
Cross-tabulation of Z1 (rows) against Z5 (columns)
[ 110 21C 31[ 41C 51 ToOT.

[ 0] 20 91 75 93 36 315
[ 1] 28 73 54 97 34 286

TOTAL 48 164 129 190 70 601



Chapter 11. Discrete variables 93

Pearson chi-square test = 5.48233 (4 df, p-value = 0.241287)
Cross-tabulation of Z1 (rows) against Z6 (columns)

[ oIl 12][ 141[ 1e61[ 17][ 181[ 20] TOT.

[ 0] 4 36 106 70 52 45 2 315
[ 1] 3 8 48 45 37 67 78 286
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 123.177 (6 df, p-value = 3.50375e-24)
Cross-tabulation of Z4 (rows) against Z5 (columns)
[ 11C 21C 31C 41 5] TOT.

[ 0] 17 60 35 45 14 171
[ 1] 31 104 94 145 56 430

TOTAL 48 164 129 190 70 601
Pearson chi-square test = 11.1615 (4 df, p-value = 0.0248074)
Cross-tabulation of Z4 (rows) against Z6 (columns)

[ 9][ 12][ 14][C 1e][ 17][ 18][ 20] TOT.

[ 0] 1 8 39 47 30 32 14 171
[ 1] 6 36 115 68 59 80 66 430
TOTAL 7 44 154 115 89 112 80 601

Pearson chi-square test = 18.3426 (6 df, p-value = 0.0054306)

Pearson’s x? test for independence is automatically displayed, provided that all cells have expected
frequencies under independence greater than 10~7. However, a common rule of thumb states that
this statistic is valid only if the expected frequency is 5 or greater for at least 80 percent of the
cells. If this condition is not met a warning is printed.

Additionally, the --row or --column options can be given: in this case, the output displays row or
column percentages, respectively.

If you want to cut and paste the output of xtab to some other program, e.g. a spreadsheet, you
may want to use the --zeros option; this option causes cells with zero frequency to display the
number 0 instead of being empty.
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Loop constructs

12.1 Introduction

The command Toop opens a special mode in which gretl accepts a block of commands to be re-
peated zero or more times. This feature may be useful for, among other things, Monte Carlo
simulations, bootstrapping of test statistics and iterative estimation procedures. The general form
of a loop is:

loop control-expression [ --progressive | --verbose | --quiet ]
Toop body
endloop

Five forms of control-expression are available, as explained in section 12.2.

Not all gretl commands are available within loops. The commands that are not presently accepted
in this context are shown in Table 12.1.

Table 12.1: Commands not usable in loops

function include nulldata run setmiss

By default, the genr command operates quietly in the context of a loop (without printing informa-
tion on the variable generated). To force the printing of feedback from genr you may specify the
--verbose option to Toop. The --quiet option suppresses the usual printout of the number of
iterations performed, which may be desirable when loops are nested.

The --progressive option to Toop modifies the behavior of the commands print and store,
and certain estimation commands, in a manner that may be useful with Monte Carlo analyses (see
Section 12.3).

The following sections explain the various forms of the loop control expression and provide some
examples of use of loops.

== |f you are carrying out a substantial Monte Carlo analysis with many thousands of repetitions, memory
capacity and processing time may be an issue. To minimize the use of computer resources, run your script
using the command-line program, gretlcli, with output redirected to a file.

12.2 Loop control variants

Count loop

The simplest form of loop control is a direct specification of the number of times the loop should
be repeated. We refer to this as a “count loop”. The number of repetitions may be a numerical
constant, as in Toop 1000, or may be read from a scalar variable, as in Toop replics.

In the case where the loop count is given by a variable, say replics, in concept replics is an
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integer; if the value is not integral, it is converted to an integer by truncation. Note that replics is
evaluated only once, when the loop is initially compiled.

While loop

A second sort of control expression takes the form of the keyword while followed by a Boolean
expression. For example,

Toop while essdiff > .00001

Execution of the commands within the loop will continue so long as (a) the specified condition
evaluates as true and (b) the number of iterations does not exceed the value of the internal variable
Toop_maxiter. By default this equals 100000, but you can specify a different value (or remove the
limit) via the set command (see the Gretl Command Reference).

Index loop

A third form of loop control uses an index variable, for example i.! In this case you specify starting
and ending values for the index, which is incremented by one each time round the loop. The syntax
looks like this: Toop i=1..20.

The index variable may be a pre-existing scalar; if this is not the case, the variable is created
automatically and is destroyed on exit from the loop.

The index may be used within the loop body in either of two ways: you can access the integer value
of i or you can use its string representation, $i.

The starting and ending values for the index can be given in numerical form, by reference to pre-
defined scalar variables, or as expressions that evaluate to scalars. In the latter two cases the
variables are evaluated once, at the start of the loop. In addition, with time series data you can give
the starting and ending values in the form of dates, as in Toop i=1950:1..1999:4.

This form of loop control is intended to be quick and easy, and as such it is subject to certain
limitations. In particular, the index variable is always incremented by one at each iteration. If, for
example, you have

Toop i=m..n

where m and n are scalar variables with values m > n at the time of execution, the index will not be
decremented; rather, the loop will simply be bypassed.

If you need more complex loop control, see the “for” form below.

The index loop is particularly useful in conjunction with the values () matrix function when some
operation must be carried out for each value of some discrete variable (see chapter 11). Consider
the following example:

open greene22_2
discrete Z8
v8 = values(Z8)
Toop i=1..rows(v8)
scalar xi = v8[i]
smpl Z8==xi --restrict --replace
printf "mean(Y | Z8 = %g) = %8.5f, sd(Y | Z8 = %g) = %g\n", \
xi, mean(Y), xi, sd(Y)
endloop

It is common programming practice to use simple, one-character names for such variables. However, you may use
any name that is acceptable by gretl: up to 31 characters, starting with a letter, and containing nothing but letters,
numerals and the underscore character.
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In this case, we evaluate the conditional mean and standard deviation of the variable Y for each
value of Z8.

Foreach loop

The fourth form of loop control also uses an index variable, in this case to index a specified list
of strings. The loop is executed once for each string in the list. This can be useful for performing
repetitive operations on a list of variables. Here is an example of the syntax:

loop foreach i peach pear plum
print "$i"
endloop

This loop will execute three times, printing out “peach”, “pear” and “plum” on the respective itera-
tions. The numerical value of the index starts at 1 and is incremented by 1 at each iteration.

If you wish to loop across a list of variables that are contiguous in the dataset, you can give the
names of the first and last variables in the list, separated by “..”, rather than having to type all
the names. For example, say we have 50 variables AK, AL, ..., WY, containing income levels for the
states of the US. To run a regression of income on time for each of the states we could do:

genr time

loop foreach i AL..WY
ols $i const time

endloop

This loop variant can also be used for looping across the elements in a named list (see chapter 14).
For example:

Tist ylist = yl y2 y3
loop foreach i ylist

ols $i const x1 x2
endloop

Note that if you use this idiom inside a function (see chapter 13), looping across a list that has been
supplied to the function as an argument, it is necessary to use the syntax listname.$i to reference
the list-member variables. In the context of the example above, this would mean replacing the third
line with

ols ylist.$i const x1 x2

For loop

The final form of loop control emulates the for statement in the C programming language. The
sytax is Toop for, followed by three component expressions, separated by semicolons and sur-
rounded by parentheses. The three components are as follows:

1. Initialization: This is evaluated only once, at the start of the loop. Common example: setting
a scalar control variable to some starting value.

2. Continuation condition: this is evaluated at the top of each iteration (including the first). If
the expression evaluates as true (non-zero), iteration continues, otherwise it stops. Common
example: an inequality expressing a bound on a control variable.

3. Modifier: an expression which modifies the value of some variable. This is evaluated prior
to checking the continuation condition, on each iteration after the first. Common example: a
control variable is incremented or decremented.
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Here’s a simple example:
Toop for (r=0.01; r<.991; r+=.01)

In this example the variable r will take on the values 0.01, 0.02, ..., 0.99 across the 99 iterations.
Note that due to the finite precision of floating point arithmetic on computers it may be necessary
to use a continuation condition such as the above, r<.991, rather than the more “natural” r<=.99.
(Using double-precision numbers on an x86 processor, at the point where you would expect r to
equal 0.99 it may in fact have value 0.990000000000001.)

Any or all of the three expressions governing a for loop may be omitted—the minimal form is
(5 ;). If the continuation test is omitted it is implicitly true, so you have an infinite loop unless you
arrange for some other way out, such as a break statement.

If the initialization expression in a for loop takes the common form of setting a scalar variable to
a given value, the string representation of that scalar’s value is made available within the loop via
the accessor $varname.

12.3 Progressive mode

If the --progressive option is given for a command loop, special behavior is invoked for certain
commands, namely, print, store and simple estimation commands. By “simple” here we mean
commands which (a) estimate a single equation (as opposed to a system of equations) and (b) do
so by means of a single command statement (as opposed to a block of statements, as with n1s and
mle). The paradigm is ols; other possibilities include ts1s,wls, Togit and so on.

The special behavior is as follows.

Estimators: The results from each individual iteration of the estimator are not printed. Instead,
after the loop is completed you get a printout of (a) the mean value of each estimated coefficient
across all the repetitions, (b) the standard deviation of those coefficient estimates, (c) the mean
value of the estimated standard error for each coefficient, and (d) the standard deviation of the
estimated standard errors. This makes sense only if there is some random input at each step.

print: When this command is used to print the value of a variable, you do not get a print each time
round the loop. Instead, when the loop is terminated you get a printout of the mean and standard
deviation of the variable, across the repetitions of the loop. This mode is intended for use with
variables that have a scalar value at each iteration, for example the error sum of squares from a
regression. Data series cannot be printed in this way, and neither can matrices.

store: This command writes out the values of the specified scalars, from each time round the
loop, to a specified file. Thus it keeps a complete record of their values across the iterations. For
example, coefficient estimates could be saved in this way so as to permit subsequent examination
of their frequency distribution. Only one such store can be used in a given loop.

12.4 Loop examples

Monte Carlo example
A simple example of a Monte Carlo loop in “progressive” mode is shown in Listing 12.1.

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates and R? across the 100 rep-
etitions. After running the loop, coeffs.gdt, which contains the individual coefficient estimates
from all the runs, can be opened in gretl to examine the frequency distribution of the estimates in
detail.

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) opens a dummy data set, containing just a constant and an index
variable, with a series length of 50. Constructed variables can then be added. See the set command
for information on generating repeatable pseudo-random series.
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Listing 12.1: Simple Monte Carlo loop

nulldata 50
set seed 547
series x = 100 * uniform()
# open a "progressive" loop, to be repeated 100 times
Toop 100 --progressive
series u = 10 * normal()
# construct the dependent variable
series y = 10*x + u
# run OLS regression
ols y const x
# grab the coefficient estimates and R-squared
scalar a = $coeff(const)
scalar b = $coeff(x)
scalar r2 = $rsq
# arrange for printing of stats on these
print a b r2
# and save the coefficients to file
store coeffs.gdt a b
endloop

Iterated least squares

Listing 12.2 uses a “while” loop to replicate the estimation of a nonlinear consumption function of
the form

C=0+BYY+e€

as presented in Greene (2000), Example 11.3. This script is included in the gretl distribution under
the name greenell_3.1inp; you can find it in gretl under the menu item “File, Script files, Practice
file, Greene...”.

The option --print-final for the ols command arranges matters so that the regression results
will not be printed each time round the loop, but the results from the regression on the last iteration
will be printed when the loop terminates.

Listing 12.3 shows how a loop can be used to estimate an ARMA model, exploiting the “outer
product of the gradient” (OPG) regression discussed by Davidson and MacKinnon (1993).

Further examples of Toop usage that may be of interest can be found in chapter 18.
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Listing 12.2: Nonlinear consumption function

open greenell_3.gdt

# run initial OLS

ols CO0Y

scalar essbak = $ess
scalar essdiff =1
scalar beta = $coeff(Y)
scalar gamma = 1

# iterate OLS till the error sum of squares converges
Toop while essdiff > .00001

# form the linearized variables

series CO = C + gamma * beta * YAgamma * Tog(Y)

series x1 = YAgamma
series x2 = beta * YAgamma * Tog(Y)
# run OLS

ols CO 0 x1 x2 --print-final --no-df-corr --vcv
beta = $coeff[2]
gamma = $coeff[3]
ess = $ess
essdiff = abs(ess - essbak)/essbak
essbak = ess
endloop
# print parameter estimates using their "proper names"
printf "alpha = %g\n", $coeff[1]
printf "beta = %g\n", beta
printf "gamma = %g\n", gamma
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Listing 12.3: ARMA 1, 1

# Estimation of an ARMA(1,1) model "manually", using a loop

open arma.gdt

scalar c =
scalar a =
scalar m =

[eoNeNe)

.1
1

series e = 0.0
series de_c =
series de_a =
series de_m

scalar crit

e
e
e

1

Toop while crit > 1.0e-9 --quiet
# one-step forecast errors
e=y -c - a*y(-1) - m*e(-1)

# log-Tikel
scalar logl

ihood

ik = -0.5 *

print loglik

# partials of
de_c =-1-m
de_a = -y(-1)
de_m = -e(-1)

# partials of
series sc_c =
series sc_a =
series sc_m =

sum(eA2)

e with respect to c, a, and m

* de_c(-

-m * de_
-m * de_

D
a(-1)
m(-1)

1 with respect to c, a and m

-de_c *
-de_a *
-de_m *

# OPG regression
ols const sc_c sc_a sc_m --print-final --no-df-corr --vcv

e
e
e

# Update the parameters

Cc += $coeff[1]
a += $coeff[2]
m += $coeff[3]

# show progress
printf " constant =
printf " arl coefficient =
printf "
crit = $T - $ess
print crit
endloop
scalar se_c = $stderr[1]
scalar se_a = $stderr[2]
scalar se_m = $stderr[3]
printf "\n"
printf "constant = %.8g (se
printf "arl coefficient = %.8g (se
printf "mal coefficient = %.8g (se

%.8g (gradient %#.6g)\n", c, $coeff[1]
%.89g (gradient %#.6g)\n", a, $coeff[2]
mal coefficient = %.8g (gradient %#.6g)\n", m, $coeff[3]

%#.6g, t = %.4f)\n", c, se_c, c/se_c
%#.6g, t = %.4f)\n", a, se_a, a/se_a
%#.69, t = %.4f)\n", m, se_m, m/se_m
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User-defined functions

13.1 Defining a function

Gretl offers a mechanism for defining functions, which may be called via the command line, in
the context of a script, or (if packaged appropriately, see section 13.5) via the program’s graphical
interface.

The syntax for defining a function looks like this:

function type funcname (parameters)
function body
end function

The opening line of a function definition contains these elements, in strict order:

1. The keyword function.

2. type, which states the type of value returned by the function, if any. This must be one of void
(if the function does not return anything), scalar, series, matrix, 1ist, string, bundle or
one of gretl’s array types, matrices, bundles, strings (see section 10.8).

3. funcname, the unique identifier for the function. Function names have a maximum length of
31 characters; they must start with a letter and can contain only letters, numerals and the
underscore character. You will get an error if you try to define a function having the same
name as an existing gretl command.

4. The function’s parameters, in the form of a comma-separated list enclosed in parentheses.
This may be run into the function name, or separated by white space as shown. In case the
function takes no arguments (unusual, but acceptable) this should be indicated by placing the
keyword void between the parameter-list parentheses.

Function parameters can be of any of the types shown below.!

Type Description
bool scalar variable acting as a Boolean switch
int scalar variable acting as an integer
scalar scalar variable
series data series
Tist named list of series
matrix matrix or vector
string string variable or string literal
bundle all-purpose container (see section 10.7)

matrices array of matrices (see section 10.8)
bundTes array of bundles
strings array of strings

1 An additional parameter type is available for GUI use, namely obs; this is equivalent to int except for the way it is
represented in the graphical interface for calling a function.

101
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Each element in the listing of parameters must include two terms: a type specifier, and the name
by which the parameter shall be known within the function. An example follows:

function scalar myfunc (series y, list xvars, bool verbose)

Each of the type-specifiers, with the exception of 1ist and string, may be modified by prepending
an asterisk to the associated parameter name, as in

function scalar myfunc (series *y, scalar *b)

The meaning of this modification is explained below (see section 13.4); it is related to the use of
pointer arguments in the C programming language.

Function parameters: optional refinements
Besides the required elements mentioned above, the specification of a function parameter may
include some additional fields, as follows:

¢ The const modifier.

e For scalar or int parameters: minimum, maximum and/or default values; or for bool pa-
rameters, just a default value.

e For optional arguments other than scalar, int and boo1l, the special default value nul1.
e For all parameters, a descriptive string.

e For int parameters with minimum and maximum values specified, a set of strings to associate
with the allowed numerical values (value labels).

The first three of these options may be useful in many contexts; the last two may be helpful if a
function is to be packaged for use in the gretl GUI (but probably not otherwise). We now expand on
each of the options.

e The const modifier: must be given as a prefix to the basic parameter specification, as in
const matrix M

This constitutes a promise that the corresponding argument will not be modified within the
function; gretl will flag an error if the function attempts to modify the argument.

e Minimum, maximum and default values for scalar or int types: These values should di-
rectly follow the name of the parameter, enclosed in square brackets and with the individual
elements separated by colons. For example, suppose we have an integer parameter order for
which we wish to specify a minimum of 1, a maximum of 12, and a default of 4. We can write

int order[1:12:4]

If you wish to omit any of the three specifiers, leave the corresponding field empty. For
example [1::4] would specify a minimum of 1 and a default of 4 while leaving the maximum
unlimited. However, as a special case, it is acceptable to give just one value, with no colons,
in which case the value is interpreted as a default. So for example

int k[0]

designates a default value of 0 for the parameter k, with no minimum or maximum specified.
If you wished to specify a minimum of zero with no maximum or default you would have to
write
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int k[0::]

For a parameter of type bool (whose values are just zero or non-zero), you can specify a
default of 1 (true) or O (false), as in

bool verbose[0]

e Descriptive string: This will show up as an aid to the user if the function is packaged (see
section 13.5 below) and called via gretl’s graphical interface. The string should be enclosed
in double quotes and separated from the preceding elements of the parameter specification
with a space, as in

series y "dependent variable"

e Value labels: These may be used only with int parameters for which minimum and maximum
values have been specified (so that there is a fixed number of admissible values) and the
number of labels must match the number of values. They will show up in the graphical
interface in the form of a drop-down list, making the function writer’s intent clearer when an
integer argument represents a categorical selection. A set of value labels must be enclosed in
braces, and the individual labels must be enclosed in double quotes and separated by commas
or spaces. For example:

int case[1l:3:1] {"Fixed effects", "Between model", "Random effects"}

If two or more of the trailing optional fields are given in a parameter specification, they must be
given in the order shown above: min/max/default, description, value labels. Note that there is
no facility for “escaping” characters within descriptive strings or value labels; these may contain
spaces but they cannot contain the double-quote character.

Here is an example of a well-formed function specification using all the elements mentioned above:

function matrix myfunc (series y "dependent variable",
Tist X "regressors",
int p[0::1] "lag order",
int c[1:2:1] "criterion" {"AIC", "BIC"},
bool quiet[0])

One advantage of specifying default values for parameters, where applicable, is that in script or
command-line mode users may omit trailing arguments that have defaults. For example, myfunc
above could be invoked with just two arguments, corresponding to y and X; implicitly p=1,c=1
and quiet is false.

Functions taking no parameters
You may define a function that has no parameters (these are called “routines” in some programming
languages). In this case, use the keyword void in place of the listing of parameters:

function matrix myfunc2 (void)

The function body

The function body is composed of gretl commands, or calls to user-defined functions (that is,
function calls may be nested). A function may call itself (that is, functions may be recursive). While
the function body may contain function calls, it may not contain function definitions. That is, you
cannot define a function inside another function. For further details, see section 13.4.
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13.2 Calling a function

A user function is called by typing its name followed by zero or more arguments enclosed in
parentheses. If there are two or more arguments they must be separated by commas.

There are automatic checks in place to ensure that the number of arguments given in a function
call matches the number of parameters, and that the types of the given arguments match the types
specified in the definition of the function. An error is flagged if either of these conditions is violated.
One qualification: allowance is made for omitting arguments at the end of the list, provided that
default values are specified in the function definition. To be precise, the check is that the number
of arguments is at least equal to the number of required parameters, and is no greater than the
total number of parameters.

In general, an argument to a function may be given either as the name of a pre-existing variable or
as an expression which evaluates to a variable of the appropriate type.

The following trivial example illustrates a function call that correctly matches the corresponding
function definition.

# function definition

function scalar ols_ess (series y, Tlist xvars)
ols y 0 xvars --quiet
printf "ESS = %g\n", $ess
return $ess

end function

# main script

open data4-1

Tist xlist = 2 3 4

# function call (the return value is ignored here)
ols_ess(price, xlist)

The function call gives two arguments: the first is a data series specified by name and the second is
a named list of regressors. Note that while the function offers the Error Sum of Squares as a return
value, it is ignored by the caller in this instance. (As a side note here, if you want a function to
calculate some value having to do with a regression, but are not interested in the full results of the
regression, you may wish to use the --quiet flag with the estimation command as shown above.)

A second example shows how to write a function call that assigns a return value to a variable in the
caller:

# function definition

function series get_uhat (series y, list xvars)
ols y 0 xvars --quiet
return $uhat

end function

# main script

open data4-1

Tist xlist =2 3 4

# function call

series resid = get_uhat(price, xlist)

13.3 Deleting a function

If you have defined a function and subsequently wish to clear it out of memory, you can do so using
the keywords delete or clear, as in

function myfunc delete
function get_uhat clear
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Note, however, that if myfunc is already a defined function, providing a new definition automatically
overwrites the previous one, so it should rarely be necessary to delete functions explicitly.

13.4 Function programming details
Variables versus pointers

Most arguments to functions can be passed in two ways: “as they are”, or via pointers (the exception
is the list type, which cannot be passed as a pointer). First consider the following rather artificial
example:

function series triplel (series x)
return 3*x
end function

function void triple2 (series *x)
X *= 3
end function

nulldata 10

series y = normal()
series y3 = triplel(y)
print y3

triple2(&y)

print y

These two functions produce essentially the same result—the two print statements in the caller
will show the same values—but in quite different ways. The first explicitly returns a modified
version of its input (which must be a plain series): after the call to triplel, y is unaltered; it
would have been altered only if the return value were assigned back to y rather than y3. The
second function modifies its input (given as a pointer to a series) in place without actually returning
anything.

It’s worth noting that triple2 as it stands would not be considered idiomatic as a gretl function
(although it’s formally OK). The point here is just to illustrate the distinction between passing an
argument in the default way and in pointer form.

Why make this distinction? There are two main reasons for doing so: modularity and performance.

By modularity we mean the insulation of a function from the rest of the script which calls it. One of
the many benefits of this approach is that your functions are easily reusable in other contexts. To
achieve modularity, variables created within a function are local to that function, and are destroyed
when the function exits, unless they are made available as return values and these values are “picked
up” or assigned by the caller. In addition, functions do not have access to variables in “outer scope”
(that is, variables that exist in the script from which the function is called) except insofar as these
are explicitly passed to the function as arguments.

By default, when a variable is passed to a function as an argument, what the function actually “gets”
is a copy of the outer variable, which means that the value of the outer variable is not modified by
anything that goes on inside the function. This means that you can pass arguments to a function
without worrying about possible side effects; at the same time the function writer can use argument
variables as workspace without fear of disruptive effects at the level of the caller.

The use of pointers, however, allows a function and its caller to cooperate such that an outer
variable can be modified by the function. In effect, this allows a function to “return” more than one
value (although only one variable can be returned directly —see below). To indicate that a particular
object is to be passed as a pointer, the parameter in question is marked with a prefix of * in the
function definition, and the corresponding argument is marked with the complementary prefix & in
the caller. For example,
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function series get_uhat_and_ess(series y, list xvars, scalar *ess)
ols y 0 xvars --quiet
ess = $ess
series uh = $uhat
return uh
end function

open data4-1

Tist xlist = 2 3 4

scalar SSR

series resid = get_uhat_and_ess(price, xlist, &SSR)

In the above, we may say that the function is given the address of the scalar variable SSR, and it
assigns a value to that variable (under the local name ess). (For anyone used to programming in C:
note that it is not necessary, or even possible, to “dereference” the variable in question within the
function using the * operator. Unadorned use of the name of the variable is sufficient to access the
variable in outer scope.)

An “address” parameter of this sort can be used as a means of offering optional information to the
caller. (That is, the corresponding argument is not strictly needed, but will be used if present). In
that case the parameter should be given a default value of nuT1T1 and the the function should test to
see if the caller supplied a corresponding argument or not, using the built-in function exists().
For example, here is the simple function shown above, modified to make the filling out of the ess
value optional.

function series get_uhat_and_ess(series y, list xvars, scalar *ess[null])
ols y 0 xvars --quiet
if exists(ess)
ess = $ess
endif
return $uhat
end function
If the caller does not care to get the ess value, it can use nulT in place of a real argument:
series resid = get_uhat_and_ess(price, xlist, null)

Alternatively, trailing function arguments that have default values may be omitted, so the following
would also be a valid call:

series resid = get_uhat_and_ess(price, xlist)
One limitation on the use of pointer-type arguments should be noted: you cannot supply a given
variable as a pointer argument more than once in any given function call. For example, suppose we
have a function that takes two matrix-pointer arguments,

function scalar pointfunc (matrix *a, matrix *b)
And suppose we have two matrices, x and vy, at the caller level. The call

pointfunc(&x, &y)
is OK, but the call

pointfunc(&x, &x) # will not work

will generate an error. That’s because the situation inside the function would become too confusing,
with what is really the same object existing under two names.
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Const parameters

Pointer-type arguments may also be useful for optimizing performance. Even if a variable is not
modified inside the function, it may be a good idea to pass it as a pointer if it occupies a lot of
memory. Otherwise, the time gretl spends transcribing the value of the variable to the local copy
may be non-negligible compared to the time the function spends doing the job it was written for.

Listing 13.1 takes this to the extreme. We define two functions which return the number of rows
of a matrix (a pretty fast operation). The first gets a matrix as argument while the second gets a
pointer to a matrix. The functions are evaluated 500 times on a matrix with 2000 rows and 2000
columns; on a typical system floating-point numbers take 8 bytes of memory, so the total size of
the matrix is roughly 32 megabytes.

Running the code in example 13.1 will produce output similar to the following (the actual numbers
of course depend on the machine you’re using):

ETapsed time:
without pointers (copy)
with pointers (no copy)

2.47197 seconds,
0.00378627 seconds

Listing 13.1: Performance comparison: values versus pointer

function scalar rowcountl (matrix X)
return rows(X)
end function

function scalar rowcount2 (const matrix *X)
return rows(X)
end function

set verbose off
X = zeros(2000,2000)
scalar r

set stopwatch

Toop 500 -q
r = rowcountl(X)
endloop

el = $stopwatch

set stopwatch

Toop 500 -q
r = rowcount2(&X)
endloop

e2 = $stopwatch

printf "Elapsed time:\n\
without pointers (copy)
with pointers (no copy)

%g seconds,\n \
%g seconds\n", el, e2

If a pointer argument is used for this sort of purpose—and the object to which the pointer points
is not modified (is treated as read-only) by the function—one can signal this to the user by adding
the const qualifier, as shown for function rowcount?2 in Listing 13.1. When a pointer argument is
qualified in this way, any attempt to modify the object within the function will generate an error.

However, combining the const flag with the pointer mechanism is technically redundant for the
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following reason: if you mark a matrix argument as const then gretl will in fact pass it in pointer
mode internally (since it can’t be modified within the function there’s no downside to simply mak-
ing it available to the function rather than copying it). So in the example above we could revise the
signature of the second function as

function scalar rowcount2a (const matrix X)

and call it with r = rowcount2a(X), for the same speed-up relative to rowcountl.

From the caller’s point of view the second option—using the const modifier without pointer
notation—is preferable, as it allows the caller to pass an object created “on the fly”. Suppose
the caller has two matrices, A and B, in scope, and wishes to pass their vertical concatenation as an
argument. The following call would work fine:

r = rowcount2a(A|B)

To use rowcount2, on the other hand, the caller would have to create a named variable first (since
you cannot give the “address” of a anonymous object such as A|B):

matrix AB = A|B
r = rowcount2 (&AB)

This requires an extra line of code, and leaves AB occupying memory after the call.

We have illustrated using a matrix parameter, but the const modifier may be used with the same
effect—namely, the argument is passed directly, without being copied, but is protected against
modification within the function—for all the types that support the pointer apparatus.

List arguments

The use of a named list as an argument to a function gives a means of supplying a function with
a set of variables whose number is unknown when the function is written—for example, sets of
regressors or instruments. Within the function, the list can be passed on to commands such as
ols.

A list argument can also be “unpacked” using a foreach loop construct, but this requires some
care. For example, suppose you have a list X and want to calculate the standard deviation of each
variable in the list. You can do:

loop foreach i X
scalar sd_$%$i = sd(X.$i)
endTloop

Please note: a special piece of syntax is needed in this context. If we wanted to perform the above
task on a list in a regular script (not inside a function), we could do

loop foreach i X
scalar sd_$i = sd($i)
endTloop

where $i gets the name of the variable at position i in the list, and sd($i) gets its standard
deviation. But inside a function, working on a list supplied as an argument, if we want to reference
an individual variable in the list we must use the syntax listname.varname. Hence in the example
above we write sd(X.$1).

This is necessary to avoid possible collisions between the name-space of the function and the name-
space of the caller script. For example, suppose we have a function that takes a list argument, and
that defines a local variable called y. Now suppose that this function is passed a list containing
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a variable named y. If the two name-spaces were not separated either we’d get an error, or the
external variable y would be silently over-written by the local one. It is important, therefore, that
list-argument variables should not be “visible” by name within functions. To “get hold of” such
variables you need to use the form of identification just mentioned: the name of the list, followed
by a dot, followed by the name of the variable.

Constancy of list arguments When a named list of variables is passed to a function, the function
is actually provided with a copy of the list. The function may modify this copy (for instance, adding
or removing members), but the original list at the level of the caller is not modified.

Optional list arguments If a list argument to a function is optional, this should be indicated by
appending a default value of null, as in

function scalar myfunc (scalar y, list X[null])

In that case, if the caller gives nulT1 as the list argument (or simply omits the last argument) the
named list X inside the function will be empty. This possibility can be detected using the neTem()
function, which returns 0 for an empty list.

String arguments

String arguments can be used, for example, to provide flexibility in the naming of variables created
within a function. In the following example the function mavg returns a list containing two moving
averages constructed from an input series, with the names of the newly created variables governed
by the string argument.

function 1list mavg (series y, string vname)
Tist retlist = null
string newname = sprintf("%s_2", vname)
retlist += genseries(newname, (y+y(-1)) / 2)
newname = sprintf("%s_4", vname)
retlist += genseries(newname, (y+y(-1)+y(-2)+y(-3)) / 4)
return retlist
end function

open data9-9
Tist malist = mavg(nocars, "nocars")
print malist --byobs

The last line of the script will print two variables named nocars_2 and nocars_4. For details on
the handling of named strings, see chapter 14.

If a string argument is considered optional, it may be given a nul1 default value, as in

function scalar foo (series y, string vname[null])

Retrieving the names of arguments

The variables given as arguments to a function are known inside the function by the names of the
corresponding parameters. For example, within the function whose signature is

function void somefun (series y)

we have the series known as y. It may be useful, however, to be able to determine the names of
the variables provided as arguments. This can be done using the function argname, which takes
the name of a function parameter as its single argument and returns a string. Here is a simple
illustration:
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function void namefun (series y)
printf "the series given as 'y’ was named %s\n", argname(y)
end function

open data9-7
namefun (QNC)

This produces the output
the series given as 'y’ was named QNC

Please note that this will not always work: the arguments given to functions may be anonymous
variables, created on the fly, as in somefun(Tog(QNC)) or somefun(CPI/100). In that case the
argname function returns an empty string. Function writers who wish to make use of this facility
should check the return from argname using the strlen() function: if this returns 0, no name was
found.

Return values

Functions can return nothing (just printing a result, perhaps), or they can return a single variable.
The return value, if any, is specified via a statement within the function body beginning with the
keyword return, followed by either the name of a variable (which must be of the type announced
on the first line of the function definition) or an expression which produces a value of the correct
type.

Having a function return a list or bundle is a way of permitting the “return” of more than one
variable. For example, you can define several series inside a function and package them as a list;
in this case they are not destroyed when the function exits. Here is a simple example, which also
illustrates the possibility of setting the descriptive labels for variables generated in a function.

function 1ist make_cubes (Tist xTist)
1ist cubes = null
loop foreach i xlist --quiet
series $i3 = (xTist.$i)A3
setinfo $i3 -d "cube of $i"
Tist cubes += $i3
endloop
return cubes
end function

open data4-1

Tist x1list = price sqft

Tist cubelist = make_cubes(x1ist)
print x1ist cubelist --byobs
Tabels

A return statement causes the function to return (exit) at the point where it appears within the
body of the function. A function may also exit when (a) the end of the function code is reached (in
the case of a function with no return value), (b) a gretl error occurs, or (c) a funcerr statement is
reached.

The funcerr keyword —which may be followed by a string enclosed in double quotes, or the name
of a string variable, or nothing—causes a function to exit with an error flagged. If a string is
provided (either literally or via a variable), this is printed on exit, otherwise a generic error message
is printed. This mechanism enables the author of a function to pre-empt an ordinary execution
error and/or offer a more specific and helpful error message. For example,

if nelem(xlist) ==
funcerr "x1ist must not be empty"
endif
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A function may contain more than one return statement, as in

function scalar multi (bool s)
if s
return 1000
else
return 10
endif
end function

However, it is recommended programming practice to have a single return point from a function
unless this is very inconvenient. The simple example above would be better written as

function scalar multi (bool s)
return s ? 1000 : 10
end function

Error checking

When gretl first reads and “compiles” a function definition there is minimal error-checking: the
only checks are that the function name is acceptable, and, so far as the body is concerned, that you
are not trying to define a function inside a function (see Section 13.1). Otherwise, if the function
body contains invalid commands this will become apparent only when the function is called and
its commands are executed.

Debugging

The usual mechanism whereby gretl echoes commands and reports on the creation of new variables
is by default suppressed when a function is being executed. If you want more verbose output from
a particular function you can use either or both of the following commands within the function:

set echo on
set messages on

Alternatively, you can achieve this effect for all functions via the command set debug 1. Usually
when you set the value of a state variable using the set command, the effect applies only to the
current level of function execution. For instance, if you do set messages on within function f1,
which in turn calls function f2, then messages will be printed for f1 but not f2. The debug variable,
however, acts globally; all functions become verbose regardless of their level.

Further, you can do set debug 2: in addition to command echo and the printing of messages, this
is equivalent to setting max_verbose (which produces verbose output from the BFGS maximizer) at
all levels of function execution.

13.5 Function packages

At various points above we have alluded to function packages, and the use of these via the gretl
GUIL. This topic is covered in depth by the Gretl Function Package Guide. If you're running gretl you
can find this under the Help menu. Alternatively you may download it from

https://sourceforge.net/projects/gretl/files/manual/
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Chapter 14

Named lists and strings

14.1 Named lists

Many gretl commands take one or more lists of series as arguments. To make this easier to handle
in the context of command scripts, and in particular within user-defined functions, gretl offers the
possibility of named lists.

Creating and modifying named lists

A named list is created using the keyword T1ist, followed by the name of the list, an equals sign,
and an expression that forms a list. The most basic sort of expression that works in this context is
a space-separated list of variables, given either by name or by ID number. For example,

Tist xlist =12 3 4
1ist reglist = income price
Note that the variables in question must be of the series type.

Two abbreviations are available in defining lists:

TR ]
%

¢ You can use the wildcard character, , to create a list of variables by name. For example,
dum* can be used to indicate all variables whose names begin with dum.

e You can use two dots to indicate a range of variables. For example income. . price indicates
the set of variables whose ID numbers are greater than or equal to that of income and less
than or equal to that of price.

In addition there are two special forms:

¢ If you use the keyword nulT1 on the right-hand side, you get an empty list.
o If you use the keyword dataset on the right, you get a list containing all the series in the
current dataset (except the pre-defined const).

The name of the list must start with a letter, and must be composed entirely of letters, numbers
or the underscore character. The maximum length of the name is 31 characters; list names cannot
contain spaces.

Once a named list has been created, it will be “remembered” for the duration of the gretl session
(unless you delete it), and can be used in the context of any gretl command where a list of variables
is expected. One simple example is the specification of a list of regressors:

Tist x1list = x1 x2 x3 x4
ols y 0 xTist

To get rid of a list, you use the following syntax:

Tist xTist delete

112
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Be careful: deTete xT1ist will delete the series contained in the list, so it implies data loss (which
may not be what you want). On the other hand, Tist x1ist delete will simply “undefine” the
x11 st identifier; the series themselves will not be affected.

Similarly, to print the names of the members of a list you have to invert the usual print command,
as in

Tist xTist print

If you just say print x1ist the list will be expanded and the values of all the member series will
be printed.

Lists can be modified in various ways. To redefine an existing list altogether, use the same syntax
as for creating a list. For example

Tist xlist =1 2 3
xlist =4 56

After the second assignment, x11ist contains just variables 4, 5 and 6.

To append or prepend variables to an existing list, we can make use of the fact that a named list
stands in for a “longhand” list. For example, we can do

Tist xlist = xlist 5 6 7
xTist = 9 10 xTist 11 12

Another option for appending a term (or a list) to an existing list is to use +=, as in

xlist += cpi
To drop a variable from a list, use -=:

xlist -= cpi
In most contexts where lists are used in gretl, it is expected that they do not contain any duplicated
elements. If you form a new list by simple concatenation, as in Tist L3 = L1 L2 (where L1 and
L2 are existing lists), it’s possible that the result may contain duplicates. To guard against this you
can form a new list as the union of two existing ones:

Tist L3 = L1 || L2

The result is a list that contains all the members of L1, plus any members of L2 that are not already
in L1.

In the same vein, you can construct a new list as the intersection of two existing ones:

Tist L3 = L1 && L2

Here L3 contains all the elements that are present in both L1 and L2.

You can also subtract one list from another:
Tist L3 = L1 - L2

The result contains all the elements of L1 that are not present in L2.
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Lists and matrices

Another way of forming a list is by assignment from a matrix. The matrix in question must be
interpretable as a vector containing ID numbers of data series. It may be either a row or a column
vector, and each of its elements must have an integer part that is no greater than the number of
variables in the data set. For example:

matrix m = {1,2,3,4}

Tist L m

The above is OK provided the data set contains at least 4 variables.
Querying a list
You can determine the number of variables or elements in a list using the function nelem().

Tist xlist =1 2 3

nl = nelem(xTist)
The (scalar) variable n1 will be assigned a value of 3 since x11 st contains 3 members.
You can determine whether a given series is a member of a specified list using the function
inTist(), asin

scalar k = inlist(L, y)

where L is a list and y a series. The series may be specified by name or ID number. The return value
is the (1-based) position of the series in the list, or zero if the series is not present in the list.

Generating lists of transformed variables
Given a named list of series, you are able to generate lists of transformations of these series using
the functions log, 1ags, diff, 1diff, sdiff or dummify. For example

Tist x1list = x1 x2 x3
Tist Ix1list = Tog(xTist)
Tist difflist = diff(x1ist)

When generating a list of Iags in this way, you specify the maximum lag order inside the parenthe-
ses, before the list name and separated by a comma. For example

Tist x1list = x1 x2 x3
Tist laglist = lags(2, xTist)

or

4
lags(order, xlist)

scalar order
Tist laglist

These commands will populate Tag1i st with the specified number of lags of the variables in x11st.
You can give the name of a single series in place of a list as the second argument to lags: this is
equivalent to giving a list with just one member.

The dummi fy function creates a set of dummy variables coding for all but one of the distinct values
taken on by the original variable, which should be discrete. (The smallest value is taken as the
omitted catgory.) Like lags, this function returns a list even if the input is a single series.
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Another useful operation you can perform with lists is creating interaction variables. Suppose you
have a discrete variable x;, taking values from 1 to n and a variable z;, which could be continuous
or discrete. In many cases, you want to “split” z; into a set of n variables via the rule

gV zi when x; =j
| 0 otherwise;

in practice, you create dummies for the x; variable first and then you multiply them all by z;; these
are commonly called the interactions between x; and z;. In gretl you can do

Tist H=D A Z
where D is a list of discrete series (or a single discrete series), Z is a list (or a single series)!; all the

interactions will be created and listed together under the name H.

An example is provided in script 14.1

Generating series from lists

There are various ways of retrieving or generating individual series from a named list. The most
basic method is indexing into the list. For example,

series x3 = X1list[3]

will retrieve the third element of the list X1ist under the name x3 (or will generate an error if
X11ist has less then three members).

In addition gretl offers several functions that apply to a list and return a series. In most cases,
these functions also apply to single series and behave as natural extensions when applied to lists,
but this is not always the case.

For recognizing and handling missing values, gretl offers several functions (see the Gretl Command
Reference for details). In this context, it is worth remarking that the ok () function can be used
with a list argument. For example,

x1 x2 x3
ok(xTist)

Tist x1ist
series xok

After these commands, the series xok will have value 1 for observations where none of x1, x2, or
x3 has a missing value, and value 0 for any observations where this condition is not met.

The functions max, min, mean, sd, sum and var behave “horizontally” rather than “vertically” when
their argument is a list. For instance, the following commands

Tist XTist = x1 x2 x3
series m = mean(Xlist)

produce a series m whose i-th element is the average of x1,;, x2; and x3 ;; missing values, if any, are
implicitly discarded.

In addition, gretl provides three functions for weighted operations: wmean, wsd and wvar. Consider
as an illustration Table 14.1: the first three columns are GDP per capita for France, Germany and
Italy; columns 4 to 6 contain the population for each country. If we want to compute an aggregate
indicator of per capita GDP, all we have to do is

Tist Ypc = YpcFR YpcGE YpcIT
Tist N = NFR NGE NIT
y = wmean(Ypc, N)

lwarning: this construct does not work if neither D nor Z are of the the list type.
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Listing 14.1: Usage of interaction lists
Input:

open mroz87.gdt --quiet

# the coding below makes it so that

# KIDS = 0 -> no kids

# KIDS = 1 -> young kids only

# KIDS = 2 -> young or older kids

series KIDS = (KL6 > 0) + ((KL6 > 0) || (K618 > 0))
Tist D = CIT KIDS # interaction discrete variables
Tist X = WE WA # variables to "split"

Tist INTER = D A X

smpl 1 6

print D X INTER -o

Output (selected portions):

CIT KIDS WE WA WE_CIT_O
1 0 2 12 32 12
2 1 1 12 30 0
3 0 2 12 35 12
4 0 1 12 34 12
5 1 2 14 31 0
6 1 0 12 54 0
WE_CIT_1 WA_CIT_O WA_CIT_1 WE_KIDS_O WE_KIDS_1
1 0 32 0 0 0
2 12 0 30 0 12
3 0 35 0 0 0
4 0 34 0 0 12
5 14 0 31 0 0
6 12 0 54 12 0
WE_KIDS_2 WA_KIDS_O WA_KIDS_1 WA_KIDS_2
1 12 0 0 32
2 0 0 30 0
3 12 0 0 35
4 0 0 34 0
5 14 0 0 31
6 0 54 0 0

so for example

_ 114.9 X 59830.635 + 124.6 x 82034.771 + 119.3 X 56890.372 _ ., -,
Y1996 = 59830.635 + 82034.771 + 56890.372 T

See the Gretl Command Reference for more details.
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YpcFR  YpcGE YpcT NFR NGE NIT

1997 1149 124.6 119.3 59830.635 82034.771 56890.372
1998 115.3 122.7 120.0 60046.709 82047.195 56906.744
1999 115.0 1224 117.8 60348.255 82100.243 56916.317
2000 1156 118.8 117.2 60750.876 82211.508 56942.108
2001 116.0 1169 118.1 61181.560 82349.925 56977.217
2002 116.3 115.5 112.2 61615.562 82488.495 57157.406
2003 1121 1169 111.0 62041.798 82534.176 57604.658
2004 110.3 116.6 106.9 62444.707 82516.260 58175.310
2005 1124 115.1 105.1 62818.185 82469.422 58607.043
2006 1119 114.2 103.3 63195457 82376.451 58941.499

Table 14.1: GDP per capita and population in 3 European countries (Source: Eurostat)

14.2 Named strings

For some purposes it may be useful to save a string (that is, a sequence of characters) as a named
variable that can be reused.

Some examples of the definition of a string variable are shown below.

string sl = "some stuff I want to save"
string s2 = getenv("HOME")
string s3 = s1 + 11

The first field after the type-name string is the name under which the string should be saved, then
comes an equals sign, then comes a specification of the string to be saved. This may take any of
the following forms:

a string literal (enclosed in double quotes); or

the name of an existing string variable; or

¢ a function that returns a string (see below); or

any of the above followed by + and an integer offset.

The role of the integer offset is to use a substring of the preceding element, starting at the given
character offset. An empty string is returned if the offset is greater than the length of the string in
question.

To add to the end of an existing string you can use the operator ~=, as in

string sl = "some stuff I want to
string sl ~= "save"

or you can use the ~ operator to join two or more strings, as in

"sweet"
"Home, " ~ sl ~ " home."

string sl
string s2

Note that when you define a string variable using a string literal, no characters are treated as
“special” (other than the double quotes that delimit the string). Specifically, the backslash is not
used as an escape character. So, for example,
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string s = "\"

is a valid assignment, producing a string that contains a single backslash character.

If you wish to use backslash-escapes to denote newlines, tabs, embedded double-quotes and so
on, use the sprintf function instead (see the printf command for an account of the escape-
characters). This function can also be used to produce a string variable whose definition involves
the values of other variables, as in

scalar x = 8
foo = sprintf("var%d", x) # produces "var8"

String variables and string substitution

String variables can be used in two ways in scripting: the name of the variable can be typed “as
is”, or it may be preceded by the “at” sign, @. In the first variant the named string is treated as a
variable in its own right, while the second calls for “string substitution”. The context determines
which of these variants is appropriate.

In the following contexts the names of string variables should be given in plain form (without the
“at” sign):

e When such a variable appears among the arguments to the printf command or sprintf
function.

e When such a variable is given as the argument to a function.

e On the right-hand side of a string assignment.

Here is an illustration of the use of a named string argument with printf:

? string vstr = "variance"
Generated string vstr

? printf "vstr: %12s\n", vstr
vstr: variance

String substitution can be used in contexts where a string variable is not acceptable as such. If
gretl encounters the symbol @ followed directly by the name of a string variable, this notation is
treated as a “macro”: the value of the variable is sustituted literally into the command line before
the regular parsing of the command is carried out.

One common use of string substitution is when you want to construct and use the name of a series
programatically. For example, suppose you want to create 10 random normal series named norml
to norm10. This can be accomplished as follows.

string sname = null
Toop i=1..10
sname = sprintf("norm%d", i)
series @sname = normal()
endloop

Note that plain sname could not be used in the second line within the loop: the effect would be
to attempt to overwrite the string variable named sname with a series of the same name. What
we want is for the current value of sname to be dumped directly into the command that defines a
series, and the “@” notation achieves that.

Another typical use of string substitution is when you want the options used with a particular
command to vary depending on some condition. For example,
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function void use_optstr (series y, list xlist, int verbose)
string optstr = verbose ? "" : "--simple-print"
ols y x1list @optstr

end function

open data4-1

Tist X = const sqft
use_optstr(price, X, 1)
use_optstr(price, X, 0)

When printing the value of a string variable using the print command, the plain variable name
should generally be used, as in

string s = "Just testing"
print s

The following variant is equivalent, though clumsy.

string s = "Just testing"
print "@s"

But note that this next variant does something quite different.

string s = "Just testing"
print @s

After string substitution, the print command reads
print Just testing

which attempts to print the values of two variables, Just and testing.

Built-in strings

Apart from any strings that the user may define, some string variables are defined by gretl itself.
These may be useful for people writing functions that include shell commands. The built-in strings
are as shown in Table 14.2.

gretldir the gretl installation directory
workdir  user’s current gretl working directory

dotdir the directory gretl uses for temporary files
gnuplot  path to, or name of, the gnuplot executable
tramo path to, or name of, the tramo executable
x12a path to, or name of, the x-12-arima executable

tramodir tramo data directory
x12adir x-12-arima data directory

Table 14.2: Built-in string variables

To access these as ordinary string variables, prepend a dollar sign (as in $dotdir); to use them in
string-substitution mode, prepend the at-sign (@dotdir).

Reading strings from the environment

It is possible to read into gretl’s named strings, values that are defined in the external environment.
To do this you use the function getenv, which takes the name of an environment variable as its
argument. For example:
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? string user = getenv("USER")

Generated string user

? string home = getenv("HOME")

Generated string home

? printf "%s’s home directory 1is %s\n", user, home
cottrell’s home directory is /home/cottrell

To check whether you got a non-empty value from a given call to getenv, you can use the function
strlen, which retrieves the length of the string, as in

? string temp = getenv("TEMP")
Generated string temp

? scalar x = strlen(temp)
Generated scalar x = 0

Capturing strings via the shell

If shell commands are enabled in gretl, you can capture the output from such commands using the
syntax

string stringname = $ (shellcommand)

That is, you enclose a shell command in parentheses, preceded by a dollar sign.

Reading from a file into a string
You can read the content of a file into a string variable using the syntax
string stringname = readfile(filename)
The filename field may be given as a string variable. For example
? fname = sprintf("%s/QNC.rts", $x12adir)
Generated string fname

? string foo = readfile(fname)
Generated string foo

More string functions

Gretl offers several functions for creating or manipulating strings. You can find these listed and
explained in the Function Reference under the category Strings.
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String-valued series

15.1 Introduction

Gretl’s support for data series with string values has gone through three phases:

1. No support: we simply rejected non-numerical values when reading data from file.

2. Numeric encoding only: we would read a string-valued series from a delimited text data file
(provided the series didn’'t mix numerical values and strings) but the representation of the
data within gretl was purely numerical. We printed a “string table” showing the mapping
between the original strings and gretl’s encoding and it was up to the user to keep track of
this mapping.

3. Preservation of string values: the string table that we construct in reading a string-valued
series is now stored as a component of the dataset so it’s possible to display and manipulate
these values within gretl.

The third phase has now been in effect for several years, with a series of gradual refinements.
This chapter gives an account of the status quo. It explains how to create string-valued series and
describes the operations that are supported for such series.

15.2 Creating a string-valued series

This can be done in two ways: first, by reading such a series from a suitable source file and second,
by taking a suitable numerical series within gretl and adding string values using the stringify()
function. In either case string values will now be preserved when such a series is saved in a gretl-
native data file.

Reading string-valued series

The primary “suitable source” for string-valued series is a delimited text data file (but see sec-
tion15.5 below). Here’s a little example. The following is the content of a file named gc.csv:

city,year

"Bilbao", 2009
"Torun",2011
"OkTahoma City",2013
"Berlin",2015
"Athens",2017

and here’s a script:
open gc.csv --quiet
print --byobs
print city --byobs --numeric

printf "The third gretl conference took place in %s.\n", city[3]

The output from the script is:

121
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? print --byobs

city year
1 Bilbao 2009
2 Torun 2011
3 Oklahoma C.. 2013
4 Berlin 2015
5 Athens 2017
? print city --byobs --numeric
city
1 1
2 2
3 3
4 4
5 5

The third gretl conference took place in Oklahoma City.
From this we can see a few things.

e By default the print command shows us the string values of the series city, and it han-
dles non-ASCII characters provided they're in UTF-8 (but it doesn’t handle longer strings very
elegantly).

e The --numeric option to print exposes the numeric codes for a string-valued series.

e The syntax seriesname[obs] gives a string when a series is string-valued.

Suppose you want to access the numeric code for a particular string-valued observation: you can
get that by “casting” the series to a vector. Thus

printf "The code for ’%s’ is %d.\n", city[3], {city}[3]
gives
The code for ’Oklahoma City’ is 3.

The numeric codes for string-valued series are always assigned thus: reading the data file row by
row, the first string value is assigned 1, the next distinct string value is assigned 2, and so on.

Assigning string values to an existing series

This is done via the stringify() function, which takes two arguments, the name of a series and
an array of strings. For this to work two conditions must be met:

1. The series must have only integer values and the smallest value must be 1 or greater.
2. The array of strings must have at least n members, where n is the largest value found in the

series.

The logic of these conditions is that we’re looking to create a mapping as described above, from
a 1-based sequence of integers to a set of strings. However, we're allowing for the possibility that
the series in question is an incomplete sample from an associated population. Suppose we have a
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series that goes 2, 3, 5, 9, 10. This is taken to be a sample from a population that has at least 10
discrete values, 1, 2, ..., 10, and so requires at least 10 value-strings.

One aspect of stringify() is debatable. At present the function returns 0 on success, otherwise
an integer error code; it doesn’t explicitly “fail” if the required conditions are not met, and it's up
to the user to check if things went OK. Maybe it should just fail on error?

Here’s (a simplified version of) an example that one of the authors has had cause to use: deriving
US-style “letter grades” from a series containing percentage scores for students. Call the percentage
series x, and say we want to create a series with values A for x > 90, B for 80 < x < 90, and so on
down to F for x < 60. Then we can do:

series grade = 1 , the Teast value
grade += x >= 60
grade += x >= 70
grade += x >= 80
grade += x >= 90
stringify(grade, strsplit("F D C B A™))

H oH H H H
>w N O

The way the grade series is constructed is not the most compact, but it’s nice and explicit, and
easy to amend if one wants to adjust the threshold values. Note the use of strsplit() to create
an on-the-fly array of strings from a string literal; this is convenient when the array contains a
moderate number of elements with no embedded spaces. An alternative way to get the same result
is to define the array of strings via the defarray() function, as in

stringify(grade,defarray("F","D","C","B","A"))
We should also mention that we have a function to perform the inverse operation of stringify():

the strvals () function retrieves the array of string values from a series. (It returns an empty array
if the series is not string-valued.)

15.3 Permitted operations

One question that arises with string-valued series is, what are you allowed to do with them and
what is banned? This may be another debatable point, but here we set out the current state of
things.

Setting values per observation

You can set particular values in a string-valued series either by string or numeric code. For example,
suppose (in relation to the example in section 15.2) that for some reason student number 31 with
a percentage score of 88 nonetheless merits an A grade. We could do

grade[31] = "A"
or, if we’re confident about the mapping,

grade[31] = 5
Or to raise the student’s grade by one letter:

grade[31] += 1
What you're not allowed to do here is make a numerical adjustment that would put the value out

of bounds in relation to the set of string values. For example, if we tried grade[31] = 6 we'd get
an error.
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On the other hand, you can implicitly extend the set of string values. This wouldn’t make sense for
the letter grades example but it might for, say, city names. Returning to the example in section 15.2
suppose we try

dataset addobs 1
year[6] = 2019
city[6] = "Naples?"

This will work OK: we're implicitly adding another member to the string table for city; the associ-
ated numeric code will be the next available integer.!

Assignment to an entire series

This is disallowed: you can’t execute an assignment of any sort with the name of a string-valued
series per se on the left-hand side. Put differently, you cannot overwrite an entire string-valued
series at once. This may be debatable, but it’'s much the easiest way of ensuring that we never end
up with a broken mapping. If anyone can come up with a really good reason for wanting to do this
we might reconsider.

Besides assigning an out-of-bounds numerical value to a particular observation, this sort of assign-
ment is in fact the only operation that is banned for string-valued series.

Missing values

We support one exception to the general rule, never break the mapping between strings and nu-
meric codes for string-valued series: you can mark particular observations as missing. This is done
in the usual way, e.g.,

grade[31] = NA
Note, however, that on importing a string series from a delimited text file any non-blank strings (in-

cluding “NA”) will be interpreted as valid values; any missing values in such a file should therefore
be represented by blank cells.

Copying a string-valued series
If you make a copy of a string-valued series, as in
series foo = city

the string values are not copied over: you get a purely numerical series holding the codes of the
original series. But if you want a full copy with the string values that can easily be arranged:

series citycopy = city
stringify(citycopy, strvals(city))

String-valued series in other contexts

String-valued series can be used on the right-hand side of assignment statements at will, and in
that context their numerical values are taken. For example,

series y = sqrt(city)

I Admittedly there is a downside to this feature: one may inadvertently add a new string value by mistyping a string
that’s already present.
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will elicit no complaint and generate a numerical series 1, 1.41421, .... It’s up to the user to judge
whether this sort of thing makes any sense.

Similarly, it's up to the user to decide if it makes sense to use a string-valued series “as is” in a
regression model, whether as regressand or regressor—again, the numerical values of the series
are taken. Often this will not make sense, but sometimes it may: the numerical values may by
design form an ordinal, or even a cardinal, scale (as in the “grade” example in section 15.2).

More likely, one would want to use dummify on a string-valued series before using it in statistical
modeling. In that context gretl’s series labels are suitably informative. For example, suppose we
have a series race with numerical values 1, 2 and 3 and associated strings “White”, “Black” and
“Other”. Then the hansl code

Tist D = dummify(race)
Tabels

will show these labels:

"Black’
’Other’

Drace_2: dummy for race
Drace_3: dummy for race

Given such a series you can use string values in a sample restriction, as in
smpl race == "Black" --restrict

(although race == 2 would also be acceptable).

There may be other contexts that we haven’t yet thought of where it would be good to have string
values displayed and/or accepted on input; suggestions are welcome.

15.4 String-valued series and functions

User-defined hansl functions can deal with string-valued series, although there are a few points to
note.

If you supply such a series as an argument to a hansl function its string values will be accessible
within the function. One can test whether a given series arg is string-valued as follows:

if nelem(strvals(arg)) > 0
# yes

else
# no

endif

Now suppose one wanted to put something like the code that generated the grade series in sec-
tion 15.2 into a function. That can be done, but not in the form of a function that directly returns
the desired series —that is, something like

function series letter_grade (series x)
series grade
# define grade based on x and stringify it, as shown above
return grade

end function

Unfortunately the above will not work: the caller will get the grade series OK but it won’t be string-
valued. At first sight this may seem to be a bug but it's defensible as a consequence of the way
series work in gretl.
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The point is that series have, so to speak, two grades of existence. They can exist as fully-fledged
members of a dataset, or they can have a fleeting existence as simply anonymous arrays of numbers
that are of the same length as dataset series. Consider the statement

series rootxl = sqrt(x+1)

On the right-hand side we have the “series” x+1, which is called into existence as part of a calcula-
tion but has no name and cannot have string values. Similarly, consider

series grade = letter_grade(x)

The return value from letter_grade() is likewise an anonymous array,? incapable of holding
string values until it gets assigned to the named series grade. The solution is to define grade as a
series, at the level of the caller, before calling Tetter_grade(), as in

function void letter_grade (series x, series *grade)
# define grade based on x and stringify it
# this version will work!

end function

# caller

series grade
letter_grade(x, &grade)

As you’ll see from the account above, we don’t offer any very fancy facilities for string-valued
series. We’'ll read them from suitable sources and we’ll create them natively via stringify—and
we’ll try to ensure that they retain their integrity —but we don’t, for example, take the specification
of a string-valued series as a regressor as an implicit request to include the dummification of its
distinct values. Besides laziness, this reflects the fact that in gretl a string-valued series may be
usable “as is”, depending on how it’s defined; you can use dummi fy if you need it.

15.5 Other import formats

In section 15.2 we illustrated the reading of string-valued series with reference to a delimited text
data file. Gretl can also handle several other sources of string-valued data, including the spread-
sheet formats x1s, xTsx, gnumeric and ods and (to a degree) the formats of Stata, SAS and SPSS.

Stata files

Stata supports two relevant sorts of variables: (1) those that are of “string type” and (2) variables
of one or other numeric type that have “value labels” defined. Neither of these is exactly equivalent
to what we call a “string-valued series” in gretl.

Stata variables of string type have no numeric representation; their values are literally strings, and
that’s all. Stata’s numeric variables with value labels do not have to be integer-valued and their
least value does not have to be 1; however, you can’t define a label for a value that is not an integer.
Thus in Stata you can have a series that comprises both integer and non-integer values, but only
the integer values can be labeled.3

This means that on import to gretl we can readily handle variables of string type from Stata’s dta
files. We give them a 1-based numeric encoding; this is arbitrary but does not conflict with any
information in the dta file. On the other hand, in general we’re not able to handle Stata’s numeric

2 A proper named series, with string values, existed while the function was executing but it ceased to exist as soon as
the function was finished.
3Verified in Stata 12.
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variables with value labels; currently we report the value labels to the user but do not attempt to
store them in the gretl dataset. We could check such variables and import them as string-valued
series if they satisfy the criteria stated in section 15.2 but we don’t at present.

SAS and SPSS files

Gretl is able to read and preserve string values associated with variables from SAS “export” (xpt)
files, and also from SPSS sav files. Such variables seem to be on the same pattern as Stata variables
of string type.



Chapter 16

Matrix manipulation

Together with the other two basic types of data (series and scalars), gretl offers a quite compre-
hensive array of matrix methods. This chapter illustrates the peculiarities of matrix syntax and
discusses briefly some of the more complex matrix functions. For a full listing of matrix functions
and a comprehensive account of their syntax, please refer to the Gretl Command Reference.

16.1 Creating matrices
Matrices can be created using any of these methods:
1. By direct specification of the scalar values that compose the matrix— either in numerical form,
or by reference to pre-existing scalar variables, or using computed values.
2. By providing a list of data series.
3. By providing a named list of series.
4. Via a suitable expression that references existing matrices and/or scalars, or via some special
functions.
To specify a matrix directly in terms of scalars, the syntax is, for example:

matrix A = {1, 2, 3 ; 4, 5, 6}

The matrix is defined by rows; the elements on each row are separated by commas and the rows
are separated by semi-colons. The whole expression must be wrapped in braces. Spaces within the
braces are not significant. The above expression defines a 2 X 3 matrix. Each element should be a
numerical value, the name of a scalar variable, or an expression that evaluates to a scalar. Directly
after the closing brace you can append a single quote (’) to obtain the transpose.

To specify a matrix in terms of data series the syntax is, for example,
matrix A = {x1, x2, x3}

where the names of the variables are separated by commas. Besides names of existing variables,
you can use expressions that evaluate to a series. For example, given a series x you could do

matrix A = {x, xA2}

Each variable occupies a column (and there can only be one variable per column). You cannot use
the semicolon as a row separator in this case: if you want the series arranged in rows, append the
transpose symbol. The range of data values included in the matrix depends on the current setting
of the sample range.

Instead of giving an explicit list of variables, you may instead provide the name of a saved list (see
Chapter 14), as in

128
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Tist x1list = x1 x2 x3
matrix A = {xTist}

When you provide a named list, the data series are by default placed in columns, as is natural in an
econometric context: if you want them in rows, append the transpose symbol.

As a special case of constructing a matrix from a list of variables, you can say
matrix A = {dataset}

This builds a matrix using all the series in the current dataset, apart from the constant (variable 0).
When this dummy list is used, it must be the sole element in the matrix definition {...}. You can,
however, create a matrix that includes the constant along with all other variables using horizontal
concatenation (see below), as in

matrix A = {const}~{dataset}

By default, when you build a matrix from series that include missing values the data rows that
contain NAs are skipped. But you can modify this behavior via the command set skip_missing
off. In that case NAs are converted to NaN (“Not a Number”). In the IEEE floating-point stan-
dard, arithmetic operations involving NaN always produce NaN. Alternatively, you can take greater
control over the observations (data rows) that are included in the matrix using the “set” variable
matrix_mask, as in

set matrix_mask msk

where msk is the name of a series. Subsequent commands that form matrices from series or lists will
include only observations for which msk has non-zero (and non-missing) values. You can remove
this mask via the command set matrix_mask null.

= Names of matrices must satisfy the same requirements as names of gretl variables in general: the name
can be no longer than 31 characters, must start with a letter, and must be composed of nothing but letters,
numbers and the underscore character.

16.2 Empty matrices
The syntax

matrix A = {}

creates an empty matrix—a matrix with zero rows and zero columns.

The main purpose of the concept of an empty matrix is to enable the user to define a starting point
for subsequent concatenation operations. For instance, if X is an already defined matrix of any size,
the commands

matrix A
matrix B

{}
A ~ X

result in a matrix B identical to X.

From an algebraic point of view, one can make sense of the idea of an empty matrix in terms of
vector spaces: if a matrix is an ordered set of vectors, then A={} is the empty set. As a consequence,
operations involving addition and multiplications don’t have any clear meaning (arguably, they have
none at all), but operations involving the cardinality of this set (that is, the dimension of the space
spanned by A) are meaningful.
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Function Return value Function Return value
A’, transp(A) A rows (A) 0
cols(A) 0 rank (A) 0
det(A) NA Tdet(A) NA
tr(A) NA onenorm(A) NA
infnorm(A) NA rcond(A) NA

Table 16.1: Valid functions on an empty matrix, A

Legal operations on empty matrices are listed in Table 16.1. (All other matrix operations gener-
ate an error when an empty matrix is given as an argument.) In line with the above interpreta-
tion, some matrix functions return an empty matrix under certain conditions: the functions diag,
vec, vech, unvech when the arguments is an empty matrix; the functions I, ones, zeros,
mnormal, muniform when one or more of the arguments is 0; and the function nulTspace when
its argument has full column rank.

16.3 Selecting sub-matrices
You can select sub-matrices of a given matrix using the syntax
A[rows,cols]

where rows can take any of these forms:

empty selects all rows

a single integer
two integers separated by a colon
the name of a matrix

W=

selects the single specified row
selects a range of rows
selects the specified rows

With regard to option 2, the integer value can be given numerically, as the name of an existing
scalar variable, or as an expression that evaluates to a scalar. With option 4, the index matrix given
in the rows field must be either p x 1 or 1 X p, and should contain integer values in the range 1 to
n, where n is the number of rows in the matrix from which the selection is to be made.

The cols specification works in the same way, mutatis mutandis. Here are some examples.

matrix B = A[1,]

matrix B = A[2:3,3:5]
matrix B = A[2,2]
matrix idx = {1, 2, 6}
matrix B = A[idx,]

The first example selects row 1 from matrix A; the second selects a 2 x 3 submatrix; the third selects
a scalar; and the fourth selects rows 1, 2, and 6 from matrix A.

If the matrix in question is n X 1 or 1 x m, it is OK to give just one index specifier and omit the
comma. For example, A[2] selects the second element of A if A is a vector. Otherwise the comma
is mandatory.

In addition there is a pre-defined index specification, diag, which selects the principal diagonal of
a square matrix, as in B[diag], where B is square.

You can use selections of this sort on either the right-hand side of a matrix-generating formula or
the left. Here is an example of use of a selection on the right, to extract a 2 X 2 submatrix B from a
3 X 3 matrix A:
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matrix A
matrix B

{1, 2, 3; 4, 5, 6; 7, 8, 9}
A[1:2,2:3]

And here are examples of selection on the left. The second line below writes a 2 x 2 identity matrix
into the bottom right corner of the 3 x 3 matrix A. The fourth line replaces the diagonal of A with
1s.

matrix A = {1, 2, 3; 4, 5, 6; 7, 8, 9}
matrix A[2:3,2:3] = I(2)

matrix d = {1, 1, 1}

matrix A[diag] = d

16.4 Deleting rows or columns

A variant of sub-matrix notation is available for convenience in dropping specified rows and/or
columns from a matrix, namely giving negative values for the indices. Here is a simple example,

matrix A
matrix B

{11 2’ 3; 41 5’ 6; 7! 81 9}
A[-2,-3]

which creates B as a 2 X 2 matrix which drops row 2 and column 3 from A. Negative indices can also
be given in the form of an index vector:

matrix rdrop = {-1,-3,-5}
matrix B = A[rdrop,]

In this case B is formed by dropping rows 1, 3 and 5 from A (which must have at least 5 rows), but
retaining the column dimension of A.

There are two limitations on the use of negative indices. First, the from: to range syntax described
in the previous section is not available, but you can use the seq function to achieve an equivalent
effect, as in

matrix A muniform(1l, 10)
matrix B = A[,-seq(3,7)]

where B drops columns 3 to 7 from A. Second, use of negative indices is valid only on the right-hand
side of a matrix calculation; there is no “negative index” equivalent of assignment to a sub-matrix,

asin

A[1:3,] = ones(3, cols(A))

16.5 Matrix operators

The following binary operators are available for matrices:



Chapter 16. Matrix manipulation 132

+ addition

- subtraction

ordinary matrix multiplication
pre-multiplication by transpose
matrix “left division” (see below)
matrix “right division” (see below)
~ column-wise concatenation

| row-wise concatenation

** Kronecker product

== test for equality

I=  test for inequality

In addition, the following operators (“dot” operators) apply on an element-by-element basis:
- )N = > U< >= L= L=

Here are explanations of the less obvious cases.

For matrix addition and subtraction, in general the two matrices have to be of the same dimensions
but an exception to this rule is granted if one of the operands is a 1 X 1 matrix or scalar. The scalar
is implicitly promoted to the status of a matrix of the correct dimensions, all of whose elements
are equal to the given scalar value. For example, if A is an m X n matrix and k a scalar, then the
commands

matrix C = A + k
matrix D = A - k

both produce m x n matrices, with elements c;; = a;; + k and d;j = a;j — k respectively.

By “pre-multiplication by transpose” we mean, for example, that
matrix C = X’Y

produces the product of X-transpose and Y. In effect, the expression X’Y is shorthand for X’ *Y,
which is also valid. Consider, however, that in the special case X = Y, the two are not exactly
equivalent: the former expression uses a specialized, optimized algorithm which has the double
advantage of being more efficient computationally and of ensuring that the result will be free by
construction of machine precision artifacts that may render it numerically non-symmetric. This,
however, is unlikely to affect you unless your X matrix is rather large (at least several hundreds
rows/columns).

In matrix “left division”, the statement
matrix X = A \ B

is interpreted as a request to find the matrix X that solves AX = B. If A is a square matrix, this is
in principle equivalent to A~!'B, which fails if A is singular; the numerical method employed here
is the LU decomposition. If A is a T X k matrix with T > k, then X is the least-squares solution,
X = (A’A)"LA’B, which fails if A’A is singular; the numerical method employed here is the QR
decomposition. Otherwise, the operation necessarily fails.

For matrix “right division”, as in X = A / B, X is the matrix that solves XB = A, in principle
equivalent to AB~L.

In “dot” operations a binary operation is applied element by element; the result of this operation
is obvious if the matrices are of the same size. However, there are several other cases where such
operators may be applied. For example, if we write
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matrix C = A .- B

then the result C depends on the dimensions of A and B. Let A be an m X n matrix and let B be
p X q; the result is as follows:

Case Result

Dimensions match (m = p and n = q) Cij = aij — bij
A is a column vector; rows match (m = p; n = 1) ¢ij = ai — bij
B is a column vector; rows match (m = p; g = 1) cij = aij — b;
A is a row vector; columns match (im = 1; n = q) cij = aj — bijj
B is a row vector; columns match (m = p; g = 1) cij = aij —b;j

A is a column vector; Bis arow vector(n =1;p = 1) c¢ij = a; — bj
A is a row vector; B is a column vector((im =1; g =1) c¢ijj=aj—Db;
Aisascalar(m=1andn =1) Cij = a— bjj
Bisascalar(p =1land g =1) cij=aij—b

If none of the above conditions are satisfied the result is undefined and an error is flagged.

Note that this convention makes it unnecessary, in most cases, to use diagonal matrices to perform
transformations by means of ordinary matrix multiplication: if Y = XV, where V is diagonal, it is
computationally much more convenient to obtain Y via the instruction

o

matrix Y = X .* v

where v is a row vector containing the diagonal of V.

In column-wise concatenation of an m xn matrix A and an m X p matrix B, the resultis an mx (n+p)
matrix. That is,

matrix C = A ~ B

produces C = [ A B ]

Row-wise concatenation of an m X n matrix A and an p X n matrix B produces an (m + p) X n
matrix. That is,

matrix C = A | B

roduces C = A
p =l s |

16.6 Matrix-scalar operators

For matrix A and scalar k, the operators shown in Table 16.2 are available. (Addition and subtrac-
tion were discussed in section 16.5 but we include them in the table for completeness.) In addition,
for square A and scalar x, B = AAx produces a matrix B which is A raised to the power x, but only
if either of two conditions are satisfied. First, if x is a non-negative integer then Golub and Van
Loan’s “Binary Powering” Algorithm 11.2.2 is used —see Golub and Van Loan (1996)—and A can
then be a generic square matrix. Second, if A is positive semidefinite the power is computed via its
eigen-decomposition and x can be a real number, subject to the constraint that x can be negative
only if A is invertible.
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Expression Effect

matrix B = A * k b;; = ka;;j

matrix B = A / k bjj=aij/k
matrix B =k / A bij=k/aij
matrix B = A + k bijzaij-i-k
matrix B = A k bij=aij—k
matrix B = k - A b;jj=k-ayj
matrix B = A % k b;; = a;j modulo k

Table 16.2: Matrix-scalar operators

16.7 Matrix functions

Most of the functions available for scalars and series also apply to matrices on an element-by-
element basis. This is the case for 1og, exp, sqrt, sin and many others. For example, if a matrix A
is already defined, then

matrix B = sqrt(A)

generates a matrix such that b;; = ./a;;. All such functions require a single matrix as argument, or
an expression which evaluates to a single matrix.!

In this section, we review some aspects of functions that apply specifically to matrices. A full
account of each function is available in the Gretl Command Reference.

Matrix reshaping

In addition to the methods discussed in sections 16.1 and 16.3, a matrix can also be created by
re-arranging the elements of a pre-existing matrix. This is accomplished via the mshape function.
It takes three arguments: the input matrix, A, and the rows and columns of the target matrix, v
and c respectively. Elements are read from A and written to the target in column-major order. If A
contains fewer elements than n = + X ¢, they are repeated cyclically; if A has more elements, only
the first n are used.

For example:

matrix a = mnormal(2,3)

a

matrix b = mshape(a,3,1)

b

matrix b = mshape(a,5,2)

b

produces

? a
1.2323 0.99714 -0.39078
0.54363 0.43928 -0.48467

? matrix b = mshape(a,3,1)

INote that to find the “matrix square root” you need the cholesky function (see below). And since the exp function
computes the exponential element by element, it does not return the matrix exponential unless the matrix is diagonal.
To get the matrix exponential, use mexp.
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Creation and I/0
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cnameset diag diagcat I Tower mnormal
mread muniform mwrite ones rnameset seq
unvech upper vec vech zeros

Shape/size/arrangement
cols mreverse mshape msortby msplitby rows
selifc selifr trimr

Matrix algebra
cdiv cholesky cmult cnumber convad det
eigengen eigensym eigsolve fft ffti ginv
hdprod infnorm inv invpd Tdet Lsolve
mexp nullspace onenorm polroots psdroot gform
grdecomp rank rcond svd toepsolv tr
transp varsimul

Statistics/transformations
aggregate bkw cdemean corr corrgm cov
ecdf fcstats fevd ghk gini halton
imaxc imaxr iminc iminr irf iwishart
kdensity kmeier kpsscrit maxc maxr mcorr
mcov mcovg meanc meanr minc minr
mlag mols mpols mrls mxtab naalen
normtest npcorr pergm princomp prodc prodr
quadtable quantile ranking resample sdc sumc
sumr uniq values

Numerical methods
BFGSmax BFGScmax fdjac fzero GSSmax NMmax
NRmax numhess simann

Table 16.3: Matrix functions by category
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Generated matrix b

?7 b

b
1.2323
0.54363
0.99714

? matrix b = mshape(a,5,2)
Replaced matrix b

?7 b
b
1.2323 -0.48467
0.54363 1.2323
0.99714 0.54363
0.43928 0.99714
-0.39078 0.43928

Complex multiplication and division

Gretl has no native provision for complex numbers. However, basic operations can be performed
on vectors of complex numbers by using the convention that a vector of n complex numbers is
represented as a n X 2 matrix, where the first column contains the real part and the second the
imaginary part.

Addition and subtraction are trivial; the functions cmult and cdiv compute the complex product
and division, respectively, of two input matrices, A and B, representing complex numbers. These
matrices must have the same number of rows, n, and either one or two columns. The first column
contains the real part and the second (if present) the imaginary part. The return value is an n x 2
matrix, or, if the result has no imaginary part, an n-vector.

For example, suppose you have z; = [1 + 2i,3 + 4i]’ and z» = [1,1i]":

? z1 = {1,2;3,4}
z1l = {1,2;3,4}
Generated matrix zl
? 22 =1Q2)
z2 = 1(2)
Generated matrix z2
? conj_zl = z1 .* {1,-1}
conj_z1l = z1 .* {1,-1}
Generated matrix conj_zl
? eval cmult(zl,z2)
eval cmult(zl,z2)

1 2

-4 3

? eval cmult(zl,conj_z1)
eval cmult(zl,conj_z1)
5
25

Multiple returns and the null keyword

Some functions take one or more matrices as arguments and compute one or more matrices; these
are:
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eigensym Eigen-analysis of symmetric matrix
eigengen Eigen-analysis of general matrix

mols Matrix OLS
grdecomp QR decomposition
svd Singular value decomposition (SVD)

The general rule is: the “main” result of the function is always returned as the result proper.
Auxiliary returns, if needed, are retrieved using pre-existing matrices, which are passed to the
function as pointers (see 13.4). If such values are not needed, the pointer may be substituted with
the keyword nulT.

The syntax for qrdecomp, eigensym and eigengen is of the form
matrix B = func(A, &C)

The first argument, A, represents the input data, that is, the matrix whose decomposition or analysis
is required. The second argument must be either the name of an existing matrix preceded by & (to
indicate the “address” of the matrix in question), in which case an auxiliary result is written to that
matrix, or the keyword nulT1, in which case the auxiliary result is not produced, or is discarded.

In case a non-null second argument is given, the specified matrix will be over-written with the
auxiliary result. (It is not required that the existing matrix be of the right dimensions to receive the
result.)

The function eigensym computes the eigenvalues, and optionally the right eigenvectors, of a sym-
metric n X n matrix. The eigenvalues are returned directly in a column vector of length n; if the
eigenvectors are required, they are returned in an n X n matrix. For example:

matrix V
matrix E = eigensym(M, &V)
matrix E eigensym(M, null)

In the first case E holds the eigenvalues of M and V holds the eigenvectors. In the second, E holds
the eigenvalues but the eigenvectors are not computed.

The function eigengen computes the eigenvalues, and optionally the eigenvectors, of a general
n X n matrix. The eigenvalues are returned directly in an n x 2 matrix, the first column holding the
real components and the second column the imaginary components.

If the eigenvectors are required (that is, if the second argument to eigengen is not null), they
are returned in an n X n matrix. The column arrangement of this matrix is somewhat non-trivial:
the eigenvectors are stored in the same order as the eigenvalues, but the real eigenvectors occupy
one column, whereas complex eigenvectors take two (the real part comes first); the total number of
columns is still n, because the conjugate eigenvector is skipped. Listing 16.1 provides a (hopefully)
clarifying example (see also subsection 16.7).

The qrdecomp function computes the QR decomposition of an m X n matrix A: A = QR, where Q
is an m X n orthogonal matrix and R is an n X n upper triangular matrix. The matrix Q is returned
directly, while R can be retrieved via the second argument. Here are two examples:

matrix R
matrix Q = qrdecomp(M, &R)
matrix Q = qrdecomp(M, null)

In the first example, the triangular R is saved as R; in the second, R is discarded. The first line
above shows an example of a “simple declaration” of a matrix: R is declared to be a matrix variable
but is not given any explicit value. In this case the variable is initialized as a 1 X 1 matrix whose
single element equals zero.

The syntax for svd is
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Listing 16.1: Complex eigenvalues and eigenvectors

set seed 34756

matrix v
A = mnormal(3,3)

/* do the eigen-analysis */

1 = eigengen(A,&v)

/* eigenvalue 1 is real, 2 and 3 are complex conjugates */
print 1

print v

/7':
column 1 contains the first eigenvector (real)

-k/

B = A*v[,1]

C 101,1] * v[,1]

/* B should equal c */
print B

print c

/:‘:
columns 2:3 contain the real and imaginary parts
of eigenvector 2

:‘:/

B = A*v[,2:3]

c = cmultCones(3,1)*(1[2,1),v[,2:3])
/* B should equal c */

print B

print c
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matrix B = func(A, &C, &D)

The function svd computes all or part of the singular value decomposition of the real m x n matrix
A. Let k = min(m, n). The decomposition is

A=UzxV'

where U is an m X k orthogonal matrix, X is an k x k diagonal matrix, and V is an k X n orthogonal
matrix.> The diagonal elements of = are the singular values of A; they are real and non-negative,
and are returned in descending order. The first k columns of U and V are the left and right singular
vectors of A.

The svd function returns the singular values, in a vector of length k. The left and/or right singu-
lar vectors may be obtained by supplying non-null values for the second and/or third arguments
respectively. For example:

matrix s = svd(A, &U, &VY)
matrix s = svd(A, null, null)
matrix s svd(A, null, &V)

In the first case both sets of singular vectors are obtained, in the second case only the singular
values are obtained; and in the third, the right singular vectors are obtained but U is not computed.
Please note: when the third argument is non-null, it is actually V’ that is provided. To reconstitute
the original matrix from its SVD, one can do:

matrix s
matrix B

svd(A, &U, &)
(U . 7‘:5) *\/

Finally, the syntax for mols is
matrix B = mols(Y, X, &U)

This function returns the OLS estimates obtained by regressing the T X n matrix Y on the T x k
matrix X, that is, a k x n matrix holding (X’'X)~'X’Y. The Cholesky decomposition is used. The
matrix U, if not nuT1, is used to store the residuals.

Reading and writing matrices from/to text files

The two functions mread and mwrite can be used for basic matrix input/output. This can be useful
to enable gretl to exchange data with other programs.

The mread function accepts one string parameter: the name of the (plain text) file from which the
matrix is to be read. The file in question may start with any number of comment lines, defined
as lines that start with the hash mark, “#”; such lines are ignored. Beyond that, the content must
conform to the following rules:

1. The first non-comment line must contain two integers, separated by a space or a tab, indicat-
ing the number of rows and columns, respectively.
2. The columns must be separated by spaces or tab characters.

“ on

3. The decimal separator must be the dot “.” character.

Should an error occur (such as the file being badly formatted or inaccessible), an empty matrix (see
section 16.2) is returned.

2This is not the only definition of the SVD: some writers define U as m x m, = as m X n (with k non-zero diagonal
elements) and V as n X n.
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The complementary function mwrite produces text files formatted as described above. The column
separator is the tab character, so import into spreadsheets should be straightforward. Usage is
illustrated in example 16.2. Matrices stored via the mwrite command can be easily read by other
programs; the following table summarizes the appropriate commands for reading a matrix A from
a file called a.mat in some widely-used programs.3 Note that the Python example requires that the
numpy module is loaded.

Program Sample code
GAUSS  tmp[] = Toad a.mat;
A = reshape(tmp[3:rows(tmp)],tmp[1],tmp[2]);
Octave fd = fopen("a.mat");
[r,c] = fscanf(fd, "%d %d", "C");
A = reshape(fscanf(fd, "%g", r*c),c,r)’;
fclose(fd);
Ox decl A = Toadmat("a.mat");
R A <- as.matrix(read.table("a.mat", skip=1))
Python A = numpy.loadtxt(’a.mat’, skiprows=1)
Julia A readdIm("a.mat", skipstart=1)

Listing 16.2: Matrix input/output via text files

nulldata 64
scalar n = 3

string f1 = "a.csv"
string f2 = "b.csv"
matrix a = mnormal(n,n)

matrix b = inv(a)
err = mwrite(a, f1)

if err 1= 0

fprintf "Failed to write %s\n", fl1
else

err = mwrite(b, f2)
endif

if err 1= 0
fprintf "Failed to write %s\n", f2
else
C mread (f1)
d = mread(f2)
a = c*d
printf "The following matrix should be an identity matrix\n"
print a
endif

Optionally, the mwrite and mread functions can use gzip compression: this is invoked if the name
of the matrix file has the suffix “. gz.” In this case the elements of the matrix are written in a single

3Matlab users may find the Octave example helpful, since the two programs are mostly compatible with one another.
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column. Note, however, that compression should not be applied when writing matrices for reading
by third-party software unless you are sure that the software can handle compressed data.

16.8 Matrix accessors

In addition to the matrix functions discussed above, various “accessor” strings allow you to create
copies of internal matrices associated with models previously estimated. These are set out in
Table 16.4.

$coeff  matrix of estimated coefficients

$compan companion matrix (after VAR or VECM estimation)

$jalpha matrix & (loadings) from Johansen’s procedure

$jbeta  matrix S (cointegration vectors) from Johansen’s procedure

$jvbeta covariance matrix for the unrestricted elements of B from Johansen’s procedure
$rho autoregressive coefficients for error process

$sigma  residual covariance matrix

$stderr matrix of estimated standard errors

$uhat matrix of residuals

$vcv covariance matrix of parameter estimates

$vma VMA matrices in stacked form (see section 29.2)
$yhat matrix of fitted values

Table 16.4: Matrix accessors for model data

Many of the accessors in Table 16.4 behave somewhat differently depending on the sort of model
that is referenced, as follows:

¢ Single-equation models: $sigma gets a scalar (the standard error of the regression); $coeff
and $stderr get column vectors; $uhat and $yhat get series.

o System estimators: $sigma gets the cross-equation residual covariance matrix; $uhat and
$yhat get matrices with one column per equation. The format of $coeff and $stderr de-
pends on the nature of the system: for VARs and VECMs (where the matrix of regressors is
the same for all equations) these return matrices with one column per equation, but for other
system estimators they return a big column vector.

e VARs and VECMs: $vcv is not available, but X’ X~ (where X is the common matrix of regres-
sors) is available as $xtxinv.

If the accessors are given without any prefix, they retrieve results from the last model estimated, if
any. Alternatively, they may be prefixed with the name of a saved model plus a period (.), in which
case they retrieve results from the specified model. Here are some examples:

matrix u = $uhat
matrix b = ml.$coeff
matrix v2 = ml.$vcv[1l:2,1:2]

The first command grabs the residuals from the last model; the second grabs the coefficient vector
from model m1; and the third (which uses the mechanism of sub-matrix selection described above)
grabs a portion of the covariance matrix from model m1.

If the model in question a VAR or VECM (only) $compan and $vma return the companion matrix and
the VMA matrices in stacked form, respectively (see section 29.2 for details). After a vector error
correction model is estimated via Johansen’s procedure, the matrices $jalpha and $jbeta are also
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available. These have a number of columns equal to the chosen cointegration rank; therefore, the
product

matrix Pi = $jalpha * $jbeta’

returns the reduced-rank estimate of A(1). Since B is automatically identified via the Phillips nor-
malization (see section 30.5), its unrestricted elements do have a proper covariance matrix, which
can be retrieved through the $jvbeta accessor.

16.9 Namespace issues

Matrices share a common namespace with data series and scalar variables. In other words, no two
objects of any of these types can have the same name. It is an error to attempt to change the type
of an existing variable, for example:

3
ones(2,2) # wrong!

scalar x
matrix X

It is possible, however, to delete or rename an existing variable then reuse the name for a variable
of a different type:

scalar x = 3
delete x
matrix x = ones(2,2) # OK

16.10 Creating a data series from a matrix

Section 16.1 above describes how to create a matrix from a data series or set of series. You may
sometimes wish to go in the opposite direction, that is, to copy values from a matrix into a regular
data series. The syntax for this operation is

series sname = mspec

where sname is the name of the series to create and mspec is the name of the matrix to copy from,
possibly followed by a matrix selection expression. Here are two examples.

series s = X
series ul = U[,1]

It is assumed that x and U are pre-existing matrices. In the second example the series ul is formed
from the first column of the matrix U.

For this operation to work, the matrix (or matrix selection) must be a vector with length equal to
either the full length of the current dataset, n, or the length of the current sample range, n’. If
n’ < n then only n’ elements are drawn from the matrix; if the matrix or selection comprises n
elements, the n’ values starting at element t; are used, where t; represents the starting observation
of the sample range. Any values in the series that are not assigned from the matrix are set to the
missing code.

16.11 Matrices and lists

To facilitate the manipulation of named lists of variables (see Chapter 14), it is possible to convert
between matrices and lists. In section 16.1 above we mentioned the facility for creating a matrix
from a list of variables, as in

matrix M = { Tistname }
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That formulation, with the name of the list enclosed in braces, builds a matrix whose columns hold
the variables referenced in the list. What we are now describing is a different matter: if we say

matrix M = listname

(without the braces), we get a row vector whose elements are the ID numbers of the variables in the
list. This special case of matrix generation cannot be embedded in a compound expression. The
syntax must be as shown above, namely simple assignment of a list to a matrix.

To go in the other direction, you can include a matrix on the right-hand side of an expression that
defines a list, as in

Tist X1 =M

where M is a matrix. The matrix must be suitable for conversion; that is, it must be a row or column
vector containing non-negative integer values, none of which exceeds the highest ID number of a
series in the current dataset.

Listing 16.3 illustrates the use of this sort of conversion to “normalize” a list, moving the constant
(variable 0) to first position.

Listing 16.3: Manipulating a list

function void normalize_Tist (matrix *x)
# If the matrix (representing a Tist) contains var 0,
# but not in first position, move it to first position

if (x[1] !'= 0)
scalar k = cols(x)
Toop for (i=2; i<=k; i++) --quiet
if (x[i1] == 0)
x[i] == x[1]
x[1] ==
break
endif
endloop
endif
end function

open data9-7
Tist X1 =2 3 0 4
matrix x = XI

normalize_Tist(&x)
Tist X1 = x

16.12 Deleting a matrix

To delete a matrix, just write
delete M

where M is the name of the matrix to be deleted.
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16.13 Printing a matrix

To print a matrix, the easiest way is to give the name of the matrix in question on a line by itself,
which is equivalent to using the print command:

matrix M = mnormal(100,2)
M
print M

You can get finer control on the formatting of output by using the printf command, as illustrated
in the interactive session below:

? matrix Id = I(2)
matrix Id = I(2)
Generated matrix Id
? print Id
print Id
Id (2 x 2)

1 0
0 1

? printf "%10.3f", Id
1.000 0.000
0.000 1.000

For presentation purposes you may wish to give titles to the columns of a matrix. For this you can
use the colnames function: the first argument is a matrix and the second is either a named list of
variables, whose names will be used as headings, or a string that contains as many space-separated
substrings as the matrix has columns. For example,

? matrix M = mnormal(3,3)
? colnames(M, "foo bar baz")

? print M
M (3 x 3)
foo bar baz
1.7102 -0.76072 0.089406
-0.99780 -1.9003 -0.25123
-0.91762 -0.39237 -1.6114

16.14 Example: OLS using matrices

Listing 16.4 shows how matrix methods can be used to replicate gretl’s built-in OLS functionality.
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Listing 16.4: OLS via matrix methods

open data4-1

matrix X = { const, sqft }

matrix y = { price }

matrix b = invpd(X’X) * X’y

print "estimated coefficient vector"
b

matrix u = *
scalar SSR = u’u
scalar s2 = SSR / (rows(X) - rows(b))
matrix V = s2 * inv(X’X)

\

matrix se = sqrt(diag(V))

print "estimated standard errors"

se

# compare with built-in function

ols price const sqft --vcv

y - b
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Calendar dates

17.1 Introduction

Any software that aims to handle time-series data must have a good built-in calendar. This is fairly
straightforward in the current era, with the Gregorian calendar now used universally for the dating
of socioeconomic observations. It is not so straightforward, however, when dealing with historical
data recorded prior to the adoption of the Gregorian calendar in place of the Julian, an event which
first occurred in the principal Catholic countries in 1582 but which took place at different dates in
different countries over a span of several centuries.

Gretl, like most data-oriented software, uses the Gregorian calendar by default for all dates, thereby
ensuring that dates are all consecutive (the latter being a requirement of the ISO 8601 standard for
dates and times).!

As readers probably know, the Julian calendar adds a leap day (February 29) on each year that is
divisible by 4 with no remainder. But this over-compensates for the fact that a 365-day year is too
short to keep the calendar synchronized with the seasons. The Gregorian calendar introduced a
more complex rule which maintains better synchronization, namely, each year divisible by 4 with
no remainder is a leap year unless it’s a centurial year (e.g. 1900) in which case it’s a leap year only
if it is divisible by 400 with no remainder. So the years 1600 and 2000 were leap years on both
calendars, but 1700, 1800, and 1900 were leap years only on the Julian calendar. While the average
length of a Julian year is 365.25 days, the Gregorian average is 365.2425 days.

The fact that the Julian calendar inserts leap days more frequently means that the Julian date
progressively (although very slowly) falls behind the Gregorian date. For example, February 18
2017 (Gregorian) is February 5 2017 on the Julian calendar. On adoption of the Gregorian calendar
it was therefore necessary to skip several days. In England, where the transition occurred in 1752,
Wednesday September 2 was directly followed by Thursday September 14.

In comparing calendars one wants to refer to a given day in terms that are not specific to either
calendar —but how to define a “given day”? This is accomplished by a count of days following some
definite event. Astronomers use the “Julian Day,” whose count starts with a particular coincidence
of astronomical cycles in the year known to the Gregorian calendar (if one extrapolates it backwards
in time) as 4714 BC. Gretl uses a similar construction as a fulcrum, but the count of what we call the
“epoch day” starts at 1 on January 1, AD 1 (that is, the first day of the Common Era), on the proleptic
Gregorian calendar.? This is also the convention used by the GLib library, on which gretl depends
for most of its calendrical calculation. Since GLib represents epoch days as unsigned integers, this
means that gretl does not support dates prior to the Common— or, if you prefer, Christian —Era.

17.2 Calendrical functions

Gretl’s calendrical functions are documented in the Gretl Command Reference. In this section we
say a bit more about how these functions relate to each other, and how they may be used to carry
out some specific tasks.

LGretl was not consistent in this regard prior to version 2017a: leap years were taken to be as defined by the Julian
calendar prior to the adoption of the Gregorian calendar by Britain and its colonies in 1752.

2The term “proleptic,” as applied to a calendar, indicates that it is extrapolated backwards or forwards relative to its
period of actual historical use.
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A first point to note is that a daily date has three possible representations within gretl. Two
are associated with the ISO 8601 standard, namely the “extended” representation, YYYY-MM-DD,
as for example 2017-02-19, and the “basic” representation, YYYYMMDD (for example 20170219). As
mentioned above, such dates are by default taken to be relative to the (possibly proleptic) Gregorian
calendar. The third representation is as an “epoch day” (see above), for example 736379, which is
calendar-independent and can therefore be used in converting from one calendar to another.

Decomposing a series of “basic” dates

To generate from a series of dates in ISO 8601 basic format distinct series holding year, month and
day, the function isoconv can be used. This function should be passed the original series followed
by “pointers to” the series to be filled out. For example, if we have a series named dates in the
prescribed format we might do

series y, m, d
isoconv(dates, &y, &m, &d)

This is mostly just a convenience function: provided the dates input is valid on the (possibly
proleptic) Gregorian calendar it is equivalent to:

series y = floor(dates/10000)
series m floor((dates-10000*y)/100)
series d = dates - 10000*y - 100%*m

However, there is some “value added”: isoconv checks the validity of the dates input. If the
implied year, month and day for any dates observation do not correspond to a valid Gregorian
date in the Common Fra,3 then all the derived series will have value NA at that observation.

The isoconv function can also handle Julian dates, should anyone have need for that facility. The
convention is that if the negative of an ISO 8601 basic date is given as an argument, the date is
taken to be on the (possibly proleptic) Julian calendar. Since dates BCE are not supported by gretl,
hopefully this should not give rise to ambiguity. The only difference from the standard usage of
isoconv is that Julian-only dates, such as 17000229, are recognized as valid. So, for example,

series y, m, d
isoconv(-dates, &y, &m, &d)

will accept a dates value of 17000229, giving (y = 1700, m = 2, d = 29), while this would give NA
values for year, month and day on the default Gregorian calendar.

Obtaining and using epoch days

To convert from a Gregorian or Julian date to the corresponding epoch day, you can use the
epochday function, which takes as arguments year, month and day on the given calendar. Sim-
ilarly to isoconv, the convention is that Gregorian dates are assumed unless the year is given in
the negative to flag a Julian date. The following code fragment,

edg
edj

epochday(1700,1,1)
epochday(-1700,1,1)

produces edg = 620548 and edj = 620558, indicating that the two calendars differed by 10 days at
the point in time known as January 1, 1700, on the proleptic Gregorian calendar.

Taken together with the isodate and juldate functions (which each take an epoch day argument
and return an ISO 8601 basic date on, respectively, the Gregorian and Julian calendars), epochday

3For example, the implied month is not in the range 1-12, or the implied day is not in the range of 1 to the number
of days in the month, taking account of Gregorian leap years.
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can be used to convert between the two calendars. For example, what was the date in England (still
on the Julian calendar) on the day known to Italians as June 26, 1740 (Italy having been on the
Gregorian calendar since October 1582)?

ed = epochday(1740,6,26)
english_date = juldate(ed)
printf "%.0f\n", english_date

We find that the English date was 17400615, the 15th of June. Working in the other direction, what
Italian date corresponded to the 5th of November, 1740, in England?

ed = epochday(-1740,11,5)
italian_date = isodate(ed)
printf "%.0f\n", italian_date

Answer: 17401116; Guy Fawkes night in 1740 occurred on November 16 from the Italian point of
view.

A further—and perhaps more practical—use of epoch days is checking whether daily data are
complete. Suppose we have what purport to be 7-day daily data on the Gregorian calendar with
a starting date of 2015-01-01 and an ending date of 2016-12-31. How many observations should
there be?

edl epochday(2015,1,1)
ed?2 epochday(2016,12,31)
n=-ed2-edl +1

We find that there should be n = 731 observations; if there are fewer, there’s something missing.
If the data are supposed to be on a 5-day week (skipping Saturday and Sunday) or 6-day week
(skipping Sunday alone) the calculation is more complicated; in this case we can use the dayspan
function, providing as arguments the epoch-day values for the first and last dates and the number
of days per week:

edl epochday(2015,1,1)
ed2 epochday(2016,12,30)
n = dayspan(edl, ed2, 5)

We discover that there were n = 522 weekdays in this period.

Note that while ISO 8601 basic dates can be used for easy comparison (which of two dates, on a
given calendar, refers to a later day?), one needs epoch days to carry out fully fledged “dates arith-
metic.” Epoch days are always consecutive by construction, but 8-digit basic dates are consecutive
only within a given month; they advance by 101 minus (days in previous month) at the start of each
month other than January and by 8870 at the start of each year.

Miscellaneous functions

Two additional functions that by default operate on the Gregorian calendar can be induced to
work on the Julian by the trick mentioned above, namely giving the negative of the year. These
are weekday (which takes arguments year, month and day) and monthlen (which takes arguments
month, year and days per week). Thus for example

eval weekday(-1700,2,29)
gives 4, indicating that Julian February 29, 1700 was a Thursday. And
eval monthlen(2,-1900,5)

gives 21, indicating that there were 21 weekdays in Julian February 1900.
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17.3 Working with pre-Gregorian dates

In this section we address the problem of constructing within gretl a calendar which agrees with
the actual historical calendar prior to the switch to Gregorian dating. Most people will have no
use for this, but researchers working with archival data may find it helpful: it would be tricky and
error-prone to enter on the Gregorian calendar data whose dates are given on the Julian at source.

We’ll consider the trickiest case, namely a calendar which includes the day on which the Julian to
Gregorian switch occurred. If we can handle this, it should be relatively simple to handle a purely
Julian calendar. Our illustration will be England in 1752 (a similar analysis could be done for Spain
in 1582 or Greece in 1923). A solution is presented in Listing 17.1.

The first step is to find the epoch day corresponding to the Julian date 1752-01-01 (which turns
out to be 639551). Then we can create a series of epoch days, from which we get both Julian and
Gregorian dates for 355 days starting on epoch day 639551. Note, 355 days because this was a
short year: it was a leap year, but 11 days were skipped in September in making the transition to
the Gregorian calendar. We can then construct a series, hcal, which switches calendar at the right
historical point.

Listing 17.1: Historical calendar for Britain in 1752

# 1752 was a short year on the British calendar!
nulldata 355

# give a negative year to indicate Julian date
ed0 = epochday(-1752,1,1)

# consistent series of epoch day values

series ed = ed0 + index - 1

# Julian dates as YYYYMMDD

series jdate = juldate(ed)

# Gregorian dates as YYYYMMDD

series gdate = isodate(ed)

# Historical: cut-over in September

series hcal = ed > epochday(-1752,9,2) ? gdate : jdate
# And Tet’s take a Took

print ed jdate gdate hcal -o

Partial output:

ed jdate gdate hcal

1 639551 17520101 17520112 17520101

2 639552 17520102 17520113 17520102
245 639795 17520901 17520912 17520901
246 639796 17520902 17520913 17520902
247 639797 17520903 17520914 17520914
248 639798 17520904 17520915 17520915
355 639905 17521220 17521231 17521231

Notice that although the series hcal contains the correct historical calendar (in “basic” form), the
observation labels (in the first column of the output) are still just index numbers. It may be prefer-
able to have historical dates in that role. To achieve this we can decompose the hcal series into
year, month and day, then use the special genr markers apparatus (see chapter 4). Suitable code
along with partial output is shown in Listing 17.2.
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Listing 17.2: Continuation of Britain 1752 example
Additional input:

series y, m, d

isoconv(hcal, &y, &m, &d)

genr markers = "%04d-%02d-%02d", y, m, d
print ed jdate gdate hcal -o

Partial output:

ed jdate gdate hcal
1752-01-01 639551 17520101 17520112 17520101
1752-01-02 639552 17520102 17520113 17520102
1752-09-01 639795 17520901 17520912 17520901
1752-09-02 639796 17520902 17520913 17520902
1752-09-14 639797 17520903 17520914 17520914
1752-09-15 639798 17520904 17520915 17520915
1752-12-31 639905 17521220 17521231 17521231

17.4 Year numbering

A further complication in dealing with archival data is that the year number has not always been
advanced on January 1; for example in Britain prior to 1752, March 25 was taken as the start of
the new year. On gretl’s calendar (whether Julian or Gregorian) the year number always advances
on January 1, but it’s possible to construct observation markers following the old scheme. This is
illustrated for the year 1751 (as we would now call it) in Listing 17.3.

Listing 17.3: Historical calendar for England in 1751
Input:

nulldata 365 # a common year

ed0 = epochday(-1751,1,1)

edl = epochday(-1751,3,25)

series ed = ed0 + index - 1

series jdate = juldate(ed)

series y, m, d

isoconv(jdate, &y, &m, &d)

y =ed <edl ?7y-1:y

genr markers "%04d-%02d-%02d", y, m, d
print index -o

Partial output:

1750-01-01 1
1750-01-02 2
1750-01-03 3
1750-03-23 82
1750-03-24 83
1751-03-25 84
1751-03-26 85

1751-12-31 365
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Cheat sheet

This chapter explains how to perform some common—and some not so common— tasks in gretl’s
scripting language, hansl. Some but not all of the techniques listed here are also available through
the graphical interface. Although the graphical interface may be more intuitive and less intimidat-
ing at first, we encourage users to take advantage of the power of gretl’s scripting language as soon
as they feel comfortable with the program.

18.1 Dataset handling
“Weird” periodicities

Problem: You have data sampled each 3 minutes from 9am onwards; you’ll probably want to specify
the hour as 20 periods.

Solution:
setobs 20 9:1 --special

Comment: Now functions like sdiff () (“seasonal” difference) or estimation methods like seasonal
ARIMA will work as expected.

Generating a panel dataset of given dimensions

Problem: You want to generate via nulldata a panel dataset and specify in advance the number of
units and the time length of your series via two scalar variables.

Solution:

scalar n_units = 100
scalar T = 12
scalar NT = T * n_units

nulldata NT --preserve
setobs T 1:1 --stacked-time-series

Comment: The essential ingredient that we use here is the --preserve option: it protects existing
scalars (and matrices, for that matter) from being trashed by nulTdata, thus making it possible to
use the scalar T in the setobs command.

Help, my data are backwards!

Problem: Gretl expects time series data to be in chronological order (most recent observation last),
but you have imported third-party data that are in reverse order (most recent first).

Solution:
setobs 1 1 --cross-section
series sortkey = -obs

dataset sortby sortkey
setobs 1 1950 --time-series
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Comment: The first line is required only if the data currently have a time series interpretation: it
removes that interpretation, because (for fairly obvious reasons) the dataset sortby operation is
not allowed for time series data. The following two lines reverse the data, using the negative of the
built-in index variable obs. The last line is just illustrative: it establishes the data as annual time
series, starting in 1950.

If you have a dataset that is mostly the right way round, but a particular variable is wrong, you can
reverse that variable as follows:

X = sortby(-obs, x)

Dropping missing observations selectively

Problem: You have a dataset with many variables and want to restrict the sample to those observa-
tions for which there are no missing observations for the variables x1, x2 and x3.

Solution:

Tist X = x1 x2 x3
smpl --no-missing X

Comment: You can now save the file via a store command to preserve a subsampled version of
the dataset. Alternative solutions based on the ok function, such as

Tist X = x1 x2 x3
series sel = ok(X)
smpl sel --restrict

are perhaps less obvious, but more flexible. Pick your poison.

“By” operations

Problem: You have a discrete variable d and you want to run some commands (for example, estimate
a model) by splitting the sample according to the values of d.

Solution:

matrix vd = values(d)

m = rows(vd)

Toop i=1..m
scalar sel = vd[i]
smp1 d==sel --restrict --replace
ols y const x

endTloop

smpl --full

Comment: The main ingredient here is a loop. You can have gretl perform as many instructions as
you want for each value of d, as long as they are allowed inside a loop. Note, however, that if all
you want is descriptive statistics, the summary command does have a --by option.

Adding a time series to a panel

Problem: You have a panel dataset (comprising observations of n indidivuals in each of T periods)
and you want to add a variable which is available in straight time-series form. For example, you
want to add annual CPI data to a panel in order to deflate nominal income figures.

In gretl a panel is represented in stacked time-series format, so in effect the task is to create a new
variable which holds n stacked copies of the original time series. Let’s say the panel comprises 500
individuals observed in the years 1990, 1995 and 2000 (n = 500, T = 3), and we have these CPI
data in the ASCII file cpi . txt:
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date cpi

1990 130.658
1995 152.383
2000 172.192

What we need is for the CPI variable in the panel to repeat these three values 500 times.

Solution: Simple! With the panel dataset open in gretl,
append cpi.txt

Comment: If the length of the time series is the same as the length of the time dimension in the
panel (3 in this example), gretl will perform the stacking automatically. Rather than using the
append command you could use the “Append data” item under the File menu in the GUI program.
For this to work, your main dataset must be recognized as a panel. This can be arranged via the
setobs command or the “Dataset structure” item under the Data menu.

Time averaging of panel datasets

Problem: You have a panel dataset (comprising observations of n indidivuals in each of T periods)
and you want to transform it by lowering the time frequency by averaging. This is commonly done
in growth empirical economics, where units are countries and yearly data are turned into 3- or 4-
or 5-year averages (see eg Islam (1995)).

Solution: In a panel dataset, gretl functions that deal with time are aware of the panel structure,
so they will automatically “do the right thing”. Therefore, all you have to do is use the movavg()
function for computing moving averages and then just drop the years you don’t need. An example
with artificial data follows:

nulldata 36
set seed 61218
setobs 12 1:1 --stacked-time-series

###
### generate simulated yearly data
#i#t#

series year = 2000 + time
series y = round(normal())
series x = round(3*uniform())
Tist X =y X

print year X -o

#it#
### now re-cast as 4-year averages
it

# a dummy for endpoints

series endpoint = (year % 4 == 0)
# id variable

series id = $unit

# compute averages

loop foreach i X --quiet
series $i = movavg($i, 4)

endloop

# drop extra observations
smp1 endpoint --dummy --permanent
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# restore panel structure
setobs id year --panel-vars
print id year X -o

Running the above script produces (among other output):

? print year X -o

year y X
1:01 2001 1 1
1:02 2002 -1 1
1:03 2003 -1 0
1:04 2004 0 1
1:05 2005 1 2
1:06 2006 1 2
1:07 2007 -1 0
1:08 2008 1 1
1:09 2009 0 3
1:10 2010 -1 1
1:11 2011 1 1
1:12 2012 0 1
3:09 2009 0 1
3:10 2010 1 1
3:11 2011 0 2
3:12 2012 1 2
? print id year X -o
id year y X
1:1 1 2004 -0.25 0.75
1:2 1 2008 0.50 1.25
1:3 1 2012 0.00 1.50
3:3 3 2012 0.50 1.50

18.2 Creating/modifying variables
Generating a dummy variable for a specific observation

Problem: Generate d; = 0 for all observation but one, for which d; = 1.

Solution:

series d = (t=="1984:2")
Comment: The internal variable t is used to refer to observations in string form, so if you have a
cross-section sample you may just use d = (t=="123"). If the dataset has observation labels you
can use the corresponding label. For example, if you open the dataset mrw.gdt, supplied with gretl
among the examples, a dummy variable for Italy could be generated via

series DIta = (t=="Italy")

Note that this method does not require scripting at all. In fact, you might as well use the GUI Menu
“Add/Define new variable” for the same purpose, with the same syntax.
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Generating a discrete variable out of a set of dummies

Problem: The dummi fy function (also available as a command) generates a set of mutually exclusive
dummies from a discrete variable. The reverse functionality, however, seems to be absent.

Solution:
series x = lincomb(D, seq(l, nelem(D)))

Comment: Suppose you have a list D of mutually exclusive dummies, that is a full set of 0/1 vari-
ables coding for the value of some characteristic, such that the sum of the values of the elements
of D is 1 at each observation. This is, by the way, exactly what the dummify command produces.
The reverse job of dummify can be performed neatly by using the Tincomb function.

The code above multiplies the first dummy variable in the list D by 1, the second one by 2, and so
on. Hence, the return value is a series whose value is i if and only if the i-th member of D has value
1

If you want your coding to start from O instead of 1, you’ll have to modify the code snippet above
into

series x = lincomb(D, seq(0, nelem(D)-1))

Easter
Problem: 1 have a 7-day daily dataset. How do I create an “Easter” dummy?

Solution: We have the easterday() function, which returns month and day of Easter given the
year. The following is an example script which uses this function and a few string magic tricks:

series Easter = 0
Toop y=2011..2016

a = easterday(y)
m = floor(a)
d = round(100*(a-m))

ed_str = sprintf("%04d-%02d-%02d", y, m, d)
Easter["@ed_str"] =1
endloop

Comment: The round() function is necessary for the “day” component because otherwise floating-
point problems may ensue. Try the year 2015, for example.

Recoding a variable

Problem: You want to perform a 1-to-1 recode on a variable. For example, consider tennis points:
you may have a variable x holding values 1 to 3 and you want to recode it to 15, 30, 40.

Solution 1:
series x = replace(x, 1, 15)
series x = replace(x, 2, 30)

series x = replace(x, 3, 40)
Solution 2:

matrix tennis = {15, 30, 40}
series x = replace(x, seq(l,3), tennis)
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Comment: There are many equivalent ways to achieve the same effect, but for simple cases such
as this, the replace function is simple and transparent. If you don’t mind using matrices, scripts
using replace can also be remarkably compact. Note that replace also performs n-to-1 (“surjec-
tive”) replacements, such as

series x = replace{z, {2, 3, 5, 11, 22, 33}, 1)

which would turn all entries equal to 2, 3, 5, 11, 22 or 33 to 1 and leave the other ones unchanged.

Generating a “subset of values” dummy

Problem: You have a dataset which contains a fine-grained coding for some qualitative variable
and you want to “collapse” this to a relatively small set of dummy variables. Examples: you have
place of work by US state and you want a small set of regional dummies; or you have detailed
occupational codes from a census dataset and you want a manageable number of occupational
category dummies.

Let’s call the source series src and one of the target dummies D1. And let’s say that the values
of src to be grouped under D1 are 2, 13, 14 and 25. We’ll consider three possible solutions:
“Longhand,” “Clever,” and “Proper.”

“Longhand” solution:
series D1 = src==2 || src==13 || src==14 || src==25

Comment: The above works fine if the number of distinct values in the source to be condensed into
each dummy variable is fairly small, but it becomes cumbersome if a single dummy must comprise
dozens of source values.

Clever solution:

matrix sel = {2,13,14,25}
series D1 = maxr({src} .= vec(sel)’) .> 0

Comment: The subset of values to be grouped together can be written out as a matrix relatively
compactly (first line). The magic that turns this into the desired series (second line) relies on the
versatility of the “dot” (element-wise) matrix operators. The expression “{src}” gets a column-
vector version of the input series—call this x —and “vec(sel)’” gets the input matrix as a row
vector, in case it’s a column vector or a matrix with both dimensions greater than 1 —call this s. If
x ism x 1 and s is 1 X m, the “.=" operator produces an n X m result, each element (i, j) of which
equals 1 if x; = sj, otherwise 0. The maxr () function along with the “.>” operator (see chapter 16
for both) then produces the result we want.

Of course, whichever procedure you use, you have to repeat for each of the dummy series you want
to create (but keep reading —the “proper” solution is probably what you want if you plan to create
several dummies).

Further comment: Note that the clever solution depends on converting what is “naturally” a vector
result into a series. This will fail if there are missing values in src, since (by default) missing values
will be skipped when converting src to x, and so the number of rows in the result will fall short
of the number of observations in the dataset. One fix is then to subsample the dataset to exclude
missing values before employing this method; another is to adjust the skip_missing setting via
the set command (see the Gretl Command Reference).

Proper solution:

The best solution, in terms of both computational efficiency and code clarity, would be using a
“conversion table” and the replace function, to produce a series on which the dummify command
can be used. For example, suppose we want to convert from a series called fips holding FIPS
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codes! for the 50 US states plus the District of Columbia to a series holding codes for the four
standard US regions. We could create a 2 X 51 matrix—call it srmap—with the 51 FIPS codes on
the first row and the corresponding region codes on the second, and then do

series region = replace(fips, srmap[1l,], srmap[2,])

Generating an ARMA(1,1)
Problem: Generate y; = 0.9y;_1 + & — 0.5&;_1, with & ~ NIID (0, 1).

Recommended solution:

alpha = 0.9
theta = -0.5
series y = filter(normal(), {1, theta}, alpha)

“Bread and butter” solution:

alpha = 0.9
theta = -0.5
series e = normal()
series y = 0

series y = alpha * y(-1) + e + theta * e(-1)

Comment: The filter function is specifically designed for this purpose so in most cases you’ll
want to take advantage of its speed and flexibility. That said, in some cases you may want to
generate the series in a manner which is more transparent (maybe for teaching purposes).

In the second solution, the statement series y = 0 is necessary because the next statement eval-
uates y recursively, so y[1] must be set. Note that you must use the keyword series here instead
of writing genr y = 0 or simply y = 0, to ensure that y is a series and not a scalar.

Recoding a variable by classes

Problem: You want to recode a variable by classes. For example, you have the age of a sample of
individuals (x;) and you need to compute age classes (y;) as

yi=1 for x;<18
yi=2 for 18 <x; <65
yi=3 for x;=65

Solution:
series y = 1 + (x >= 18) + (x >= 65)

Comment: True and false expressions are evaluated as 1 and O respectively, so they can be ma-
nipulated algebraically as any other number. The same result could also be achieved by using the
conditional assignment operator (see below), but in most cases it would probably lead to more
convoluted constructs.

Conditional assignment

Problem: Generate y; via the following rule:

| x¢ for di>a
Y= Zt for dtsa

LFIPS is the Federal Information Processing Standard: it assigns numeric codes from 1 to 56 to the US states and
outlying areas.
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Solution:
series y = (d>a) ? x : z

Comment: There are several alternatives to the one presented above. One is a brute force solution
using loops. Another one, more efficient but still suboptimal, would be

series y = (d>a)*x + (d<=a)*z

However, the ternary conditional assignment operator is not only the most numerically efficient
way to accomplish what we want, it is also remarkably transparent to read when one gets used to
it. Some readers may find it helpful to note that the conditional assignment operator works exactly
the same way as the =IF() function in spreadsheets.

Generating a time index for panel datasets
Problem: gretl has a $unit accessor, but not the equivalent for time. What should I use?

Solution:
series x = time

Comment: The special construct genr time and its variants are aware of whether a dataset is a
panel.

Sanitizing a list of regressors

Problem: 1 noticed that built-in commands like o1s automatically drop collinear variables and put
the constant first. How can I achieve the same result for an estimator I'm writing?

Solution: No worry. The function below does just that

function 1list sanitize(list X)
Tist R = X - const
if nelem(R) < nelem(X)
R = const R
endif
return dropcolT(R)
end function

so for example the code below

nulldata 20

X = normal ()

y normal ()

z =X+ y # collinear
1list A = X y const z

Tist B = sanitize(A)

Tist print A
1ist print B

returns

? list print A
X y const z

? 1ist print B
const x y
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Besides: it has been brought to our attention that some mischievous programs out there put the
constant last, instead of first, like God intended. We are not amused by this utter disrespect of
econometric tradition, but if you want to pursue the way of evil, it is rather simple to adapt the
script above to that effect.

Generating the “hat” values after an OLS regression

Problem: T've just run an OLS regression, and now I need the so-called the leverage values (also
known as the “hat” values). I know you can access residuals and fitted values through “dollar”
accessors, but nothing like that seems to be available for “hat” values.

Solution: “Hat” values are can be thought of as the diagonal of the projection matrix Px, or more
explicitly as

h; = X/i(X/X)_lXi
where X is the matrix of regressors and x; is its i-th row.

The reader is invited to study the code below, which offers four different solutions to the problem:

open data4-1l.gdt --quiet
Tist X = const sqft bedrms baths
ols price X

# method 1
leverage --save --quiet
series hl = lever

# these are necessary for what comes next
matrix mX = {X}
matrix iXX = invpd(mX’mX)

# method 2
series h2 = diag(gform(mX, iXX))
# method 3
series h3 = sumr(mX .* (mX*iXX))
# method 4

series h4 = NA

Tloop i=1..$%$nobs --quiet
matrix x = mX[i,]’
h4[i] = x’iXX*x

endloop

# verify
print hl h2 h3 h4 --byobs

Comment: Solution 1 is the preferable one: it relies on the built-in Teverage command, which
computes the requested series quite efficiently, taking care of missing values, possible restrictions
to the sample, etc.

However, three more are shown for didactical purposes, mainly to show the user how to manipulate
matrices. Solution 2 first constructs the Px matrix explicitly, via the qform function, and then takes
its diagonal; this is definitely not recommended (despite its compactness), since you generate a
much bigger matrix than you actually need and waste a lot of memory and CPU cycles in the
process. It doesn’t matter very much in the present case, since the sample size is very small, but
with a big dataset this could be a very bad idea.

Solution 3 is more clever, and relies on the fact that, if you define Z = X - (X’X)~!, then h; could
also be written as

k
!
hi = X;Z; = Z XikZiy
i=1
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which is in turn equivalent to the sum of the elements of the i-th row of X © Z, where o is the
element-by-element product. In this case, your clever usage of matrix algebra would produce a
solution computationally much superior to solution 2.

Solution 4 is the most old-fashioned one, and employs an indexed loop. While this wastes practi-
cally no memory and employs no more CPU cycles in algebraic operations than strictly necessary,
it imposes a much greater burden on the hansl interpreter, since handling a loop is conceptually
more complex than a single operation. In practice, you’ll find that for any realistically-sized prob-
lem, solution 4 is much slower that solution 3.

Moving functions for time series

Problem: Gretl provides native functions for moving averages, but I need a to compute a different
statistic on a sliding data window. Is there a way to do this without using loops?

Solution: One of the nice things of the Tist data type is that, if you define a list, then several
functions that would normally apply “vertically” to elements of a series apply “horizontally” across
the list. So for example, the following piece of code

open bjg.gdt

order = 12

1ist L = 1g || lags(order-1, 1g)
smpl +order ;

series movmin = min(L)

series movmax max (L)

series movmed median(L)

smp1l full

computes the moving minimum, maximum and median of the 1g series. Plotting the four series
would produce something similar to figure 18.1.

6.6
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lg —
6.4 Fmovmin ——— ]
movmed
6.2 fmovmax
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Figure 18.1: “Moving” functions

18.3 Neat tricks

Interaction dummies

Problem: You want to estimate the model y; = x;81 + z;B> + diB3 + (d; - Z;) B4 + &, where d; is a
dummy variable while x; and z; are vectors of explanatory variables.
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Solution: As of version 1.9.12, gretl provides the A operator to make this operation easy. See
section 14.1 for details (especially example script 14.1). But back in my day, we used loops to do
that! Here’s how:

Tist X = x1 x2 x3

list Z = z1 z2

Tist dZ = null

loop foreach i Z
series d$i = d * $i
Tist dZ = dzZ d$i

endTloop

ols y X Z d dz

Comment: It's amazing what string substitution can do for you, isn’t it?

Realized volatility

Problem: Given data by the minute, you want to compute the “realized volatility” for the hour as
RV: = 6—10 Ziozl y2.. Imagine your sample starts at time 1:1.

Solution:

smpl --full

genr time

series minute = int(time/60) + 1
series second = time % 60

setobs minute second --panel
series rv = psd(y)A2

setobs 1 1

smpl second==1 --restrict

store foo rv

Comment: Here we trick gretl into thinking that our dataset is a panel dataset, where the minutes
are the “units” and the seconds are the “time”; this way, we can take advantage of the special
function psd (), panel standard deviation. Then we simply drop all observations but one per minute
and save the resulting data (store foo rv translates as “store in the gretl datafile foo.gdt the
series rv”).

Looping over two paired lists

Problem: Suppose you have two lists with the same number of elements, and you want to apply
some command to corresponding elements over a loop.

Solution:

Tist L1
Tist L2

abc
Xy z

ki =1
loop foreach i L1 --quiet
k2 =1
Toop foreach j L2 --quiet
if k1 == k2
ols $i 0 $j
endif
k2++
endloop
k1++
endloop
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Comment: The simplest way to achieve the result is to loop over all possible combinations and
filter out the unneeded ones via an if condition, as above. That said, in some cases variable names
can help. For example, if

x1 x2 x3
yl y2 y3

Tist Lx
Tist Ly

then we could just loop over the integers —quite intuitive and certainly more elegant:

Toop i=1..3
ols y$i const x$i
endToop

Convolution / polynomial multiplication

Problem: How do I multiply polynomials? There’s no dedicated function to do that, and yet it’s a
fairly basic mathematical task.

Solution: Never fear! We have the fiTter function, which is advertised as a time series tool, but in
fact does just that.

Suppose you want to multiply two finite-order polynomials P(x) = >, pix'and Q(x) = X1 qix".
What you want is the sequence of coefficients of the polynomial

m+n

R(x) =P(x)-Q(x) = > nx*
k=0

where
k

Tk = Z Pidk-i
i=0
is the convolution of the p; and g; coefficients. The same operation can be performed via the FFT,
but in most cases using filter is quicker and more natural.

As an example, we’ll use the same one we used in Section 9.5: consider the multiplication of two
polynomials:

1+0.5x
1+ 0.3x — 0.8x2
1+ 0.8x — 0.65x% — 0.4x3

P(x)
Q(x)
R(x) =P(x)-Q(x)

The following code snippet performs all the necessary calculations:

p = {1; 0.5}

qg= {1; 0.3; -0.8}

r filter(p | zeros(rows(q)-1, 1), q)
print r

Runnning the above produces
r (4 x 1)
1
0.8

-0.65
-0.4

which is indeed the desired result.
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Comparing two lists
Problem: How can I tell if two lists contain the same variables (not necessarily in the same order)?
Solution: In many respects, lists are like sets, so it makes sense to use the so-called “symmetric
difference” operator, which is defined as

AAB=(A\B)uU(B\A)

where in this context backslash represents the relative complement operator, such that

A\B={xe€Al|lx ¢ B}

In practice we first check if there are any series in A but not in B, then we perform the reverse check.
If the union of the two results is an empty set, then the lists must contain the same variables. The
hansl syntax for this would be something like

scalar NotTheSame = nelem((A-B) || (B-A)) > 0

Reordering list elements
Problem: 1Is there a way to reorder list elements?

Solution: You can use the fact that a list can be cast into a vector of integers and then manipulated
via ordinary matrix syntax. So, for example, if you wanted to “flip” a list you may just use the
mreverse function. For example:

open AWM.gdt --quiet

Tist X =3 6 9 12

matrix tmp = X

Tist revX = mreverse(tmp’)

Tist X print
Tist revX print

will produce

? Tist X print

D1 D872 EEN_DIS GCD
? 1ist revX print
GCD EEN_DIS D872 D1

Plotting an asymmetric confidence interval

Problem: “Ilike the look of the --band option to the ghuplot and plot commands, but it’s set up
for plotting a symmetric interval and I want to show an asymmetric one.”

Solution: Any interval is by construction symmetrical about its mean at each observation. So you
just need to perform a little tweak. Say you want to plot a series x along with a band defined by the
two series top and bot. Here we go:

# create series for mid-point and deviation

series mid = (top + bot)/2

series dev = top - mid

gnuplot x --band=mid,dev --time-series --with-lines --output=display
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Cross-validation

Problem: “T'd like to compute the so-called leave-one-out cross-validation criterion for my regression.
Is there a command in gretl?”

If you have a sample with n observations, the “leave-one-out” cross-validation criterion can be
mechanically computed by running n regressions in which one observation at a time is omitted
and all the other ones are used to forecast its value. The sum of the n squared forecast errors is
the statistic we want. Fortunately, there is no need to do so. It is possible to prove that the same
statistic can be computed as

n
CV = > [0i/(1 - hy)]?,
i-1
where h; is the i-th element of the “hat” matrix (see section 18.2) from a regression on the whole
sample.

This method is natively provided by gretl as a side benefit to the Teverage command, that stores
the CV criterion into the $test accessor. The following script shows the equivalence of the two
approaches:

set verbose off
open data4-1.gdt
Tist X = const sqft bedrms baths

# compute the CV criterion the silly way

scalar ¢V = 0
matrix mX = {X}
Toop i 1 .. $nobs
xi = mX[i,]
yi = price[i]
smpl obs != i --restrict
ols price X --quiet
smp1 full
scalar fe = yi - xi * $coeff
CV += feA2
endloop

printf "CV = %g\n", CV
# the smart way

ols price X --quiet
leverage --quiet
printf "CV = %g\n", $test

Is my matrix result broken?

Problem: “Most of the matrix manipulation functions available in gretl flag an error if something
goes wrong, but there’s no guarantee that every matrix computation will return an entirely finite
matrix, containing no infinities or NaNs. So how do I tell if I've got a fully valid matrix?”

Solution: Given a matrix m, the call “ok(m)” returns a matrix with the same dimensions as m, with
elements 1 for finite values and O for infinities or NaNs. A matrix as a whole is OK if it has no
elements which fail this test, so here’s a suitable check for a “broken” matrix, using the logical NOT
operator, “!”:

sumc(sumr(!ok(m))) > 0

If this gives a non-zero return value you know that m contains at least one non-finite element.
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Chapter 19

Robust covariance matrix estimation

19.1 Introduction
Consider (once again) the linear regression model
y=XB+u (19.1)

where v and u are T-vectors, X is a T X k matrix of regressors, and 8 is a k-vector of parameters.
As is well known, the estimator of f given by Ordinary Least Squares (OLS) is

B=XX)"'Xy (19.2)

If the condition E(u|X) = O is satisfied, this is an unbiased estimator; under somewhat weaker
conditions the estimator is biased but consistent. It is straightforward to show that when the OLS
estimator is unbiased (that is, when E(f8 — ) = 0), its variance is

Var(B) =E ((B- B (B-P)) = (X' X)X QX(X'X)7! (19.3)

where Q = E(uu'’) is the covariance matrix of the error terms.

Under the assumption that the error terms are independently and identically distributed (iid) we
can write Q = o2, where o2 is the (common) variance of the errors (and the covariances are zero).
In that case (19.3) simplifies to the “classical” formula,

Var(B) = o2(X'X)! (19.4)

If the iid assumption is not satisfied, two things follow. First, it is possible in principle to construct
a more efficient estimator than OLS—for instance some sort of Feasible Generalized Least Squares
(FGLS). Second, the simple “classical” formula for the variance of the least squares estimator is no
longer correct, and hence the conventional OLS standard errors—which are just the square roots
of the diagonal elements of the matrix defined by (19.4)—do not provide valid means of statistical
inference.

In the recent history of econometrics there are broadly two approaches to the problem of non-
iid errors. The “traditional” approach is to use an FGLS estimator. For example, if the departure
from the iid condition takes the form of time-series dependence, and if one believes that this
could be modeled as a case of first-order autocorrelation, one might employ an AR(1) estimation
method such as Cochrane-Orcutt, Hildreth-Lu, or Prais-Winsten. If the problem is that the error
variance is non-constant across observations, one might estimate the variance as a function of the
independent variables and then perform weighted least squares, using as weights the reciprocals
of the estimated variances.

While these methods are still in use, an alternative approach has found increasing favor: that is,
use OLS but compute standard errors (or more generally, covariance matrices) that are robust with
respect to deviations from the iid assumption. This is typically combined with an emphasis on
using large datasets —large enough that the researcher can place some reliance on the (asymptotic)
consistency property of OLS. This approach has been enabled by the availability of cheap computing
power. The computation of robust standard errors and the handling of very large datasets were
daunting tasks at one time, but now they are unproblematic. The other point favoring the newer
methodology is that while FGLS offers an efficiency advantage in principle, it often involves making
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additional statistical assumptions which may or may not be justified, which may not be easy to test
rigorously, and which may threaten the consistency of the estimator—for example, the “common
factor restriction” that is implied by traditional FGLS “corrections” for autocorrelated errors.

James Stock and Mark Watson’s Introduction to Econometrics illustrates this approach at the level of
undergraduate instruction: many of the datasets they use comprise thousands or tens of thousands
of observations; FGLS is downplayed; and robust standard errors are reported as a matter of course.
In fact, the discussion of the classical standard errors (labeled “homoskedasticity-only”) is confined
to an Appendix.

Against this background it may be useful to set out and discuss all the various options offered
by gretl in respect of robust covariance matrix estimation. The first point to notice is that gretl
produces “classical” standard errors by default (in all cases apart from GMM estimation). In script
mode you can get robust standard errors by appending the --robust flag to estimation commands.
In the GUI program the model specification dialog usually contains a “Robust standard errors”
check box, along with a “configure” button that is activated when the box is checked. The configure
button takes you to a configuration dialog (which can also be reached from the main menu bar:
Tools — Preferences — General — HCCME). There you can select from a set of possible robust
estimation variants, and can also choose to make robust estimation the default.

The specifics of the available options depend on the nature of the data under consideration—
cross-sectional, time series or panel —and also to some extent the choice of estimator. (Although
we introduced robust standard errors in the context of OLS above, they may be used in conjunction
with other estimators too.) The following three sections of this chapter deal with matters that are
specific to the three sorts of data just mentioned. Note that additional details regarding covariance
matrix estimation in the context of GMM are given in chapter 24.

We close this introduction with a brief statement of what “robust standard errors” can and cannot
achieve. They can provide for asymptotically valid statistical inference in models that are basically
correctly specified, but in which the errors are not iid. The “asymptotic” part means that they
may be of little use in small samples. The “correct specification” part means that they are not a
magic bullet: if the error term is correlated with the regressors, so that the parameter estimates
themselves are biased and inconsistent, robust standard errors will not save the day.

19.2 Cross-sectional data and the HCCME

With cross-sectional data, the most likely departure from iid errors is heteroskedasticity (non-
constant variance).! In some cases one may be able to arrive at a judgment regarding the likely
form of the heteroskedasticity, and hence to apply a specific correction. The more common case,
however, is where the heteroskedasticity is of unknown form. We seek an estimator of the covari-
ance matrix of the parameter estimates that retains its validity, at least asymptotically, in face of
unspecified heteroskedasticity. It is not obvious, a priori, that this should be possible, but White
(1980) showed that .

Varn (f) = (X'X) ' X' QX (X' X) ! (19.5)

does the trick. (As usual in statistics, we need to say “under certain conditions”, but the conditions
are not very restrictive.) Q is in this context a diagonal matrix, whose non-zero elements may be
estimated using squared OLS residuals. White referred to (19.5) as a heteroskedasticity-consistent
covariance matrix estimator (HCCME).

Davidson and MacKinnon (2004, chapter 5) offer a useful discussion of several variants on White's
HCCME theme. They refer to the original variant of (19.5)—in which the diagonal elements of Q
are estimated directly by the squared OLS residuals, ﬁ? —as HCy. (The associated standard errors
are often called “White’s standard errors”.) The various refinements of White's proposal share a
common point of departure, namely the idea that the squared OLS residuals are likely to be “too

IIn some specialized contexts spatial autocorrelation may be an issue. Gretl does not have any built-in methods to
handle this and we will not discuss it here.
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small” on average. This point is quite intuitive. The OLS parameter estimates, B, satisfy by design
the criterion that the sum of squared residuals,

Saz=3 (v - XB)’

is minimized for given X and y. Suppose that [§ #+ . This is almost certain to be the case: even if
OLS is not biased, it would be a miracle if the B calculated from any finite sample were exactly equal
to B. But in that case the sum of squares of the true, unobserved errors, Zu? = > (y — X¢B)? is
bound to be greater than > ﬂf The elaborated variants on HC take this point on board as follows:

e HC;: Applies a degrees-of-freedom correction, multiplying the HCy matrix by T/(T — k).

e HC,: Instead of using 77 for the diagonal elements of ), uses @7/(1 — h;), where h; =
X (X' X)1X{, the t™h diagonal element of the projection matrix, P, which has the property
that P - y = 3. The relevance of h; is that if the variance of all the u; is o2, the expectation
of ﬂ? is 02(1 — h;), or in other words, the ratio L“L%/(l — h;) has expectation o2. As Davidson
and MacKinnon show, 0 < h; < 1 for all t, so this adjustment cannot reduce the the diagonal
elements of Q) and in general revises them upward.

e HCj3: Uses ﬂ?/(l — ht)2. The additional factor of (1 — h;) in the denominator, relative to
HC», may be justified on the grounds that observations with large variances tend to exert a
lot of influence on the OLS estimates, so that the corresponding residuals tend to be under-
estimated. See Davidson and MacKinnon for a fuller explanation.

The relative merits of these variants have been explored by means of both simulations and the-
oretical analysis. Unfortunately there is not a clear consensus on which is “best”. Davidson and
MacKinnon argue that the original HCj is likely to perform worse than the others; nonetheless,
“White’s standard errors” are reported more often than the more sophisticated variants and there-
fore, for reasons of comparability, HCy is the default HCCME in gretl.

If you wish to use HCy, HC, or HC3 you can arrange for this in either of two ways. In script mode,
you can do, for example,

set hc_version 2

In the GUI program you can go to the HCCME configuration dialog, as noted above, and choose any
of these variants to be the default.

19.3 Time series data and HAC covariance matrices

Heteroskedasticity may be an issue with time series data too, but it is unlikely to be the only, or
even the primary, concern.

One form of heteroskedasticity is common in macroeconomic time series, but is fairly easily dealt
with. That is, in the case of strongly trending series such as Gross Domestic Product, aggregate
consumption, aggregate investment, and so on, higher levels of the variable in question are likely
to be associated with higher variability in absolute terms. The obvious “fix”, employed in many
macroeconometric studies, is to use the logs of such series rather than the raw levels. Provided the
proportional variability of such series remains roughly constant over time, the log transformation
is effective.

Other forms of heteroskedasticity may resist the log transformation, but may demand a special
treatment distinct from the calculation of robust standard errors. We have in mind here autore-
gressive conditional heteroskedasticity, for example in the behavior of asset prices, where large
disturbances to the market may usher in periods of increased volatility. Such phenomena call for
specific estimation strategies, such as GARCH (see chapter 28).
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Despite the points made above, some residual degree of heteroskedasticity may be present in time
series data: the key point is that in most cases it is likely to be combined with serial correlation
(autocorrelation), hence demanding a special treatment. In White's approach, Q, the estimated
covariance matrix of the u;, remains conveniently diagonal: the variances, E (u?), may differ by
t but the covariances, E(u;us), are all zero. Autocorrelation in time series data means that at
least some of the the off-diagonal elements of Q should be non-zero. This introduces a substantial
complication and requires another piece of terminology; estimates of the covariance matrix that
are asymptotically valid in face of both heteroskedasticity and autocorrelation of the error process
are termed HAC (heteroskedasticity and autocorrelation consistent).

The issue of HAC estimation is treated in more technical terms in chapter 24. Here we try to
convey some of the intuition at a more basic level. We begin with a general comment: residual
autocorrelation is not so much a property of the data, as a symptom of an inadequate model. Data
may be persistent though time, and if we fit a model that does not take this aspect into account
properly, we end up with a model with autocorrelated disturbances. Conversely, it is often possible
to mitigate or even eliminate the problem of autocorrelation by including relevant lagged variables
in a time series model, or in other words, by specifying the dynamics of the model more fully. HAC
estimation should not be seen as the first resort in dealing with an autocorrelated error process.

That said, the “obvious” extension of White’s HCCME to the case of autocorrelated errors would
seem to be this: estimate the off-diagonal elements of Q (that is, the autocovariances, E(u;us))
using, once again, the appropriate OLS residuals: ;s = ;1. This is basically right, but demands
an important amendment. We seek a consistent estimator, one that converges towards the true Q
as the sample size tends towards infinity. This can’t work if we allow unbounded serial depen-
dence. Bigger samples will enable us to estimate more of the true w;s elements (that is, for t and
s more widely separated in time) but will not contribute ever-increasing information regarding the
maximally separated ;s pairs, since the maximal separation itself grows with the sample size.
To ensure consistency, we have to confine our attention to processes exhibiting temporally limited
dependence, or in other words cut off the computation of the ;¢ values at some maximum value
of p =t — s (Where p is treated as an increasing function of the sample size, T, although it cannot
increase in proportion to T).

The simplest variant of this idea is to truncate the computation at some finite lag order p, where
p grows as, say, T!/4. The trouble with this is that the resulting ) may not be a positive definite
matrix. In practical terms, we may end up with negative estimated variances. One solution to this
problem is offered by The Newey-West estimator (Newey and West, 1987), which assigns declining
weights to the sample autocovariances as the temporal separation increases.

To understand this point it is helpful to look more closely at the covariance matrix given in (19.5),
namely,

(X' X) 1 X' QX)) (X' X)7!
This is known as a “sandwich” estimator. The bread, which appears on both sides, is (X’X)~!.
This is a k X k matrix, and is also the key ingredient in the computation of the classical covariance
matrix. The filling in the sandwich is

3 = X Q X
(kxk) (kxT) (TxT) (Txk)

It can be proven that, under mild regularity conditions, T~'% is a consistent estimator of the long-
run covariance matrix of the random k-vector x; - u;.

From a computational point of view, it is not necessary nor desirable to store the (potentially very
large) T x T matrix Q as such. Rather, one computes the sandwich filling by summation as a
weighted sum:

14
$=10)+ X w; (FG) + ()
j=1
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where w; is the weight given to lag j > 0 and the k x k matrix ['(j), for j = 0, is given by
i T
TG = > e X; Xe—j;
t=j+1
that is, the sample autocovariance matrix of x; - u; at lag j, apart from a scaling factor T.
This leaves two questions. How exactly do we determine the maximum lag length or “bandwidth”,
p, of the HAC estimator? And how exactly are the weights w; to be determined? We will return to

the (difficult) question of the bandwidth shortly. As regards the weights, gretl offers three variants.
The default is the Bartlett kernel, as used by Newey and West. This sets

. 1—#‘1 j<p
! 0 j>p

so the weights decline linearly as j increases. The other two options are the Parzen kernel and the
Quadratic Spectral (QS) kernel. For the Parzen kernel,

1-6aj+6a; 0<a;<0.5
wj = 20 -a;)? 05<a;=<1
0 aj>1

where a; = j/(p + 1), and for the QS kernel,

Wi 25 Smmj—cosm'
To1emds \omy J

where d; = j/p and m;j = 611d;/5.
Figure 19.1 shows the weights generated by these kernels, for p =4 and j =1 to 9.

Figure 19.1: Three HAC kernels

VANNVINVAY

Bartlett Parzen

In gretl you select the kernel using the set command with the hac_kernel parameter:

set hac_kernel parzen
set hac_kernel gs
set hac_kernel bartlett

Selecting the HAC bandwidth

The asymptotic theory developed by Newey, West and others tells us in general terms how the
HAC bandwidth, p, should grow with the sample size, T —that is, p should grow in proportion
to some fractional power of T. Unfortunately this is of little help to the applied econometrician,
working with a given dataset of fixed size. Various rules of thumb have been suggested, and gretl
implements two such. The default is p = 0.75T'/3, as recommended by Stock and Watson (2003).
An alternative is p = 4(T/100)2/9, as in Wooldridge (2002b). In each case one takes the integer
part of the result. These variants are labeled nwl and nw2 respectively, in the context of the set
command with the hac_Tag parameter. That is, you can switch to the version given by Wooldridge
with
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set hac_lag nw2
As shown in Table 19.1 the choice between nwl and nw2 does not make a great deal of difference.

T p(mwl) p(nw2)

50 2 3
100 3 4
150 3 4
200 4 4
300 5 5
400 5 5

Table 19.1: HAC bandwidth: two rules of thumb
You also have the option of specifying a fixed numerical value for p, as in

set hac_lag 6

In addition you can set a distinct bandwidth for use with the Quadratic Spectral kernel (since this
need not be an integer). For example,

set gqs_bandwidth 3.5

Prewhitening and data-based bandwidth selection

An alternative approach is to deal with residual autocorrelation by attacking the problem from two
sides. The intuition behind the technique known as VAR prewhitening (Andrews and Monahan,
1992) can be illustrated by a simple example. Let x; be a sequence of first-order autocorrelated
random variables

Xt = pXt-1+ Ut

The long-run variance of x; can be shown to be

Vir(ue)
(1-p)2

In most cases, u; is likely to be less autocorrelated than x;, so a smaller bandwidth should suffice.
Estimation of Vi (x;) can therefore proceed in three steps: (1) estimate p; (2) obtain a HAC estimate
of @iy = xt — px;_1; and (3) divide the result by (1 — p)Z2.

Vir(xt) =

The application of the above concept to our problem implies estimating a finite-order Vector Au-
toregression (VAR) on the vector variables & = X;1;. In general, the VAR can be of any order, but
in most cases 1 is sufficient; the aim is not to build a watertight model for &, but just to “mop up”
a substantial part of the autocorrelation. Hence, the following VAR is estimated

St = A& 1+ &
Then an estimate of the matrix X' QX can be recovered via
(I-A)13.1-A)"1

where 2 is any HAC estimator, applied to the VAR residuals.

You can ask for prewhitening in gretl using

set hac_prewhiten on
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There is at present no mechanism for specifying an order other than 1 for the initial VAR.

A further refinement is available in this context, namely data-based bandwidth selection. It makes
intuitive sense that the HAC bandwidth should not simply be based on the size of the sample,
but should somehow take into account the time-series properties of the data (and also the kernel
chosen). A nonparametric method for doing this was proposed by Newey and West (1994); a good
concise account of the method is given in Hall (2005). This option can be invoked in gretl via

set hac_lag nw3

This option is the default when prewhitening is selected, but you can override it by giving a specific
numerical value for hac_1lag.

Even the Newey-West data-based method does not fully pin down the bandwidth for any particular
sample. The first step involves calculating a series of residual covariances. The length of this series
is given as a function of the sample size, but only up to a scalar multiple —for example, it is given
as O(T?/9) for the Bartlett kernel. Gretl uses an implied multiple of 1.

VARSs: a special case

A well-specified vector autoregression (VAR) will generally include enough lags of the dependent
variables to obviate the problem of residual autocorrelation, in which case HAC estimation is
redundant—although there may still be a need to correct for heteroskedasticity. For that rea-
son plain HCCME, and not HAC, is the default when the --robust flag is given in the context of the
var command. However, if for some reason you need HAC you can force the issue by giving the
option --robust-hac.

19.4 Special issues with panel data

Since panel data have both a time-series and a cross-sectional dimension one might expect that, in
general, robust estimation of the covariance matrix would require handling both heteroskedasticity
and autocorrelation (the HAC approach). In addition, some special features of panel data require
attention.

e The variance of the error term may differ across the cross-sectional units.
e The covariance of the errors across the units may be non-zero in each time period.

o If the “between” variation is not swept out, the errors may exhibit autocorrelation, not in the
usual time-series sense but in the sense that the mean value of the error term may differ
across units. This is relevant when estimation is by pooled OLS.

Gretl currently offers two robust covariance matrix estimators specifically for panel data. These are
available for models estimated via fixed effects, random effects, pooled OLS, and pooled two-stage
least squares. The default robust estimator is that suggested by Arellano (2003), which is HAC
provided the panel is of the “large n, small T” variety (that is, many units are observed in relatively
few periods). The Arellano estimator is

n
Sa=(X'Xx)"! (Z X;aiagxi) (x'x)™"
i=1

where X is the matrix of regressors (with the group means subtracted in the case of fixed effects, or
quasi-demeaned in the case of random effects) 7i; denotes the vector of residuals for unit i, and n
is the number of cross-sectional units.? Cameron and Trivedi (2005) make a strong case for using
this estimator; they note that the ordinary White HCCME can produce misleadingly small standard

2This variance estimator is also known as the “clustered (over entities)” estimator.
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errors in the panel context because it fails to take autocorrelation into account.? In addition Stock
and Watson (2008) show that the White HCCME is inconsistent in the fixed-effects panel context for
fixed T > 2.

In cases where autocorrelation is not an issue the estimator proposed by Beck and Katz (1995)
and discussed by Greene (2003, chapter 13) may be appropriate. This estimator, which takes into
account contemporaneous correlation across the units and heteroskedasticity by unit, is

u[\/_|:

n

Spk = (X'X) 7 ( Z 517X, XJ) (x'x)™!
The covariances &;; are estimated via

W
T
where T is the length of the time series for each unit. Beck and Katz call the associated standard
errors “Panel-Corrected Standard Errors” (PCSE). This estimator can be invoked in gretl via the
command

é'ij =

set pcse on
The Arellano default can be re-established via
set pcse off

(Note that regardless of the pcse setting, the robust estimator is not used unless the --robust flag
is given, or the “Robust” box is checked in the GUI program.)

19.5 The cluster-robust estimator

One further variance estimator is available in gretl, namely the “cluster-robust” estimator. This may
be appropriate (for cross-sectional data, mostly) when the observations naturally fall into groups or
clusters, and one suspects that the error term may exhibit dependency within the clusters and/or
have a variance that differs across clusters. Such clusters may be binary (e.g. employed versus
unemployed workers), categorical with several values (e.g. products grouped by manufacturer) or
ordinal (e.g. individuals with low, middle or high education levels).

For linear regression models estimated via least squares the cluster estimator is defined as
S = (Z Xt ) x'x)™*

where m denotes the number of clusters, and X; and 1i; denote, respectively, the matrix of regres-
sors and the vector of residuals that fall within cluster j. As noted above, the Arellano variance
estimator for panel data models is a special case of this, where the clustering is by panel unit.

For models estimated by the method of Maximum Likelihood (in which case the standard variance
estimator is the inverse of the negative Hessian, H), the cluster estimator is

m
Sc=H"' (Z G;Gj) H!
j=1

where G; is the sum of the “score” (that is, the derivative of the loglikelihood with respect to the
parameter estimates) across the observations falling within cluster j.

3See also Cameron and Miller (2015) for a discussion of the Arellano-type estimator in the context of the random
effects model.
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It is common to apply a degrees of freedom adjustment to these estimators (otherwise the variance
may appear misleadingly small in comparison with other estimators, if the number of clusters is
small). In the least squares case the factor is (m/(m — 1)) x (n — 1)/(n — k), where n is the total
number of observations and k is the number of parameters estimated; in the case of ML estimation
the factor is just m/(m — 1).

Availability and syntax

The cluster-robust estimator is currently available for models estimated via OLS and TSLS, and also
for most ML estimators other than those specialized for time-series data: binary logit and pro-
bit, ordered logit and probit, multinomial logit, Tobit, interval regression, biprobit, count models
and duration models. Additionally, the same option is available for generic maximum likelihood
estimation as provided by the mTe command (see chapter 23 for extra details).

In all cases the syntax is the same: you give the option flag --cluster= followed by the name of
the series to be used to define the clusters, as in

ols y 0 x1 x2 --cluster=cvar

The specified clustering variable must (a) be defined (not missing) at all observations used in esti-
mating the model and (b) take on at least two distinct values over the estimation range. The clusters
are defined as sets of observations having a common value for the clustering variable. It is generally
expected that the number of clusters is substantially less than the total number of observations.



Chapter 20

Panel data

A panel dataset is one in which each of N > 1 units (sometimes called “individuals” or “groups”) is
observed over time. In a balanced panel there are T > 1 observations on each unit; more generally
the number of observations may differ by unit. In the following we index units by i and time by t.
To allow for imbalance in a panel we use the notation T; to refer to the number of observations for
unit or individual 1.

20.1 Estimation of panel models

Pooled Ordinary Least Squares

The simplest estimator for panel data is pooled OLS. In most cases this is unlikely to be adequate,
but it provides a baseline for comparison with more complex estimators.

If you estimate a model on panel data using OLS an additional test item becomes available. In the
GUI model window this is the item “panel diagnostics” under the Tests menu; the script counterpart
is the hausman command.

To take advantage of this test, you should specify a model without any dummy variables represent-
ing cross-sectional units. The test compares pooled OLS against the principal alternatives, the fixed
effects and random effects models. These alternatives are explained in the following section.

The fixed and random effects models

In the graphical interface these options are found under the menu item “Model/Panel/Fixed and
random effects”. In the command-line interface one uses the panel command, with or without
the --random-effects option. (The --fixed-effects option is also allowed but not strictly
necessary, being the default.)

This section explains the nature of these models and comments on their estimation via gretl.

The pooled OLS specification may be written as
Yit = XitB + Uit (20.1)

where y;; is the observation on the dependent variable for cross-sectional unit i in period t, Xj;
is a 1 X k vector of independent variables observed for unit i in period t, B is a k X 1 vector of
parameters, and 1 is an error or disturbance term specific to unit i in period t.

The fixed and random effects models have in common that they decompose the unitary pooled
error term, u;;. For the fixed effects model we write u;; = &; + &;¢, yielding

yit = XuB + & + &t (20.2)

That is, we decompose 1+ into a unit-specific and time-invariant component, «;, and an observation-
specific error, £;;.! The ;s are then treated as fixed parameters (in effect, unit-specific y-intercepts),
which are to be estimated. This can be done by including a dummy variable for each cross-sectional

11t is possible to break a third component out of u;;, namely w¢, a shock that is time-specific but common to all the
units in a given period. In the interest of simplicity we do not pursue that option here.

175
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unit (and suppressing the global constant). This is sometimes called the Least Squares Dummy Vari-
ables (LSDV) method. Alternatively, one can subtract the group mean from each of variables and
estimate a model without a constant. In the latter case the dependent variable may be written as

Vit = Vit — Vi
The “group mean”, y;, is defined as
T,
_ 1 <
Yi i t:z1 Yit

where T; is the number of observations for unit i. An exactly analogous formulation applies to the
independent variables. Given parameter estimates, 3, obtained using such de-meaned data we can
recover estimates of the «;s using

Ti

&i = %tgl (yit - Xit.é)

These two methods (LSDV, and using de-meaned data) are numerically equivalent. gretl takes the
approach of de-meaning the data. If you have a small number of cross-sectional units, a large num-
ber of time-series observations per unit, and a large number of regressors, it is more economical
in terms of computer memory to use LSDV. If need be you can easily implement this manually. For
example,

genr unitdum
ols y x du_*

(See Chapter 9 for details on unitdum).

The &; estimates are not printed as part of the standard model output in gretl (there may be a large
number of these, and typically they are not of much inherent interest). However you can retrieve
them after estimation of the fixed effects model if you wish. In the graphical interface, go to the
“Save” menu in the model window and select “per-unit constants”. In command-line mode, you can
do series newname = $ahat, where newname is the name you want to give the series.

For the random effects model we write u;; = v; + &;;, so the model becomes
Vit = XuB +vi + & (20.3)

In contrast to the fixed effects model, the v;s are not treated as fixed parameters, but as random
drawings from a given probability distribution.

The celebrated Gauss-Markov theorem, according to which OLS is the best linear unbiased esti-
mator (BLUE), depends on the assumption that the error term is independently and identically
distributed (IID). In the panel context, the IID assumption means that E (uft), in relation to equa-
tion 20.1, equals a constant, o2, for all i and t, while the covariance E(u;su;) equals zero for all
s # t and the covariance E(uj;ui;) equals zero for all j # i.

If these assumptions are not met—and they are unlikely to be met in the context of panel data—
OLS is not the most efficient estimator. Greater efficiency may be gained using generalized least
squares (GLS), taking into account the covariance structure of the error term.

Consider observations on a given unit i at two different times s and t. From the hypotheses above
it can be worked out that Var(u;s) = Var(uis) = 05 + g2, while the covariance between u;s and u;;
is given by E(uisui) = o2.

In matrix notation, we may group all the T; observations for unit i into the vector y; and write it as

yi =XiB +u; (20.4)
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The vector u;, which includes all the disturbances for individual i, has a variance-covariance matrix
given by
Var(u;) = 2; = 0521 + 05] (20.5)

where J is a square matrix with all elements equal to 1. It can be shown that the matrix

where 0; = 1 — \/052/ (052 + Ti(75>, has the property

Ki3K| = 0?1
It follows that the transformed system
Kiyi = KiX;B + Kju; (20.6)

satisfies the Gauss-Markov conditions, and OLS estimation of (20.6) provides efficient inference.
But since
Kiyi =yi— 0iyi

GLS estimation is equivalent to OLS using “quasi-demeaned” variables; that is, variables from which
we subtract a fraction 0 of their average.” Notice that for o7 — 0, 0 — 1, while for o3 — 0, 0 — 0.
This means that if all the variance is attributable to the individual effects, then the fixed effects
estimator is optimal; if, on the other hand, individual effects are negligible, then pooled OLS turns
out, unsurprisingly, to be the optimal estimator.

To implement the GLS approach we need to calculate 8, which in turn requires estimates of the
two variances o? and . (These are often referred to as the “within” and “between” variances
respectively, since the former refers to variation within each cross-sectional unit and the latter to
variation between the units). Several means of estimating these magnitudes have been suggested in
the literature (see Baltagi, 1995); by default gretl uses the method of Swamy and Arora (1972): (TEZ
is estimated by the residual variance from the fixed effects model, and ¢ is estimated indirectly
with the help of the “between” regression which uses the group means of all the relevant variables:
is,
yi=XiB+ei

The residual variance from this regression, s2, can be shown to estimate the sum o2 + 0?/T. An
estimate of 2 can therefore be obtained by subtracting 1/T times the estimate of 2 from s2:

62 =s2-02|T (20.7)

Alternatively, if the --nerlove option is given, gretl uses the method suggested by Nerlove (1971).
In this case o3 is estimated as the sample variance of the fixed effects, &;,

1 n
~ D A~
”:N—1izzl<“i_

1

)2 (20.8)

where N is the number of individuals and & is the mean of the estimated fixed effects.

Swamy and Arora’s equation (20.7) involves T, hence assuming a balanced panel. When the number
of time series observations, T;j, differs across individuals some sort of adjustment is needed. By
default gretl follows Stata by using the harmonic mean of the T;s in place of T. It may be argued,
however, that a more substantial adjustment is called for in the unbalanced case. Baltagi and Chang
(1994) recommend a variant of Swamy-Arora which involves T;-weighted estimation of the between
regression, on the basis that units with more observations will be more informative about the vari-
ance of interest. In gretl one can switch to the Baltagi-Chang variant by giving the --unbalanced

2In a balanced panel, the value of € is common to all individuals, otherwise it differs depending on the value of T;.
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option with the panel command. But the gain in efficiency from doing so may well be slim; for a
discussion of this point and related matters see Cottrell (2017). Unbalancedness also affects the
Nerlove (1971) estimator, but the econometric literature offers no guidance on the details. Gretl
uses the weighted average of the fixed effects as a natural extension of the original method. Again,
see Cottrell (2017) for further details.

Choice of estimator

Which panel method should one use, fixed effects or random effects?

One way of answering this question is in relation to the nature of the data set. If the panel comprises
observations on a fixed and relatively small set of units of interest (say, the member states of the
European Union), there is a presumption in favor of fixed effects. If it comprises observations on a
large number of randomly selected individuals (as in many epidemiological and other longitudinal
studies), there is a presumption in favor of random effects.

Besides this general heuristic, however, various statistical issues must be taken into account.

1. Some panel data sets contain variables whose values are specific to the cross-sectional unit
but which do not vary over time. If you want to include such variables in the model, the fixed
effects option is simply not available. When the fixed effects approach is implemented using
dummy variables, the problem is that the time-invariant variables are perfectly collinear with
the per-unit dummies. When using the approach of subtracting the group means, the issue is
that after de-meaning these variables are nothing but zeros.

2. A somewhat analogous issue arises with the random effects estimator. As mentioned above,
the default Swamy-Arora method relies on the group-means regression to obtain a measure
of the between variance. Suppose we have observations on n units or individuals and there
are k independent variables of interest. If k > n, this regression cannot be run—since we
have only n effective observations—and hence Swamy-Arora estimates cannot be obtained.
In this case, however, it is possible to use Nerlove’s method instead.

If both fixed effects and random effects are feasible for a given specification and dataset, the choice
between these estimators may be expressed in terms of the two econometric desiderata, efficiency
and consistency.

From a purely statistical viewpoint, we could say that there is a tradeoff between robustness and
efficiency. In the fixed effects approach, we do not make any hypotheses on the “group effects” (that
is, the time-invariant differences in mean between the groups) beyond the fact that they exist—
and that can be tested; see below. As a consequence, once these effects are swept out by taking
deviations from the group means, the remaining parameters can be estimated.

On the other hand, the random effects approach attempts to model the group effects as drawings
from a probability distribution instead of removing them. This requires that individual effects are
representable as a legitimate part of the disturbance term, that is, zero-mean random variables,
uncorrelated with the regressors.

As a consequence, the fixed-effects estimator “always works”, but at the cost of not being able to
estimate the effect of time-invariant regressors. The richer hypothesis set of the random-effects
estimator ensures that parameters for time-invariant regressors can be estimated, and that esti-
mation of the parameters for time-varying regressors is carried out more efficiently. These advan-
tages, though, are tied to the validity of the additional hypotheses. If, for example, there is reason
to think that individual effects may be correlated with some of the explanatory variables, then the
random-effects estimator would be inconsistent, while fixed-effects estimates would still be valid.
It is precisely on this principle that the Hausman test is built (see below): if the fixed- and random-
effects estimates agree, to within the usual statistical margin of error, there is no reason to think
the additional hypotheses invalid, and as a consequence, no reason not to use the more efficient RE
estimator.
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Testing panel models

If you estimate a fixed effects or random effects model in the graphical interface, you may notice
that the number of items available under the “Tests” menu in the model window is relatively limited.
Panel models carry certain complications that make it difficult to implement all of the tests one
expects to see for models estimated on straight time-series or cross-sectional data.

Nonetheless, various panel-specific tests are printed along with the parameter estimates as a matter
of course, as follows.

When you estimate a model using fixed effects, you automatically get an F-test for the null hy-
pothesis that the cross-sectional units all have a common intercept. That is to say that all the «;s
are equal, in which case the pooled model (20.1), with a column of 1s included in the X matrix, is
adequate.

When you estimate using random effects, the Breusch-Pagan and Hausman tests are presented
automatically. To save their results in the context of a script one would copy the $model.bp_test
or $model.hausman_test bundles which are nested inside the $mode1 bundle. Both of these inner
bundles contain the elements test, dfn (degrees of freedom), and pvalue.

The Breusch-Pagan test is the counterpart to the F-test mentioned above. The null hypothesis is
that the variance of v; in equation (20.3) equals zero; if this hypothesis is not rejected, then again
we conclude that the simple pooled model is adequate. If the panel is unbalanced the method from
Baltagi and Li (1990) is used to perform the Breusch-Pagan test for individual effects.

The Hausman test probes the consistency of the GLS estimates. The null hypothesis is that these
estimates are consistent—that is, that the requirement of orthogonality of the v; and the X; is
satisfied. The test is based on a measure, H, of the “distance” between the fixed-effects and random-
effects estimates, constructed such that under the null it follows the x? distribution with degrees
of freedom equal to the number of time-varying regressors in the matrix X. If the value of H is
“large” this suggests that the random effects estimator is not consistent and the fixed-effects model
is preferable.

There are two ways of calculating H, the matrix-difference method and the regression method. The
procedure for the matrix-difference method is this:

« Collect the fixed-effects estimates in a vector B and the corresponding random-effects esti-
mates in B, then form the difference vector (8 — B).

e Form the covariance matrix of the difference vector as Var(B — ﬁ) = Var(B) — Var(B’) =Y,
where Var(fB) and Var(f) are estimated by the sample variance matrices of the fixed- and
random-effects models respectively.3

o Compute H = (B - B)l‘l’*l (B - B)

Given the relative efficiencies of 8 and ﬁ, the matrix ¥ “should be” positive definite, in which case
H is positive, but in finite samples this is not guaranteed and of course a negative x? value is not
admissible. The regression method avoids this potential problem. The procedure is:

¢ Treat the random-effects model as the restricted model, and record its sum of squared resid-
uals as SSR;.

e Estimate via OLS an unrestricted model in which the dependent variable is quasi-demeaned 7y
and the regressors include both quasi-demeaned X (as in the RE model) and the de-meaned
variants of all the time-varying variables (i.e. the fixed-effects regressors); record the sum of
squared residuals from this model as SSR,,.

3Hausman (1978) showed that the covariance of the difference takes this simple form when B is an efficient estimator
and p is inefficient.
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e Compute H = n (SSR, — SSR;,) /SSR,,, where n is the total number of observations used. On
this variant H cannot be negative, since adding additional regressors to the RE model cannot
raise the SSR.

By default gretl computes the Hausman test via the regression method, but it uses the matrix-
difference method if you pass the option --matrix-diff to the panel command.

Serial correlation

A simple test for first-order autocorrelation of the error term, namely the Durbin-Watson (DW)
statistic, is printed as part of the output for pooled OLS as well as fixed-effects and random-effects
estimation. Let us define “serial correlation proper” as serial correlation strictly in the time di-
mension of a panel dataset. When based on the residuals from fixed-effects estimation, the DW
statistic is a test for serial correlation proper.* The DW value shown in the case of random-effects
estimation is based on the fixed-effects residuals. When DW is based on pooled OLS residuals it
tests for serial correlation proper only on the assumption of a common intercept. Put differently,
in this case it tests a joint null hypothesis: absence of fixed effects plus absence of (first order)
serial correlation proper. In the presence of missing observations the DW statistic is calculated as
described in Baltagi and Wu (1999) (their expression for d; under equation (16) on page 819).

When it is computed, the DW statistic can be retrieved via the accessor $dw after estimation. In
addition, an approximate P-value for the null of no serial correlation (p = 0) against the alternative
of p > 0 may be available via the accessor $dwpval. This is based on the analysis in Bhargava
et al. (1982); strictly speaking it is the marginal significance level of DW considered as a d; value
(the value below which the test rejects, as opposed to dy, the value above which the test fails to
reject). In the panel case, however, d; and dy are quite close, particularly when N (the number of
individual units) is large. At present gretl does not attempt to compute such P-values when the
number of observations differs across individuals.

Robust standard errors

For most estimators, gretl offers the option of computing an estimate of the covariance matrix that
is robust with respect to heteroskedasticity and/or autocorrelation (and hence also robust standard
errors). In the case of panel data, robust covariance matrix estimators are available for the pooled,
fixed effects and random effects models. See section 19.4 for details.

The constant in the fixed effects model

Users are sometimes puzzled by the constant or intercept reported by gretl on estimation of the
fixed effects model: how can a constant remain when the group means have been subtracted from
the data? The method of calculation of this term is a matter of convention, but the gretl authors
decided to follow the convention employed by Stata; this involves adding the global mean back into
the variables from which the group means have been removed.’

The method that gretl uses internally is exemplified in Listing 20.1. The coefficients in the final OLS
estimation, including the intercept, agree with those in the initial fixed effects model, though the
standard errors differ due to a degrees of freedom correction in the fixed-effects covariance matrix.
(Note that the pmean function returns the group mean of a series.)

R-squared in the fixed effects model

There is no uniquely “correct” way of calculating R? in the context of the fixed-effects model. It
may be argued that a measure of the squared correlation between the dependent variable and the

4The generalization of the Durbin-Watson statistic from the straight time-series context to panel data is due to
Bhargava et al. (1982).
5See Gould (2013) for an extended explanation.
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Listing 20.1: Calculating the intercept in the fixed effects model

open abdata.gdt
panel n const w k ys --fixed-effects

depvar = n - pmean(n) + mean(n)
Tist indepvars = const
Toop foreach i w k ys --quiet
x_$i = $i - pmean($i) + mean($i)
indepvars += x_$i
endloop
ols depvar indepvars

prediction yielded by the model is a desirable descriptive statistic to have, but which model and
which (variant of the) dependent variable are we talking about?

Fixed-effects models can be thought of in two equally defensible ways. From one perspective they
provide a nice, clean way of sweeping out individual effects by using the fact that in the linear
model a sufficient statistic is easy to compute. Alternatively, they provide a clever way to estimate
the “important” parameters of a model in which you want to include (for whatever reason) a full
set of individual dummies. If you take the second of these perspectives, your dependent variable is
unmodified y and your model includes the unit dummies; the appropriate R? measure is then the
squared correlation between 7y and the ¥ computed using both the measured individual effects and
the effects of the explicitly named regressors. This is reported by gretl as the “LSDV R-squared”. If
you take the first point of view, on the other hand, your dependent variable is really y;; — ¥; and
your model just includes the S terms, the coefficients of deviations of the x variables from their
per-unit means. In this case, the relevant measure of R? is the so-called “within” R?; this variant
is printed by gretl for fixed-effects model in place of the adjusted R? (it being unclear in this case
what exactly the “adjustment” should amount to anyway).

Residuals in the fixed and random effect models

After estimation of most kinds of models in gretl, you can retrieve a series containing the residuals
using the $uhat accessor. This is true of the fixed and random effects models, but the exact
meaning of gretl’s $uhat in these cases requires a little explanation.

Consider first the fixed effects model:
Vit = XuB + & + &t

In this model gretl takes the “fitted value” ($yhat) to be &; + XitB, and the residual ($uhat) to be
i minus this fitted value. This makes sense because the fixed effects (the «; terms) are taken as
parameters to be estimated. However, it can be argued that the fixed effects are not really “explana-
tory” and if one defines the residual as the observed y;; value minus its “explained” component
one might prefer to see just y;;: — Xj:B. You can get this after fixed-effects estimation as follows:

series ue_fe = $uhat + $ahat - $coeff[1]

where $ahat gives the unit-specific intercept (as it would be calculated if one included all N unit
dummies and omitted a common y-intercept), and $coeff[1] gives the “global” y-intercept.

6For anyone used to Stata, gretl’s fixed-effects $uhat corresponds to what you get from Stata’s “predict, e” after
xtreg, while the second variant corresponds to Stata’s “predict, ue”.
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Now consider the random-effects model:
Vit = XitB + Vi + &t

In this case gretl considers the error term to be v; + &;; (since v; is conceived as a random drawing)
and the $uhat series is an estimate of this, namely

Vit — XitB

What if you want an estimate of just v; (or just &;) in this case? This poses a signal-extraction
problem: given the composite residual, how to recover an estimate of its components? The solution
is to ascribe to the individual effect, ¥;, a suitable fraction of the mean residual per individual,
U = ZtT‘;l 1iit. The “suitable fraction” is the proportion of the variance of the variance of ; that is
due to v, namely
oy 2
o o =1 (1-0)
Oy + O¢ /Ti
After random effects estimation in gretl you can access a series containing the ¥;s under the name
$ahat. This series can be calculated by hand as follows:

# case 1: balanced panel
scalar theta = $["theta"]
series vhat = (1 - (1 - theta)A2) * pmean($uhat)

# case 2: unbalanced, Ti varies by individual
scalar s2v = $["s2v"]

scalar s2e = $["s2e"]

series frac = s2v / (s2v + s2e/pnobs($uhat))
series ahat = frac * pmean($uhat)

If an estimate of &;+ is wanted, it can then be obtained by subtraction from $uhat.

20.2 Autoregressive panel models

Special problems arise when a lag of the dependent variable is included among the regressors in a
panel model. Consider a dynamic variant of the pooled model (eq. 20.1):

yit = XutB + pYit-1 + Uit (20.9)

First, if the error u;; includes a group effect, v;, then y;;_1 is bound to be correlated with the error,
since the value of v; affects y; at all t. That means that OLS applied to (20.9) will be inconsistent
as well as inefficient. The fixed-effects model sweeps out the group effects and so overcomes this
particular problem, but a subtler issue remains, which applies to both fixed and random effects
estimation. Consider the de-meaned representation of fixed effects, as applied to the dynamic
model, y
Vit = XuB + pYir-1 + it

where y;; = yit — Vi and &;¢ = uy —u; (Or Ui — oy, using the notation of equation 20.2). The trouble
is that ¥;+—1 will be correlated with ¢;; via the group mean, ;. The disturbance &;; influences y;;
directly, which influences y;, which, by construction, affects the value of ¥;; for all t. The same
issue arises in relation to the quasi-demeaning used for random effects. Estimators which ignore
this correlation will be consistent only as T — oo (in which case the marginal effect of &;; on the
group mean of 7y tends to vanish).

One strategy for handling this problem, and producing consistent estimates of 8 and p, was pro-
posed by Anderson and Hsiao (1981). Instead of de-meaning the data, they suggest taking the first
difference of (20.9), an alternative tactic for sweeping out the group effects:

Ayit = AXuB + pAYyit-1 +Nit (20.10)
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where ni = Auie = A(vi + &it) = €ir — &t—1. We're not in the clear yet, given the structure of the
error n;;: the disturbance &; ;-1 is an influence on both n;; and Ay; ;-1 = ¥ir — it—1. The next step
is then to find an instrument for the “contaminated” Ay;;-1. Anderson and Hsiao suggest using
either y;;_» or Ay;:_2, both of which will be uncorrelated with n;; provided that the underlying
errors, &;¢, are not themselves serially correlated.

The Anderson-Hsiao estimator is not provided as a built-in function in gretl, since gretl’s sensible
handling of lags and differences for panel data makes it a simple application of regression with
instrumental variables—see Listing 20.2, which is based on a study of country growth rates by
Nerlove (1999).”

Listing 20.2: The Anderson-Hsiao estimator for a dynamic panel model

# Penn World Table data as used by Nerlove
open penngrow.gdt

# Fixed effects (for comparison)

panel Y 0 Y(-1) X

# Random effects (for comparison)

panel Y 0 Y(-1) X --random-effects

# take differences of all variables

diff Y X

# Anderson-Hsiao, using Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X Y(-2)

# Anderson-Hsiao, using d_Y(-2) as instrument
tsls d_Y d_Y(-1) d_X ; 0 d_X d_Y(-2)

Although the Anderson-Hsiao estimator is consistent, it is not most efficient: it does not make the
fullest use of the available instruments for Ay; -1, nor does it take into account the differenced
structure of the error n;;. It is improved upon by the methods of Arellano and Bond (1991) and
Blundell and Bond (1998). These methods are taken up in the next chapter.

7Also see Clint Cummins’ benchmarks page, http://www.stanford.edu/~clint/bench/.
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Chapter 21

Dynamic panel models

The primary command for estimating dynamic panel models in gretl is dpanel. The closely re-
lated arbond command predated dpanel, and is still present, but whereas arbond only supports
the so-called “difference” estimator (Arellano and Bond, 1991), dpanel in addition offers the “sys-
tem” estimator (Blundell and Bond, 1998), which has become the method of choice in the applied
literature.

21.1 Introduction
Notation

A dynamic linear panel data model can be represented as follows (in notation based on Arellano
(2003)):
Vit = &Yit-1 + B Xit + Ni + Vit (21.1)

The main idea behind the difference estimator is to sweep out the individual effect via differencing.
First-differencing eq. (21.1) yields

Ayit = @AYit-1 + B Axit + Avir = y' Wit + Avyg, (21.2)

in obvious notation. The error term of (21.2) is, by construction, autocorrelated and also correlated
with the lagged dependent variable, so an estimator that takes both issues into account is needed.
The endogeneity issue is solved by noting that all values of y;;_x with k > 1 can be used as
instruments for Ay;;—1: unobserved values of y;;_x (Whether missing or pre-sample) can safely be
substituted with 0. In the language of GMM, this amounts to using the relation

E(Avi - yir-x) =0, k>1 (21.3)

as an orthogonality condition.

Autocorrelation is dealt with by noting that if v;; is white noise, the covariance matrix of the vector
whose typical element is Av;; is proportional to a matrix H that has 2 on the main diagonal, —1
on the first subdiagonals and 0 elsewhere. One-step GMM estimation of equation (21.2) amounts to

computing
N N /N N
y = [(Z W;Zi) Ay (Z z;wl)] (Z W;zi) Ay (Z z;Ayi) (21.4)
i=1 i=1 i=1 i=1
where
Ay; = [ Ayiz -+ Ayir ]
[ Avie - Ayt |
W’ — y ’
" Axis - AxiT ]
[ ya O 0 .- 0 Axi3 ,
0 yi Yie --- 0 AXig
Zi= :
L 0 0 0 -+ yir2 Axir

184
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and

N -1
Ay = (Z z;Hzi)

i=1

Once the 1-step estimator is computed, the sample covariance matrix of the estimated residuals
can be used instead of H to obtain 2-step estimates, which are not only consistent but asymp-
totically efficient. (In principle the process may be iterated, but nobody seems to be interested.)
Standard GMM theory applies, except for one thing: Windmeijer (2005) has computed finite-sample
corrections to the asymptotic covariance matrix of the parameters, which are nowadays almost
universally used.

The difference estimator is consistent, but has been shown to have poor properties in finite samples
when « is near one. People these days prefer the so-called “system” estimator, which complements
the differenced data (with lagged levels used as instruments) with data in levels (using lagged dif-
ferences as instruments). The system estimator relies on an extra orthogonality condition which
has to do with the earliest value of the dependent variable y;;. The interested reader is referred
to Blundell and Bond (1998, pp. 124-125) for details, but here it suffices to say that this condi-
tion is satisfied in mean-stationary models and brings an improvement in efficiency that may be
substantial in many cases.

The set of orthogonality conditions exploited in the system approach is not very much larger than
with the difference estimator since most of the possible orthogonality conditions associated with
the equations in levels are redundant, given those already used for the equations in differences.

The key equations of the system estimator can be written as

N ~ 1 ~ N ~7 _~ - N ~ I~ N ~
y = [( WZ) AN( ZW)] ( WZ) AN( ZAj/i) (21.5)
i=1 i=1 i=1 i=1

where
Ay; = [ Ayiz -+ Ayir Yi3 o ViT ]
W - [ Ayip 0 Ayiro1 Y2 v YiT-1 ]
.=
| Axiz -+ AxqiT Xi3 -+ XiT
(ya 0 0 -+ 0 0 -+ 0 Axiz |
0 »yi Y2 --- 0 0o --- 0 AXi4
. 0 0 0 -+ wiT-—2 0 s 0 AXiT
7, =
0 0 0 - 0 Ayp --- 0 Xi3
| 0 0 0 s 0 0 e Ayi,T_l Xit |
and

N -1
Ay = ( > ZHZ)
i=1

In this case choosing a precise form for the matrix H* for the first step is no trivial matter. Its
north-west block should be as similar as possible to the covariance matrix of the vector Avj¢, so
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the same choice as the “difference” estimator is appropriate. Ideally, the south-east block should
be proportional to the covariance matrix of the vector tn; + v, that is o2 + U,?tt’; but since U,? is
unknown and any positive definite matrix renders the estimator consistent, people just use I. The
off-diagonal blocks should, in principle, contain the covariances between Av;; and v;, which would
be an identity matrix if v;; is white noise. However, since the south-east block is typically given a
conventional value anyway, the benefit in making this choice is not obvious. Some packages use I;
others use a zero matrix. Asymptotically, it should not matter, but on real datasets the difference
between the resulting estimates can be noticeable.

Rank deficiency

Both the difference estimator (21.4) and the system estimator (21.5) depend for their existence on
the invertibility of Ay. This matrix may turn out to be singular for several reasons. However, this
does not mean that the estimator is not computable: in some cases, adjustments are possible such
that the estimator does exist, but the user should be aware that in these cases not all software
packages use the same strategy and replication of results may prove difficult or even impossible.

A first reason why Ay may be singular could be the unavailability of instruments, chiefly because
of missing observations. This case is easy to handle. If a particular row of Z; is zero for all
units, the corresponding orthogonality condition (or the corresponding instrument if you prefer) is
automatically dropped; of course, the overidentification rank is adjusted for testing purposes.

Even if no instruments are zero, however, Ay could be rank deficient. A trivial case occurs if there
are collinear instruments, but a less trivial case may arise when T (the total number of time periods
available) is not much smaller than N (the number of units), as, for example, in some macro datasets
where the units are countries. The total number of potentially usable orthogonality conditions is
O(T?), which may well exceed N in some cases. Of course Ay is the sum of N matrices which have,
at most, rank 2T — 3 and therefore it could well happen that the sum is singular.

In all these cases, what we consider the “proper” way to go is to substitute the pseudo-inverse of
Ay (Moore-Penrose) for its regular inverse. Again, our choice is shared by some software packages,
but not all, so replication may be hard.

Treatment of missing values

Textbooks seldom bother with missing values, but in some cases their treatment may be far from
obvious. This is especially true if missing values are interspersed between valid observations. For
example, consider the plain difference estimator with one lag, so

Ye=&Yt-1+1N+ €

where the i index is omitted for clarity. Suppose you have an individual with t = 1...5, for which
3 is missing. It may seem that the data for this individual are unusable, because differencing y;
would produce something like

t |1 23 45
Ve |k ok o k%
A_’)/t o % o o 3k

where * = nonmissing and o = missing. Estimation seems to be unfeasible, since there are no
periods in which Ay; and Ay;_; are both observable.

However, we can use a k-difference operator and get
A ye = XA ye-1 + A€

where Ay = 1 — L¥ and past levels of y; are perfectly valid instruments. In this example, we can
choose k = 3 and use y; as an instrument, so this unit is in fact perfectly usable.

Not all software packages seem to be aware of this possibility, so replicating published results may
prove tricky if your dataset contains individuals with gaps between valid observations.
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21.2 Usage

One of the concepts underlying the syntax of dpanel is that you get default values for several
choices you may want to make, so that in a “standard” situation the command is very concise. The
simplest case of the model (21.1) is a plain AR(1) process:

Yit = XYit-1+ Ni + Vig. (21.6)

If you give the command
dpanel 1 ; vy

gretl assumes that you want to estimate (21.6) via the difference estimator (21.4), using as many
orthogonality conditions as possible. The scalar 1 between dpanel and the semicolon indicates that
only one lag of y is included as an explanatory variable; using 2 would give an AR(2) model. The
syntax that gretl uses for the non-seasonal AR and MA lags in an ARMA model is also supported in
this context.! For example, if you want the first and third lags of y (but not the second) included as
explanatory variables you can say

dpanel {1 3} ; vy
or you can use a pre-defined matrix for this purpose:

matrix ylags = {1, 3}
dpanel ylags ; vy

To use a single lag of y other than the first you need to employ this mechanism:

dpanel {3} ; y # only lag 3 is included
dpanel 3 ; y # compare: lags 1, 2 and 3 are used

To use the system estimator instead, you add the --system option, as in
dpanel 1 ; y --system

The level orthogonality conditions and the corresponding instrument are appended automatically
(see eq. 21.5).

Regressors

If we want to introduce additional regressors, we list them after the dependent variable in the same
way as other gretl commands, such as oTs.

For the difference orthogonality relations, dpanel takes care of transforming the regressors in par-
allel with the dependent variable. Note that this differs from gretl’s arbond command, where only
the dependent variable is differenced automatically; it brings us more in line with other software.

One case of potential ambiguity is when an intercept is specified but the difference-only estimator
is selected, as in

dpanel 1 ; y const

In this case the default dpanel behavior, which agrees with Stata’s xtabond2, is to drop the con-
stant (since differencing reduces it to nothing but zeros). However, for compatibility with the
DPD package for Ox, you can give the option --dpdstyle, in which case the constant is retained

LThis represents an enhancement over the arbond command.
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(equivalent to including a linear trend in equation 21.1). A similar point applies to the period-
specific dummy variables which can be added in dpanel via the --time-dummies option: in the
differences-only case these dummies are entered in differenced form by default, but when the
--dpdstyle switch is applied they are entered in levels.

The standard gretl syntax applies if you want to use lagged explanatory variables, so for example
the command

dpanel 1 ; y const x(0 to -1) --system
would result in estimation of the model

Vit = &¥it-1+ Bo + B1Xit + PaXir-1 + Ni + Vit

Instruments

The default rules for instruments are:

¢ lags of the dependent variable are instrumented using all available orthogonality conditions;
and

o additional regressors are considered exogenous, so they are used as their own instruments.

If a different policy is wanted, the instruments should be specified in an additional list, separated
from the regressors list by a semicolon. The syntax closely mirrors that for the ts1s command,
but in this context it is necessary to distinguish between “regular” instruments and what are often
called “GMM-style” instruments (that is, instruments that are handled in the same block-diagonal
manner as lags of the dependent variable, as described above).

“Regular” instruments are transformed in the same way as regressors, and the contemporaneous
value of the transformed variable is used to form an orthogonality condition. Since regressors are
treated as exogenous by default, it follows that these two commands estimate the same model:

dpanel 1 ; y z
dpanel 1 ; y z ; z

The instrument specification in the second case simply confirms what is implicit in the first: that
z is exogenous. Note, though, that if you have some additional variable z2 which you want to add
as a regular instrument, it then becomes necessary to include z in the instrument list if it is to be
treated as exogenous:

dpanel 1 ; y z ; z2 # z is now implicitly endogenous
dpanel 1 ; y z ; z z2 # z is treated as exogenous

The specification of “GMM-style” instruments is handled by the special constructs GMM() and
GMMTevel (). The first of these relates to instruments for the equations in differences, and the
second to the equations in levels. The syntax for GMM() is

GMM(name, minlag, maxlag)

where name is replaced by the name of a series (or the name of a list of series), and minlag and
maxlag are replaced by the minimum and maximum lags to be used as instruments. The same goes
for GMM1evel Q).

One common use of GMM() is to limit the number of lagged levels of the dependent variable used
as instruments for the equations in differences. It's well known that although exploiting all pos-
sible orthogonality conditions yields maximal asymptotic efficiency, in finite samples it may be
preferable to use a smaller subset (but see also Okui (2009)). For example, the specification
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dpanel 1 ; y ; GMM(y, 2, 4)

ensures that no lags of y; earlier than t — 4 will be used as instruments.

A second use of GMM() is to exploit more fully the potential block-diagonal orthogonality conditions
offered by an exogenous regressor, or a related variable that does not appear as a regressor. For
example, in

dpanel 1 ; y x ; GMM(z, 2, 6)

the variable x is considered an endogenous regressor, and up to 5 lags of z are used as instruments.

Note that in the following script fragment

dpanel 1 ; y z
dpanel 1 ; y z ; GMM(z,0,0)

the two estimation commands should not be expected to give the same result, as the sets of orthog-
onality relationships are subtly different. In the latter case, you have T — 2 separate orthogonality
relationships pertaining to z;¢, none of which has any implication for the other ones; in the former
case, you only have one. In terms of the Z; matrix, the first form adds a single row to the bottom
of the instruments matrix, while the second form adds a diagonal block with T — 2 columns; that
is,

[ Zi3 Zi4 " Zit ]
versus
Zi3 0 0
0 Zi4 0
0 0 - zy

21.3 Replication of DPD results

In this section we show how to replicate the results of some of the pioneering work with dynamic
panel-data estimators by Arellano, Bond and Blundell. As the DPD manual (Doornik, Arellano and
Bond, 2006) explains, it is difficult to replicate the original published results exactly, for two main
reasons: not all of the data used in those studies are publicly available; and some of the choices
made in the original software implementation of the estimators have been superseded. Here, there-
fore, our focus is on replicating the results obtained using the current DPD package and reported
in the DPD manual.

The examples are based on the program files abestl.ox, abest3.ox and bbestl.ox. These
are included in the DPD package, along with the Arellano-Bond database files abdata.bn7 and
abdata.in7.2 The Arellano-Bond data are also provided with gretl, in the file abdata.gdt. In the
following we do not show the output from DPD or gretl; it is somewhat voluminous, and is easily
generated by the user. As of this writing the results from Ox/DPD and gretl are identical in all
relevant respects for all of the examples shown.3

A complete Ox/DPD program to generate the results of interest takes this general form:

#include <oxstd.h>
#import <packages/dpd/dpd>

2Gee http://www.doornik.com/download.html.
3To be specific, this is using Ox Console version 5.10, version 1.24 of the DPD package, and gretl built from CVS as of
2010-10-23, all on Linux.
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main()
{
decl dpd = new DPDQ);

dpd.Load("abdata.in7");
dpd.SetYear("YEAR");

// model-specific code here

delete dpd;

In the examples below we take this template for granted and show just the model-specific code.

Example 1

The following Ox/DPD code —drawn from abestl.ox —replicates column (b) of Table 4 in Arellano
and Bond (1991), an instance of the differences-only or GMM-DIF estimator. The dependent variable
is the log of employment, n; the regressors include two lags of the dependent variable, current and
lagged values of the log real-product wage, w, the current value of the log of gross capital, k, and
current and lagged values of the log of industry output, ys. In addition the specification includes
a constant and five year dummies; unlike the stochastic regressors, these deterministic terms are
not differenced. In this specification the regressors w, k and ys are treated as exogenous and serve
as their own instruments. In DPD syntax this requires entering these variables twice, on the X_VAR
and I_VAR lines. The GMM-type (block-diagonal) instruments in this example are the second and
subsequent lags of the level of n. Both 1-step and 2-step estimates are computed.

dpd.SetOptions(FALSE); // don’t use robust standard errors
dpd.Select(Y_VAR, {"n", 0, 2});

dpd.Select(X_VAR, {"w", O, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});

dpd.Gmm("n", 2, 99);
dpd.SetDummies (D_CONSTANT + D_TIME);

print("\n\n***** Arellano & Bond (1991), Table 4 (b)");
dpd.SetMethod (M_1STEP) ;

dpd.Estimate();

dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

Here is gretl code to do the same job:

open abdata.gdt

Tist X = w w(-1) k ys ys(-1)

dpanel 2 ; n X const --time-dummies --asy --dpdstyle

dpanel 2 ; n X const --time-dummies --asy --two-step --dpdstyle

Note that in gretl the switch to suppress robust standard errors is --asymptotic, here abbreviated
to --asy.? The --dpdstyTe flag specifies that the constant and dummies should not be differenced,
in the context of a GMM-DIF model. With gretl’s dpanel command it is not necessary to specify the
exogenous regressors as their own instruments since this is the default; similarly, the use of the
second and all longer lags of the dependent variable as GMM-type instruments is the default and
need not be stated explicitly.

40Option flags in gretl can always be truncated, down to the minimal unique abbreviation.
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Example 2

The DPD file abest3.o0x contains a variant of the above that differs with regard to the choice of
instruments: the variables w and k are now treated as predetermined, and are instrumented GMM-
style using the second and third lags of their levels. This approximates column (c) of Table 4 in
Arellano and Bond (1991). We have modified the code in abest3.ox slightly to allow the use of
robust (Windmeijer-corrected) standard errors, which are the default in both DPD and gretl with
2-step estimation:

dpd.Select(Y_VAR, {"n", 0, 2});

dpd.Select (X_VAR, {"w", O, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"ys", 0, 1});

dpd.SetDummies (D_CONSTANT + D_TIME);

dpd.Gmm("n", 2, 99);
dpd.Gmm("w", 2, 3);
dpd.Gmm("k", 2, 3);

print("\n***** Arellano & Bond (1991), Table 4 (c)\n'");
print(" (but using different instruments!!)\n");
dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

The gretl code is as follows:

open abdata.gdt

Tist X = w w(-1) k ys ys(-1)

Tist Ivars = ys ys(-1)

dpanel 2 ; n X const ; GMM(w,2,3) GMM(k,2,3) Ivars --time --two-step --dpd

Note that since we are now calling for an instrument set other then the default (following the second
semicolon), it is necessary to include the Ivars specification for the variable ys. However, it is
not necessary to specify GMM(n, 2,99) since this remains the default treatment of the dependent
variable.

Example 3

Our third example replicates the DPD output from bbestl.ox: this uses the same dataset as the
previous examples but the model specifications are based on Blundell and Bond (1998), and involve
comparison of the GMM-DIF and GMM-SYS (“system”) estimators. The basic specification is slightly
simplified in that the variable ys is not used and only one lag of the dependent variable appears as
a regressor. The Ox/DPD code is:

dpd.Select(Y_VAR, {"n", 0, 1});
dpd.Select(X_VAR, {"w", 0, 1, "k", 0, 1});
dpd.SetDummies (D_CONSTANT + D_TIME);

print("\n\n****%* Blundell & Bond (1998), Table 4: 1976-86 GMM-DIF");
dpd.Gmm("n", 2, 99);

dpd.Gmm("w", 2, 99);

dpd.Gmm("k", 2, 99);

dpd.SetMethod (M_2STEP) ;

dpd.Estimate();

print("\n\n***** Blundell & Bond (1998), Table 4: 1976-86 GMM-SYS");
dpd.GmmLevel("n", 1, 1);
dpd.GmmLevel("w", 1, 1);
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dpd.GmmLevel("k", 1, 1);
dpd.SetMethod (M_2STEP) ;
dpd.Estimate();

Here is the corresponding gretl code:

open abdata.gdt
Tist X = w w(-1) k k(-1
Tist Z =w k

# Blundell & Bond (1998), Table 4: 1976-86 GMM-DIF
dpanel 1 ; n X const ; GMM(Z,2,99) --time --two-step --dpd

# Blundell & Bond (1998), Table 4: 1976-86 GMM-SYS
dpanel 1 ; n X const ; GMM(Z,2,99) GMMlevel(Z,1,1) \
--time --two-step --dpd --system

Note the use of the --system option flag to specify GMM-SYS, including the default treatment of
the dependent variable, which corresponds to GMMlevel(n,1,1). In this case we also want to
use lagged differences of the regressors w and k as instruments for the levels equations so we
need explicit GMM1evel entries for those variables. If you want something other than the default
treatment for the dependent variable as an instrument for the levels equations, you should give an
explicit GMM1evel specification for that variable—and in that case the --system flag is redundant
(but harmless).

For the sake of completeness, note that if you specify at least one GMMTevel term, dpanel will then
include equations in levels, but it will not automatically add a default GMM1evel specification for
the dependent variable unless the --system option is given.

21.4 Cross-country growth example

The previous examples all used the Arellano-Bond dataset; for this example we use the dataset
CEL.gdt, which is also included in the gretl distribution. As with the Arellano-Bond data, there
are numerous missing values. Details of the provenance of the data can be found by opening the
dataset information window in the gretl GUI (Data menu, Dataset info item). This is a subset of the
Barro-Lee 138-country panel dataset, an approximation to which is used in Caselli, Esquivel and
Lefort (1996) and Bond, Hoeffler and Temple (2001).> Both of these papers explore the dynamic
panel-data approach in relation to the issues of growth and convergence of per capita income across
countries.

The dependent variable is growth in real GDP per capita over successive five-year periods; the
regressors are the log of the initial (five years prior) value of GDP per capita, the log-ratio of in-
vestment to GDP, s, in the prior five years, and the log of annual average population growth, n,
over the prior five years plus 0.05 as stand-in for the rate of technical progress, g, plus the rate of
depreciation, 6 (with the last two terms assumed to be constant across both countries and periods).
The original model is

Asyit = BYit-5s + xSig +Y(Mir + g +0) + Ve + i + € (21.7)

which allows for a time-specific disturbance v;. The Solow model with Cobb-Douglas production
function implies that y = —«, but this assumption is not imposed in estimation. The time-specific
disturbance is eliminated by subtracting the period mean from each of the series.

>We say an “approximation” because we have not been able to replicate exactly the OLS results reported in the papers
cited, though it seems from the description of the data in Caselli et al. (1996) that we ought to be able to do so. We note
that Bond et al. (2001) used data provided by Professor Caselli yet did not manage to reproduce the latter’s results.
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Equation (21.7) can be transformed to an AR(1) dynamic panel-data model by adding y; ;-5 to both
sides, which gives
Yit = (L + B)Yit-s + asit + y(nit + g + 6) + ni + €t (21.8)

where all variables are now assumed to be time-demeaned.

In (rough) replication of Bond et al. (2001) we now proceed to estimate the following two models:
(a) equation (21.8) via GMM-DIF, using as instruments the second and all longer lags of y;¢, sir and
nit+ + g + 6; and (b) equation (21.8) via GMM-SYS, using Ay;:-1, Asit—1 and A(nit-1 + g + 6) as
additional instruments in the levels equations. We report robust standard errors throughout. (As a
purely notational matter, we now use “t — 1” to refer to values five years prior to t, as in Bond et al.
(2001)).

The gretl script to do this job is shown below. Note that the final transformed versions of the
variables (logs, with time-means subtracted) are named 1y (v;), 1inv (s;t) and Tngd (ny + g + ).

open CEL.gdt

ngd = n + 0.05
ly = Tog(y)
Tinv = log(s)
Tngd = log(ngd)

# take out time means
loop i=1..8 --quiet

smpl (time == i) --restrict --replace
Ty -= mean(ly)
Tinv -= mean(linv)
Tngd -= mean(1ngd)
endloop
smp1 --full

Tist X = linv 1ngd

# 1-step GMM-DIF

dpanel 1 ; Ty X ; GMM(X,2,99)

# 2-step GMM-DIF

dpanel 1 ; 1y X ; GMM(X,2,99) --two-step

# GMM-SYS

dpanel 1 ; 1y X ; GMM(X,2,99) GMMlevel(X,1,1) --two-step --sys

For comparison we estimated the same two models using Ox/DPD and the Stata command xtabond?2.
(In each case we constructed a comma-separated values dataset containing the data as transformed
in the gretl script shown above, using a missing-value code appropriate to the target program.) For
reference, the commands used with Stata are reproduced below:

insheet using CEL.csv

tsset unit time

xtabond2 1y L.Ty Tinv Ingd, gmm(L.ly, Tlag(l 99)) gmm(linv, Tag(2 99))
gnm(lngd, T1ag(2 99)) rob nolev

xtabond2 1y L.Tly Tinv Tngd, gmm(L.ly, Tag(l 99)) gmm(linv, Tag(2 99))
gnm(1lngd, lag(2 99)) rob nolev twostep

xtabond2 1y L.1ly Tlinv Tngd, gmm(L.ly, Tag(l 99)) gmm(linv, Tag(2 99))
gmm(Tngd, Tag(2 99)) rob nocons twostep

For the GMM-DIF model all three programs find 382 usable observations and 30 instruments, and
yield identical parameter estimates and robust standard errors (up to the number of digits printed,
or more); see Table 21.1.

6The coefficient shown for 1y (-1) in the Tables is that reported directly by the software; for comparability with the
original model (eq. 21.7) it is necesary to subtract 1, which produces the expected negative value indicating conditional
convergence in per capita income.
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1-step 2-step
coeff std. error coeff std. error
Ty(-1) 0.577564 0.1292 0.610056 0.1562
Tinv 0.0565469 0.07082 0.100952 0.07772
Tngd —0.143950 0.2753 —0.310041 0.2980

Table 21.1: GMM-DIF: Barro-Lee data

Results for GMM-SYS estimation are shown in Table 21.2. In this case we show two sets of gretl
results: those labeled “gretl(1)” were obtained using gretl’s --dpdsty1e option, while those labeled
“gretl(2)” did not use that option—the intent being to reproduce the H matrices used by Ox/DPD
and xtabond?2 respectively.

gretl(1) Ox/DPD gretl(2) xtabond?2
Ty(-1D) 0.9237 (0.0385) 0.9167 (0.0373) 0.9073 (0.0370) 0.9073 (0.0370)
Tinv 0.1592 (0.0449) 0.1636 (0.0441) 0.1856 (0.0411) 0.1856 (0.0411)
Tngd —0.2370(0.1485) —0.2178 (0.1433) —0.2355(0.1501) —0.2355(0.1501)

Table 21.2: 2-step GMM-SYS: Barro-Lee data (standard errors in parentheses)

In this case all three programs use 479 observations; gretl and xtabond2 use 41 instruments and
produce the same estimates (when using the same H matrix) while Ox/DPD nominally uses 66.”
It is noteworthy that with GMM-SYS plus “messy” missing observations, the results depend on the
precise array of instruments used, which in turn depends on the details of the implementation of
the estimator.

21.5 Auxiliary test statistics

We have concentrated above on the parameter estimates and standard errors. It may be worth
adding a few words on the additional test statistics that typically accompany both GMM-DIF and
GMM-SYS estimation. These include the Sargan test for overidentification, one or more Wald tests
for the joint significance of the regressors (and time dummies, if applicable) and tests for first- and
second-order autocorrelation of the residuals from the equations in differences.

As in Ox/DPD, the Sargan test statistic reported by gretl is

N N
S= (Z ﬁ;’“zi) Ay (Z Zﬁ)f)
i=1

i=1

where the ¥ are the transformed (e.g. differenced) residuals for unit i. Under the null hypothesis
that the instruments are valid, S is asymptotically distributed as chi-square with degrees of freedom
equal to the number of overidentifying restrictions.

In general we see a good level of agreement between gretl, DPD and xtabond2 with regard to these
statistics, with a few relatively minor exceptions. Specifically, xtabond2 computes both a “Sargan
test” and a “Hansen test” for overidentification, but what it calls the Hansen test is, apparently, what
DPD calls the Sargan test. (We have had difficulty determining from the xtabond2 documentation
(Roodman, 2006) exactly how its Sargan test is computed.) In addition there are cases where the
degrees of freedom for the Sargan test differ between DPD and gretl; this occurs when the Ay
matrix is singular (section 21.1). In concept the df equals the number of instruments minus the

"This is a case of the issue described in section 21.1: the full Ay matrix turns out to be singular and special measures
must be taken to produce estimates.
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number of parameters estimated; for the first of these terms gretl uses the rank of Ay, while DPD
appears to use the full dimension of this matrix.

21.6 Post-estimation available statistics

After estimation, the $model accessor will return a bundle containing several items that may be of
interest: most should be self-explanatory, but here’s a partial list:

Key Content
AR1, AR2 1st and 2nd order autocorrelation test statistics

sargan, sargan_df Sargan test for overidentifying restrictions and correspond-
ing degrees of freedom

wald, wald_df Wald test for overall significance and corresponding de-
grees of freedom

GMMinst The matrix Z of instruments (see equations (21.2) and (21.5)

wgtmat The matrix A of GMM weights (see equations (21.2) and
(21.5)

Note, however, that GMMinst and wgtmat (which may be quite large matrices) are not saved in
the $model bundle by default; that requires use of the --keep-extra option with the dpanel
command. The scriptin Table 21.6 illustrates use of these matrices to replicate via hansl commands
the calculation of the GMM estimator.

21.7 Memo: dpanel options

flag effect

--asymptotic Suppresses the use of robust standard errors

--two-step Calls for 2-step estimation (the default being 1-step)

--system Calls for GMM-SYS, with default treatment of the dependent variable,

as in GMMlevel(y,1,1)
--time-dummies Includes period-specific dummy variables

--dpdstyle Compute the H matrix as in DPD; also suppresses differencing of
automatic time dummies and omission of intercept in the GMM-DIF
case

--verbose When --two-step is selected, prints the 1-step estimates first

--vev Calls for printing of the covariance matrix

--quiet Suppresses the printing of results

--keep-extra Save additional matrices in $model bundle (see above)

The time dummies option supports the qualifier noprint, as in
--time-dummies=noprint

This means that although the dummies are included in the specification their coefficients, standard
errors and so on are not printed.
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set verbose off
open abdata.gdt

# compose Tist of regressors
Tist X = w w(-1) k k(-1
Tist Z =w k

dpanel 1 ; n X const ; GMM(Z,2,99) --two-step --dpd --keep-extra
### --- re-do by hand --------— -~

# fetch Z and A from model
A = $model.wgtmat
mZt = $model.GMMinst # note: transposed

# create data matrices
series valid = ok($uhat)
series ddep = diff(n)
series dldep = ddep(-1)
Tist dreg = diff(X)

smp1 valid --dummy

matrix m_reg {d1dep} ~ {dreg} ~ 1
matrix m_dep = {ddep}

matrix uno = mZt * m_reg

matrix due = gform(uno’, A)

matrix tre = (uno’A) * (mZt * m_dep)
matrix coef = due\tre

print coef

Table 21.3: replication of built-in command via hansl commands
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Nonlinear least squares

22.1 Introduction and examples

Gretl supports nonlinear least squares (NLS) using a variant of the Levenberg-Marquardt algorithm.
The user must supply a specification of the regression function; prior to giving this specification the
parameters to be estimated must be “declared” and given initial values. Optionally, the user may
supply analytical derivatives of the regression function with respect to each of the parameters.
If derivatives are not given, the user must instead give a list of the parameters to be estimated
(separated by spaces or commas), preceded by the keyword params. The tolerance (criterion for
terminating the iterative estimation procedure) can be adjusted using the set command.

The syntax for specifying the function to be estimated is the same as for the genr command. Here
are two examples, with accompanying derivatives.

# Consumption function from Greene
nls C = alpha + beta * YAgamma

deriv alpha = 1

deriv beta = YAgamma

deriv gamma = beta * YAgamma * log(Y)
end nls

# Nonlinear function from Russell Davidson
nls y = alpha + beta * x1 + (1/beta) * x2
deriv alpha =1
deriv beta = x1 - x2/(beta*beta)
end nls --vcv

Note the command words n1s (which introduces the regression function), deriv (which introduces
the specification of a derivative), and end n1ls, which terminates the specification and calls for
estimation. If the --vcv flag is appended to the last line the covariance matrix of the parameter
estimates is printed.

22.2 |Initializing the parameters

The parameters of the regression function must be given initial values prior to the n1s command.
This can be done using the genr command (or, in the GUI program, via the menu item “Variable,
Define new variable”).

In some cases, where the nonlinear function is a generalization of (or a restricted form of) a linear
model, it may be convenient to run an ols and initialize the parameters from the OLS coefficient
estimates. In relation to the first example above, one might do:

ols COY

genr alpha = $coeff(0)
genr beta = $coeff(Y)
genr gamma = 1

And in relation to the second example one might do:

197
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ols y 0 x1 x2
genr alpha = $coeff(0)
genr beta = $coeff(x1)

22.3 NLS dialog window

198

It is probably most convenient to compose the commands for NLS estimation in the form of a
gretl script but you can also do so interactively, by selecting the item “Nonlinear Least Squares”
under the “Model, Nonlinear models” menu. This opens a dialog box where you can type the
function specification (possibly prefaced by genr lines to set the initial parameter values) and the
derivatives, if available. An example of this is shown in Figure 22.1. Note that in this context you
do not have to supply the n1s and end nls tags.

MNLS: Specify function, and derivatives if possible:

retl: nonlinear least squares ..

[Please refer to Help for guidance)

genr alpha = 18
genr beta = .5
genr gamma = 1

deriv alpha = 1

C = alpha + beta # Y*gamma

deriv beta = Y*gamma
deriv gamma = beta * Y*gamma * log(Y)

Show details of iterations

Robust standard errors

=

| &glear

|Ogance| | l Qﬂgl( l

Figure 22.1: NLS dialog box

22.4 Analytical and numerical derivatives

If you are able to figure out the derivatives of the regression function with respect to the param-
eters, it is advisable to supply those derivatives as shown in the examples above. If that is not
possible, gretl will compute approximate numerical derivatives. However, the properties of the NLS
algorithm may not be so good in this case (see section 22.8).

This is done by using the params statement, which should be followed by a list of identifiers
containing the parameters to be estimated. In this case, the examples above would read as follows:

# Greene

nls C = alpha + beta * YAgamma
params alpha beta gamma

end nls

# Davidson

nls y = alpha + beta * x1 + (1/beta) * x2

params alpha beta
end nls

If analytical derivatives are supplied, they are checked for consistency with the given nonlinear
function. If the derivatives are clearly incorrect estimation is aborted with an error message. If the
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derivatives are “suspicious” a warning message is issued but estimation proceeds. This warning
may sometimes be triggered by incorrect derivatives, but it may also be triggered by a high degree
of collinearity among the derivatives.

Note that you cannot mix analytical and numerical derivatives: you should supply expressions for
all of the derivatives or none.

22.5 Advanced use

The n1s block can also contain more sophisticated constructs. First, it can handle intermediate
expressions; this makes it possible to construct the conditional mean expression as a multi-step
job, thus enhancing modularity and readability of the code. Second, more complex objects, such as
lists and matrices, can be used for this purpose.

For example, suppose that we want to estimate a Probit Binary Response model via NLS. The speci-
fication is

yi=o[gxi)]+ui,  g(xi) =bo+bix1i+baxo; = b'x; (22.1)
Note: this is not the recommended way to estimate a probit model: the u; term is heteroskedastic
by construction and ML estimation is much preferable here. Still, NLS is a consistent estimator of
the parameter vector b, although its covariance matrix will have to be adjusted to compensate for
heteroskedasticity: this is accomplished via the --robust switch.

Listing 22.1: NLS estimation of a Probit model

open greene25_1.gdt
Tist X = const age income ownrent selfempl

# initalisation
ols cardhldr X --quiet
matrix b = $coeff / $sigma

# proceed with NLS estimation

nls cardhldr = cnorm(ndx)
series ndx = lincomb(X, b)
params b

end nls --robust

# compare with ML probit
probit cardhldr X --p-values

The example in script 22.1 can be enhanced by using analytical derivatives: since

abjl = @(b xi) - xij
one could substitute the params line in the script with the two-liner

series f = dnorm(ndx)
deriv b = {f} .* {X}

and have nls use analytically-computed derivatives, which are quicker and usually more reliable.



Chapter 22. Nonlinear least squares 200

22.6 Controlling termination

The NLS estimation procedure is an iterative process. Iteration is terminated when the criterion for
convergence is met or when the maximum number of iterations is reached, whichever comes first.

Let k denote the number of parameters being estimated. The maximum number of iterations is
100 x (k + 1) when analytical derivatives are given, and 200 X (k + 1) when numerical derivatives
are used.

Let € denote a small number. The iteration is deemed to have converged if at least one of the
following conditions is satisfied:

e Both the actual and predicted relative reductions in the error sum of squares are at most €.

o The relative error between two consecutive iterates is at most €.

This default value of € is the machine precision to the power 3/4,! but it can be adjusted using the
set command with the parameter n1s_toler. For example

set nls_toler .0001

will relax the value of € to 0.0001.

22.7 Details on the code

The underlying engine for NLS estimation is based on the minpack suite of functions, available
from netlib.org. Specifically, the following minpack functions are called:

Tmder  Levenberg-Marquardt algorithm with analytical derivatives

chkder Check the supplied analytical derivatives

Tmdif  Levenberg-Marquardt algorithm with numerical derivatives

fdjac2 Compute final approximate Jacobian when using numerical derivatives
dpmpar Determine the machine precision

On successful completion of the Levenberg-Marquardt iteration, a Gauss-Newton regression is used
to calculate the covariance matrix for the parameter estimates. If the --robust flag is given a
robust variant is computed. The documentation for the set command explains the specific options
available in this regard.

Since NLS results are asymptotic, there is room for debate over whether or not a correction for
degrees of freedom should be applied when calculating the standard error of the regression (and
the standard errors of the parameter estimates). For comparability with OLS, and in light of the
reasoning given in Davidson and MacKinnon (1993), the estimates shown in gretl do use a degrees
of freedom correction.

22.8 Numerical accuracy

Table 22.1 shows the results of running the gretl NLS procedure on the 27 Statistical Reference
Datasets made available by the U.S. National Institute of Standards and Technology (NIST) for test-
ing nonlinear regression software.? For each dataset, two sets of starting values for the parameters
are given in the test files, so the full test comprises 54 runs. Two full tests were performed, one

10n a 32-bit Intel Pentium machine a likely value for this parameter is 1.82 x 10712,
2For a discussion of gretl’s accuracy in the estimation of linear models, see Appendix D.
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using all analytical derivatives and one using all numerical approximations. In each case the default
tolerance was used.3

Out of the 54 runs, gretl failed to produce a solution in 4 cases when using analytical derivatives,
and in 5 cases when using numeric approximation. Of the four failures in analytical derivatives
mode, two were due to non-convergence of the Levenberg-Marquardt algorithm after the maximum
number of iterations (on MGHO9 and Bennett5, both described by NIST as of “Higher difficulty”) and
two were due to generation of range errors (out-of-bounds floating point values) when computing
the Jacobian (on BoxBOD and MGH17, described as of “Higher difficulty” and “Average difficulty”
respectively). The additional failure in numerical approximation mode was on MGH10 (“Higher diffi-
culty”, maximum number of iterations reached).

The table gives information on several aspects of the tests: the number of outright failures, the
average number of iterations taken to produce a solution and two sorts of measure of the accuracy
of the estimates for both the parameters and the standard errors of the parameters.

For each of the 54 runs in each mode, if the run produced a solution the parameter estimates
obtained by gretl were compared with the NIST certified values. We define the “minimum correct
figures” for a given run as the number of significant figures to which the least accurate gretl esti-
mate agreed with the certified value, for that run. The table shows both the average and the worst
case value of this variable across all the runs that produced a solution. The same information is
shown for the estimated standard errors.*

The second measure of accuracy shown is the percentage of cases, taking into account all parame-
ters from all successful runs, in which the gretl estimate agreed with the certified value to at least
the 6 significant figures which are printed by default in the gretl regression output.

Table 22.1: Nonlinear regression: the NIST tests

Analytical derivatives Numerical derivatives

Failures in 54 tests 4 5
Average iterations 32 127
Mean of min. correct figures, 8.120 6.980
parameters

Worst of min. correct figures, 4 3
parameters

Mean of min. correct figures, 8.000 5.673
standard errors

Worst of min. correct figures, 5 2
standard errors

Percent correct to at least 6 figures, 96.5 91.9
parameters

Percent correct to at least 6 figures, 97.7 77.3

standard errors

Using analytical derivatives, the worst case values for both parameters and standard errors were
improved to 6 correct figures on the test machine when the tolerance was tightened to 1.0e—14.

3The data shown in the table were gathered from a pre-release build of gretl version 1.0.9, compiled with gcc 3.3,
linked against glibc 2.3.2, and run under Linux on an i686 PC (IBM ThinkPad A21m).

4For the standard errors, I excluded one outlier from the statistics shown in the table, namely Lanczos1. This is an
odd case, using generated data with an almost-exact fit: the standard errors are 9 or 10 orders of magnitude smaller
than the coefficients. In this instance gretl could reproduce the certified standard errors to only 3 figures (analytical
derivatives) and 2 figures (numerical derivatives).
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Using numerical derivatives, the same tightening of the tolerance raised the worst values to 5
correct figures for the parameters and 3 figures for standard errors, at a cost of one additional
failure of convergence.

Note the overall superiority of analytical derivatives: on average solutions to the test problems
were obtained with substantially fewer iterations and the results were more accurate (imost notably
for the estimated standard errors). Note also that the six-digit results printed by gretl are not 100
percent reliable for difficult nonlinear problems (in particular when using numerical derivatives).
Having registered this caveat, the percentage of cases where the results were good to six digits or
better seems high enough to justify their printing in this form.
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Maximum likelihood estimation

23.1 Generic ML estimation with gretl

Maximum likelihood estimation is a cornerstone of modern inferential procedures. Gretl provides
a way to implement this method for a wide range of estimation problems, by use of the mle com-
mand. We give here a few examples.

To give a foundation for the examples that follow, we start from a brief reminder on the basics
of ML estimation. Given a sample of size T, it is possible to define the density function! for the
whole sample, namely the joint distribution of all the observations f(Y; 0), where Y = {y1,...,yr}.
Its shape is determined by a k-vector of unknown parameters 0, which we assume is contained in
a set ©, and which can be used to evaluate the probability of observing a sample with any given
characteristics.

After observing the data, the values Y are given, and this function can be evaluated for any legiti-
mate value of 6. In this case, we prefer to call it the likelihood function; the need for another name
stems from the fact that this function works as a density when we use the y;s as arguments and 0
as parameters, whereas in this context 6 is taken as the function’s argument, and the data Y only
have the role of determining its shape.

In standard cases, this function has a unique maximum. The location of the maximum is unaffected
if we consider the logarithm of the likelihood (or log-likelihood for short): this function will be
denoted as

1(0) =log f(Y; 0)

The log-likelihood functions that gretl can handle are those where £(0) can be written as

T
£(0) = > £:(0)

t=1

which is true in most cases of interest. The functions ¥;(0) are called the log-likelihood contribu-
tions.

Moreover, the location of the maximum is obviously determined by the data Y. This means that the
value .
0(Y) = Argmax £(0) (23.1)
0cO
is some function of the observed data (a statistic), which has the property, under mild conditions,
of being a consistent, asymptotically normal and asymptotically efficient estimator of 0.

Sometimes it is possible to write down explicitly the function 0(Y); in general, it need not be so. In
these circumstances, the maximum can be found by means of numerical techniques. These often
rely on the fact that the log-likelihood is a smooth function of 0, and therefore on the maximum
its partial derivatives should all be 0. The gradient vector, or score vector, is a function that enjoys
many interesting statistical properties in its own right; it will be denoted here as g(9). It is a

Lwe are supposing here that our data are a realization of continuous random variables. For discrete random variables,
everything continues to apply by referring to the probability function instead of the density. In both cases, the distribution
may be conditional on some exogenous variables.

203
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k-vector with typical element
20(0) i 3¢ (0)

9:(0) = =5, 20,

t=1

Gradient-based methods can be briefly illustrated as follows:

1. pick a point 0, € 0O;
evaluate g(6y);

if g(0y) is “small”, stop. Otherwise, compute a direction vector d(g(60y));

Ll

evaluate 01 = 0g + d(g(0p));
5. substitute 0y with 01;

6. restart from 2.

Many algorithms of this kind exist; they basically differ from one another in the way they compute
the direction vector d(g(0y)), to ensure that £(01) > £(0g) (so that we eventually end up on the
maximum).

The default method gretl uses to maximize the log-likelihood is a gradient-based algorithm known
as the BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. This technique is used in most
econometric and statistical packages, as it is well-established and remarkably powerful. Clearly,
in order to make this technique operational, it must be possible to compute the vector g(€) for
any value of 6. In some cases this vector can be written explicitly as a function of Y. If this is
not possible or too difficult the gradient may be evaluated numerically. The alternative Newton-
Raphson algorithm is also available. This method is more effective under some circumstances but
is also more fragile; see section 23.8 and chapter 34 for details.?

The choice of the starting value, 0, is crucial in some contexts and inconsequential in others. In
general, however, it is advisable to start the algorithm from “sensible” values whenever possible. If
a consistent estimator is available, this is usually a safe and efficient choice: this ensures that in
large samples the starting point will be likely close to 6 and convergence can be achieved in few
iterations.

The maximum number of iterations allowed for the BFGS procedure, and the relative tolerance
for assessing convergence, can be adjusted using the set command: the relevant variables are
bfgs_maxiter (default value 500) and bfgs_toler (default value, the machine precision to the
power 3/4).

Covariance matrix and standard errors

By default the covariance matrix of the parameter estimates is based on the Outer Product of the
Gradient (OPG). That is,

Varora(0) = (G'(9)G(D)) (23.2)

where G(0) is the T x k matrix of contributions to the gradient. Two other options are available. If
the --hessian flag is given, the covariance matrix is computed from a numerical approximation to
the Hessian at convergence. If the --robust option is selected, the quasi-ML “sandwich” estimator
is used: . . . A .

Varow.(0) = H(0)"'G'(0)G(0)H (6) ™!

where H denotes the numerical approximation to the Hessian.

2Note that some of the statements made below (for example, regarding estimation of the covariance matrix) have to
be modified when Newton’s method is used.
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Cluster-robust estimation is also available: in order to activate it, use the --cluster=clustvar,
where clustvar should be a discrete series. See section 19.5 for more details.

Note, however, that if the log-likelihood function supplied by the user just returns a scalar value —
as opposed to a series or vector holding per-observation contributions —then the OPG method is
not applicable and so the covariance matrix must be estimated via a numerical approximation to
the Hessian.

23.2 Gamma estimation

Suppose we have a sample of T independent and identically distributed observations from a Gamma
distribution. The density function for each observation x; is

fot)—>f(43 eXp(—%XXt) (23.3)

The log-likelihood for the entire sample can be written as the logarithm of the joint density of all
the observations. Since these are independent and identical, the joint density is the product of the
individual densities, and hence its log is

T
O, p) = Z log[ exp(—(xxt)] =>4 (23.4)
=1

T(p)™

where
Ly = p -log(axt) — y(p) —log xt — axy

and y(-) is the log of the gamma function. In order to estimate the parameters « and p via ML, we
need to maximize (23.4) with respect to them. The corresponding gretl code snippet is

scalar alpha = 1
scalar p =1

mle -|Og-| = p:'.-'ln(a]pha % X) _ ‘|ngamma(p) _ -In(x) _ a-lpha *
params alpha p
end mle

The first two statements

alpha = 1
p=1

are necessary to ensure that the variables alpha and p exist before the computation of logl is
attempted. Inside the m1e block these variables (which could be either scalars, vectors or a com-
bination of the two — see below for an example) are identified as the parameters that should be
adjusted to maximize the likelihood via the params keyword. Their values will be changed by the
execution of the mTe command; upon successful completion, they will be replaced by the ML esti-
mates. The starting value is 1 for both; this is arbitrary and does not matter much in this example
(more on this later).

The above code can be made more readable, and marginally more efficient, by defining a variable
to hold « - x¢. This command can be embedded in the m1e block as follows:

mle logl = p*In(ax) - Tngamma(p) - Tn(x) - ax
series ax = alpha*x
params alpha p

end mle
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The variable ax is not added to the params list, of course, since it is just an auxiliary variable to
facilitate the calculations. You can insert as many such auxiliary lines as you require before the
params line, with the restriction that they must contain either (a) commands to generate series,
scalars or matrices or (b) print commands (which may be used to aid in debugging).

In a simple example like this, the choice of the starting values is almost inconsequential; the algo-
rithm is likely to converge no matter what the starting values are. However, consistent method-of-
moments estimators of p and « can be simply recovered from the sample mean m and variance V:
since it can be shown that

E(xt)=p/x V(x) =p/&®

it follows that the following estimators

x = m/V
p = m-«&

are consistent, and therefore suitable to be used as starting point for the algorithm. The gretl script
code then becomes

scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle logl = p*In(ax) - Tngamma(p) - Tn(x) - ax
series ax = alpha*x
params alpha p

end mle

Another thing to note is that sometimes parameters are constrained within certain boundaries: in
this case, for example, both « and p must be positive numbers. Gretl does not check for this: it
is the user’s responsibility to ensure that the function is always evaluated at an admissible point
in the parameter space during the iterative search for the maximum. An effective technique is to
define a variable for checking that the parameters are admissible and setting the log-likelihood as
undefined if the check fails. An example, which uses the conditional assignment operator, follows:

scalar m = mean(x)
scalar alpha = m/var(x)
scalar p = m*alpha

mle logl = check ? p*In(ax) - Tngamma(p) - Tn(x) - ax : NA
series ax = alpha*x
scalar check = (alpha>0) && (p>0)
params alpha p

end mle

23.3 Stochastic frontier cost function

Note: this section has the only purpose of illustrating the mle command. For the estimation of
stochastic frontier cost or production functions, you may want to use the frontier function package.

When modeling a cost function, it is sometimes worthwhile to incorporate explicitly into the sta-
tistical model the notion that firms may be inefficient, so that the observed cost deviates from the
theoretical figure not only because of unobserved heterogeneity between firms, but also because
two firms could be operating at a different efficiency level, despite being identical under all other
respects. In this case we may write

G = Ci* + Ui + Vi

where C; is some variable cost indicator, C;* is its “theoretical” value, u; is a zero-mean disturbance
term and v; is the inefficiency term, which is supposed to be nonnegative by its very nature. A
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linear specification for C; is often chosen. For example, the Cobb-Douglas cost function arises
when C/" is a linear function of the logarithms of the input prices and the output quantities.

The stochastic frontier model is a linear model of the form y; = x;B + &; in which the error term ¢;
is the sum of u; and v;.

A common postulate is that u; ~ N(0,0) and v; ~ |[N(0,03)]. If independence between u; and
v; is also assumed, then it is possible to show that the density function of &; has the form:

flei) = \/zé (%) %(]) (%) (23.5)

where ®(-) and ¢ (-) are, respectively, the distribution and density function of the standard normal,
0 =+ 0i + 05 and A = g~
As a consequence, the log-likelihood for one observation takes the form (apart form an irrelevant
constant) ,
AE; &
0 =log® (—1> - |1 +
t=log®{—— 0g(0) + 53

Therefore, a Cobb-Douglas cost function with stochastic frontier is the model described by the
following equations:

logC; = logC/ + ¢
m n
logC = c+ Zleogyij+ thjloglﬂij
j=1 j=1
& = Ui+ Vi
u; ~ N(O, 05)
vi ~ |N(O,0d)]|

In most cases, one wants to ensure that the homogeneity of the cost function with respect to
the prices holds by construction. Since this requirement is equivalent to Z;Ll «;j = 1, the above
equation for C* can be rewritten as

m n
logCi —logpin =c + . Bjlogyij + > aj(logpij —logpin) + & (23.6)
j=1 j=2

The above equation could be estimated by OLS, but it would suffer from two drawbacks: first,
the OLS estimator for the intercept c is inconsistent because the disturbance term has a non-zero
expected value; second, the OLS estimators for the other parameters are consistent, but inefficient
in view of the non-normality of &;. Both issues can be addressed by estimating (23.6) by maximum
likelihood. Nevertheless, OLS estimation is a quick and convenient way to provide starting values
for the MLE algorithm.

Listing 23.1 shows how to implement the model described so far. The banks91 file contains part
of the data used in Lucchetti, Papi and Zazzaro (2001).

The script in example 23.1 is relatively easy to modify to show how one can use vectors (that is,
1-dimensional matrices) for storing the parameters to optimize: example 23.2 holds essentially the
same script in which the parameters of the cost function are stored together in a vector. Of course,
this makes also possible to use variable lists and other refinements which make the code more
compact and readable.
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Listing 23.1: Estimation of stochastic frontier cost function (with scalar parameters)

open banks91.gdt

# transformations
series cost = 1Tn(VQO)
series gl = 1n(Ql)

series g2 = 1n(Q2)
series pl = 1n(P1)
series p2 = 1n(P2)
series p3 = 1n(P3)

# Cobb-Douglas cost function with homogeneity restrictions
# (for 1initialization)

genr rcost = cost - pl

genr rp2 = p2 - pl

genr rp3 = p3 - pl

ols rcost const ql g2 rp2 rp3

# Cobb-Douglas cost function with homogeneity restrictions
# and inefficiency

scalar b0 = $coeff(const)
scalar bl = $coeff(ql)
scalar b2 = $coeff(qg2)
scalar b3 = $coeff(rp2)
scalar b4 = $coeff(rp3)
scalar su = 0.1

scalar sv = 0.1

mle Togl = Tn(cnorm(e*Tambda/ss)) - (In(ss) + 0.5*%(e/ss)A2)
scalar ss = sqrt(suA2 + svA2)
scalar lambda = su/sv
series e = rcost - bO*const - bl*ql - b2*q2 - b3*rp2 - b4*rp3
params b0 bl b2 b3 b4 su sv

end mle
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Listing 23.2: Estimation of stochastic frontier cost function (with matrix parameters)

open banks91.gdt

# transformations
series cost = 1n(VQ)
series gl = 1n(Ql)

series g2 = 1n(Q2)
series pl = 1n(P1)
series p2 = 1n(P2)
series p3 = 1n(P3)

# Cobb-Douglas cost function with homogeneity restrictions
# (for initialization)

genr rcost = cost - pl

genr rp2 = p2 - pl

genr rp3 = p3 - pl

Tist X = const ql g2 rp2 rp3

ols rcost X

X = const ql g2 rp2 rp3

# Cobb-Douglas cost function with homogeneity restrictions
# and inefficiency

matrix b = $coeff
scalar su = 0.1
scalar sv = 0.1

mle logl = Tn(cnorm(e*Tambda/ss)) - (In(ss) + 0.5*%(e/ss)A2)
scalar ss = sqrt(suA2 + svA2)
scalar lambda = su/sv
series e = rcost - lincomb(X, b)
params b su sv
end mle
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23.4 GARCH models

GARCH models are handled by gretl via a native function. However, it is instructive to see how they
can be estimated through the mle command.3

The following equations provide the simplest example of a GARCH(1,1) model:

Y = U+ &

& = Ur- Ot

u: ~ N(,1)

hy = w+ e+ Bh.

Since the variance of y; depends on past values, writing down the log-likelihood function is not
simply a matter of summing the log densities for individual observations. As is common in time
series models, y; cannot be considered independent of the other observations in our sample, and
consequently the density function for the whole sample (the joint density for all observations) is
not just the product of the marginal densities.

Maximum likelihood estimation, in these cases, is achieved by considering conditional densities, so
what we maximize is a conditional likelihood function. If we define the information set at time t as

Fr={ye,Yi-1,-..},

then the density of y; conditional on F;_; is normal:
YielFe—1 ~ N[y, hel.

By means of the properties of conditional distributions, the joint density can be factorized as
follows

T
S yve-1,..) = [H f(yt|Ft—1)] - f (o)

t=1

If we treat yq as fixed, then the term f () does not depend on the unknown parameters, and there-
fore the conditional log-likelihood can then be written as the sum of the individual contributions
as

T
L, w,0,B) = > U (23.7)
(=1

where

Cloe| g (k)| L Oe—w?
“‘“’%m"%m)]‘ Z[IOg”‘”* e }

The following script shows a simple application of this technique, which uses the data file djclose;
it is one of the example dataset supplied with gretl and contains daily data from the Dow Jones
stock index.

open djclose
series y = 100*1diff(djclose)

scalar mu = 0.0
scalar omega = 1

scalar alpha = 0.4
scalar beta = 0.0

mle 11 = -0.5*(log(h) + (eA2)/h)

3The gig addon, which handles other variants of conditionally heteroskedastic models, uses m1e as its internal engine.
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series e y - mu
series h = var(y)
series h = omega + alpha*(e(-1))A2 + beta*h(-1)
params mu omega alpha beta
end mle

23.5 Analytical derivatives

Computation of the score vector is essential for the working of the BFGS method. In all the previous
examples, no explicit formula for the computation of the score was given, so the algorithm was fed
numerically evaluated gradients. Numerical computation of the score for the i-th parameter is
performed via a finite approximation of the derivative, namely

00(61,...,0n) L(01,...,0i+h,...,00) —L(01,...,0i —h,...,04)
00; B 2h

where h is a small number.

In many situations, this is rather efficient and accurate. A better approximation to the true deriva-
tive may be obtained by forcing mTe to use a technique known as Richardson Extrapolation, which
gives extremely precise results, but is considerably more CPU-intensive. This feature may be turned
on by using the set command as in

set bfgs_richardson on

However, one might want to avoid the approximation and specify an exact function for the deriva-
tives. As an example, consider the following script:

nulldata 1000

genr x1 = normal()
genr x2 = normal()
genr x3 = normal()

genr ystar = x1 + x2 + x3 + normal()
genr y = (ystar > 0)

scalar b0 =
scalar bl =
scalar b2 =
scalar b3 =

[eNeNeNo)

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = b0 + bl*x1l + b2*x2 + b3*x3
series P = cnorm(ndx)
params b0 bl b2 b3

end mle --verbose

Here, 1000 data points are artificially generated for an ordinary probit model:* y; is a binary
variable, which takes the value 1 if y;* = B1x1: + B2ax2: + B3x3: + & > 0 and 0 otherwise. Therefore,
vy = 1 with probability ®(S1x1¢ + B2Xx2¢ + B3Xx3:) = 1¢. The probability function for one observation
can be written as

P(yy) =" (1 — )t

4Again, gretl does provide a native probit command (see section 35.1), but a probit model makes for a nice example
here.
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Since the observations are independent and identically distributed, the log-likelihood is simply the
sum of the individual contributions. Hence

T
0= yilog(m) + (1 - yp)log(1 — 1)
t=1
The --verbose switch at the end of the end mle statement produces a detailed account of the
iterations done by the BFGS algorithm.
In this case, numerical differentiation works rather well; nevertheless, computation of the analytical
score is straightforward, since the derivative % can be written as

a# _ ﬂ aT(‘t
oB; om0
via the chain rule, and it is easy to see that
ot _ oy 1-»m
a7Tt Tt 1-—1;
a7Tt

P (Bix1t + Baxor + B3X3t) - Xit

0Bi
The mTe block in the above script can therefore be modified as follows:

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = b0 + bl*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
series m = dnorm(ndx)*(y/P - (1-y)/(1-P))
deriv b0 =m
deriv bl = m*x1
deriv b2 = m*x2
deriv b3 = m*x3
end mle --verbose

Note that the params statement has been replaced by a series of deriv statements; these have the
double function of identifying the parameters over which to optimize and providing an analytical
expression for their respective score elements.

23.6 Debugging ML scripts

We have discussed above the main sorts of statements that are permitted within an mle block,
namely

e auxiliary commands to generate helper variables;
e deriv statements to specify the gradient with respect to each of the parameters; and

e a params statement to identify the parameters in case analytical derivatives are not given.

For the purpose of debugging ML estimators one additional sort of statement is allowed: you can
print the value of a relevant variable at each step of the iteration. This facility is more restricted
then the regular print command. The command word print should be followed by the name of
just one variable (a scalar, series or matrix).

In the last example above a key variable named m was generated, forming the basis for the analytical
derivatives. To track the progress of this variable one could add a print statement within the ML
block, as in

series m = dnorm(ndx)*(y/P - (1-y)/(1-P))
print m
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23.7 Using functions

The mle command allows you to estimate models that gretl does not provide natively: in some
cases, it may be a good idea to wrap up the m1e block in a user-defined function (see Chapter 13),
so as to extend gretl’s capabilities in a modular and flexible way.

As an example, we will take a simple case of a model that gretl does not yet provide natively:
the zero-inflated Poisson model, or ZIP for short.> In this model, we assume that we observe a
mixed population: for some individuals, the variable y; is (conditionally on a vector of exogenous
covariates x;) distributed as a Poisson random variate; for some others, y; is identically 0. The
trouble is, we don’t know which category a given individual belongs to.

For instance, suppose we have a sample of women, and the variable y; represents the number of
children that woman t has. There may be a certain proportion, &, of women for whom y; = 0 with
certainty (maybe out of a personal choice, or due to physical impossibility). But there may be other
women for whom y; = 0 just as a matter of chance — they haven’t happened to have any children
at the time of observation.

In formulae:

Yt
P(y: =klxt) = adi+(1-o) [e“fut}

Yi!
e = exp(x:B)
1 for y;=0
dr =
0 for ;>0

Writing a m1e block for this model is not difficult:

mle 11 = Togprob
series xb = exp(b0 + bl * x)
series d = (y=0)
series poiprob = exp(-xb) * xbAy / gamma(y+1)
series logprob (alpha>0) && (alpha<l) ? \

Tog(alpha*d + (1-alpha)*poiprob) : NA

params alpha b0 bl

end mle -v

However, the code above has to be modified each time we change our specification by, say, adding
an explanatory variable. Using functions, we can simplify this task considerably and eventually be
able to write something easy like

Tist X = const X
zip(y, X)

Let’s see how this can be done. First we need to define a function called zip () that will take two ar-
guments: a dependent variable y and a list of explanatory variables X. An example of such function
can be seen in script 23.3. By inspecting the function code, you can see that the actual estimation
does not happen here: rather, the zip() function merely uses the built-in modprint command to
print out the results coming from another user-written function, namely zip_estimate().

The function zip_estimate() is not meant to be executed directly; it just contains the number-
crunching part of the job, whose results are then picked up by the end function zip(). In turn,
zip_estimate() calls other user-written functions to perform other tasks. The whole set of “in-
ternal” functions is shown in the panel 23.4.

All the functions shown in 23.3 and 23.4 can be stored in a separate inp file and executed once, at
the beginning of our job, by means of the inclTude command. Assuming the name of this script file

5The actual ZIP model is in fact a bit more general than the one presented here. The specialized version discussed in
this section was chosen for the sake of simplicity. For futher details, see Greene (2003).
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Listing 23.3: Zero-inflated Poisson Model — user-level function

/s“:
user-level function: estimate the model and print out
the results
*/
function void zip(series y, Tist X)
matrix coef_stde = zip_estimate(y, X)
printf "\nZero-inflated Poisson model:\n"
string parnames = "alpha,"
string parnames += varname(X)
modprint coef_stde parnames
end function

Listing 23.4: Zero-inflated Poisson Model — internal functions

/* compute log probabilities for the plain Poisson model */
function series In_poi_prob(series y, Tist X, matrix beta)
series xb = Tincomb(X, beta)
return -exp(xb) + y*xb - Tngamma(y+1)
end function

/* compute log probabilities for the zero-inflated Poisson model */
function series In_zip_prob(series y, list X, matrix beta, scalar p0)
# check if the probability is in [0,1]; otherwise, return NA
if pO>1 || pO <0
series ret = NA
else
series ret = In_poi_prob(y, X, beta) + Tn(1-p0)
series ret = y==0 ? Tn(p0 + exp(ret)) : ret
endif
return ret
end function

/* do the actual estimation (silently) */
function matrix zip_estimate(series y, list X)
# initialize alpha to a "sensible" value: half the frequency
# of zeros in the sample
scalar alpha = mean(y==0)/2
# initialize the coeffs (we assume the first explanatory
# variable is the constant here)
matrix coef = zeros(nelem(X), 1)
coef[1] = mean(y) / (1-alpha)
# do the actual ML estimation
mle 11 = Tn_zip_prob(y, X, coef, alpha)
params alpha coef
end mle --hessian --quiet
return $coeff ~ $stderr
end function
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is zip_est.inp, the following is an example script which (a) includes the script file, (b) generates a
simulated dataset, and (c) performs the estimation of a ZIP model on the artificial data.

set verbose off

# include the user-written functions
include zip_est.inp

# generate the artificial data
nulldata 1000

set seed 732237

scalar truep = 0.2

scalar b0 = 0.2

scalar bl = 0.5

series x = normal()
series y = (uniform(Q<truep) ? 0 : randgen(p, exp(b0 + bl*x))
Tist X = const X

# estimate the zero-inflated Poisson model
zipQy, X)

The results are as follows:

Zero-inflated Poisson model:

coefficient std. error z-stat p-value

alpha 0.209738 0.0261746 8.013  1.12e-15 *¥*
const 0.167847 0.0449693 3.732  0.0002  kwx
X 0.452390 0.0340836  13.27  3.32e-40 ***

A further step may then be creating a function package for accessing your new zip () function via
gretl’s graphical interface. For details on how to do this, see section 13.5.

23.8 Advanced use of mle: functions, analytical derivatives, algorithm choice

All the techniques decribed in the previous sections may be combined, and mTe can be used for
solving non-standard estimation problems (provided, of course, that one chooses maximum likeli-
hood as the preferred inference method).

The strategy that, as of this writing, has proven most successful in designing scripts for this pur-
pose is:

e Modularize your code as much as possible.

¢ Use analytical derivatives whenever possible.

e Choose your optimization method wisely.
In the rest of this section, we will expand on the probit example of section 23.5 to give the reader
an idea of what a “heavy-duty” application of mTe looks like. Most of the code fragments come from

mle-advanced. inp, which is one of the sample scripts supplied with the standard installation of
gretl (see under File > Script files > Practice File).

BFGS with and without analytical derivatives

The example in section 23.5 can be made more general by using matrices and user-written func-
tions. Consider the following code fragment:
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Tist X = const x1 x2 x3
matrix b = zeros(nelem(X),1)

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
params b

end mle

In this context, the fact that the model we are estimating has four explanatory variables is totally
incidental: the code is written in such a way that we could change the content of the list X without
having to make any other modification. This was made possible by:

1. gathering the parameters to estimate into a single vector b rather than using separate scalars;
2. using the neTem() function to initialize b, so that its dimension is kept track of automatically;

3. using the Tincomb () function to compute the index function.

A parallel enhancement could be achieved in the case of analytically computed derivatives: since
b is now a vector, mle expects the argument to the deriv keyword to be a matrix, in which each
column is the partial derivative to the corresponding element of b. It is useful to re-write the score

for the i-th observation as 50
i ,

ﬁ = mx, (23.8)
where m; is the “signed Mills’ ratio”, that is
. =y PEB) (1 = ) ¢ (x;B)
1= (xB) YT e’

which was computed in section 23.5 via

series P cnorm(ndx)
series m = dnorm(ndx)*(y/P - (1-y)/(1-P))

Here, we will code it in a somewhat terser way as
series m =y ? invmills(-ndx) : -invmills(ndx)

and make use of the conditional assignment operator and of the specialized function invmi11s()
for efficiency. Building the score matrix is now easily achieved via

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
series m =y ? invmills(-ndx) : -invmills(ndx)
matrix mX = {X}
deriv b = mX .* {m}
end mle

in which the {} operator was used to turn series and lists into matrices (see chapter 16). However,
proceeding in this way for more complex models than probit may imply inserting into the mle
block a long series of instructions; the example above merely happens to be short because the
score matrix for the probit model is very easy to write in matrix form.

A better solution is writing a user-level function to compute the score and using that inside the m1e
block, as in
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function matrix score(matrix b, series y, list X)
series ndx = lincomb(X, b)
series m =y ? invmills(-ndx) : -invmills(ndx)
return {m} .* {X}

end function

[...]

mle logl = y*Tn(P) + (1-y)*In(1-P)
series ndx = lincomb(X, b)
series P = cnorm(ndx)
deriv b = score(b, y, X)

end mle

In this way, no matter how complex the computation of the score is, the mTe block remains nicely
compact.

Newton’s method and the analytical Hessian

As mentioned above, gretl offers the user the option of using Newton’s method for maximizing the
log-likelihood. In terms of the notation used in section 23.1, the direction for updating the inital
parameter vector 0y is given by

d[g(00)] = —AH(0o) 'g(00), (23.9)

where H(0) is the Hessian of the total loglikelihood computed at € and 0 < A < 1 is a scalar called
the step length.

The above expression makes a few points clear:

1. At each step, it must be possible to compute not only the score g(0), but also its derivative
H(0);

2. the matrix H(0) should be nonsingular;

3. it is assumed that for some positive value of A, £(01) > £(0y); in other words, that going in
the direction d [g(0y)] leads upwards for some step length.

The strength of Newton’s method lies in the fact that, if the loglikelihood is globally concave,
then (23.9) enjoys certain optimality properties and the number of iterations required to reach the
maximum is often much smaller than it would be with other methods, such as BFGS. However, it
may have some disadvantages: for a start, the Hessian H(6) may be difficult or very expensive to
compute; moreover, the loglikelihood may not be globally concave, so for some values of 6, the
matrix H(0) is not negative definite or perhaps even singular. Those cases are handled by gretl’s
implementation of Newton’s algorithm by means of several heuristic techniques®, but a number of
adverse consequences may occur, which range from longer computation time for optimization to
non-convergence of the algorithm.

As a consequence, using Newton's method is advisable only when the computation of the Hessian
is not too CPU-intensive and the nature of the estimator is such that it is known in advance that
the loglikelihood is globally concave. The probit models satisfies both requisites, so we will expand
the preceding example to illustrate how to use Newton’s method in gretl.

A first example may be given simply by issuing the command

set optimizer newton

6The gist to it is that, if H is not negative definite, it is substituted by k - dg(H) + (1 — k) - H, where k is a suitable
scalar; however, if you're interested in the precise details, you’'ll be much better off looking at the source code: the file
you’ll want to look at is 1ib/src/gretl1_bfgs.c.
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before the mle block.” This will instruct gretl to use Newton’s method instead of BFGS. If the deriv
keyword is used, gretl will differentiate the score function numerically; otherwise, if the score
has to be computed itself numerically, gretl will calculate H(0) by differentiating the loglikelihood
numerically twice. The latter solution, though, is generally to be avoided, as may be extremely
time-consuming and may yield imprecise results.

A much better option is to calculate the Hessian analytically and have gretl use its true value rather
than a numerical approximation. In most cases, this is both much faster and numerically stable,
but of course comes at the price of having to differentiate the loglikelihood twice to respect with
the parameters and translate the resulting expressions into efficient hansl code.

Luckily, both tasks are relatively easy in the probit case: the matrix of second derivatives of £; may
be written as

82191' ’ /
3B =-m; (mi + xiB) XiX;
so the total Hessian is
w1
n92¢; , w2
> 3gap = X X (23.10)

Wn

where w; = m; (mi + xgﬁ). It can be shown that w; > 0, so the Hessian is guaranteed to be negative
definite in all sensible cases and the conditions are ideal for applying Newton’s method.

A hansl translation of equation (23.10) may look like

function void Hess(matrix *H, matrix b, series y, list X)
/* computes the negative Hessian for a Probit model */
series ndx = lincomb(X, b)
series m =y ? invmills(-ndx) : -invmills(ndx)
series w m* (m+ndx)
matrix mX = {X}

H= (mX .* {w})’mX
end function

There are two characteristics worth noting of the function above. For a start, it doesn’t return
anything: the result of the computation is simply stored in the matrix pointed at by the first
argument of the function. Second, the result is not the Hessian proper, but rather its negative. This
function becomes usable from within an mT1e block by the keyword hessian. The syntax is

mle ...

hessian funcname(&mat_addr, ...)
end mle

In other words, the hessian keyword must be followed by the call to a function whose first argu-
ment is a matrix pointer which is supposed to be filled with the negative of the Hessian at 0.

We said above (section 23.1) that the covariance matrix of the parameter estimates is by default
estimated using the Outer Product of the Gradient (so long as the log-likelihood function returns
the per-observation contributions). However, if you supply a function that computes the Hessian
then by default it is used in estimating the covariance matrix. If you wish to impose use of OPG
instead, append the --opg option to the end of the mTe block.

Note that gretl does not perform any numerical check on whether a user-supplied function com-
putes the Hessian correctly. On the one hand, this means that you can trick mle into using alter-
natives to the Hessian and thereby implement other optimization methods. For example, if you

"To go back to BFGS, you use set optimizer bfgs.
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substitute in equation 23.9 the Hessian H with the negative of the OPG matrix —G'G, as defined in
(23.2), you get the so-called BHHH optimization method (see Berndt et al. (1974)). Again, the sample
file mTe-advanced.inp provides an example. On the other hand, you may want to perform a check
of your analytically-computed H matrix versus a numerical approximation.

If you have a function that computes the score, this is relatively simple to do by using the fdjac
function, briefly described in section 34.3, which computes a numerical approximation to a deriva-
tive. In practice, you need a function computing g(0) as a row vector and then use fdjac to
differentiate it numerically with respect to 0. The result can then be compared to your analytically-
computed Hessian. The code fragment below shows an example of how this can be done in the
probit case:

function matrix totalscore(matrix *b, series y, list X)
/* computes the total score */
return sumc(score(b, y, X))

end function

function void check(matrix b, series y, list X)
/* compares the analytical Hessian to its numerical
approximation obtained via fdjac */
matrix aH
Hess(&aH, b, y, X) # stores the analytical Hessian into aH

matrix nH = fdjac(b, "totalscore(&b, y, XO")
nH = 0.5%(nH + nH’) # force symmetry

printf "Numerical Hessian\n%16.6f\n", nH

printf "Analytical Hessian (negative)\n%16.6f\n", aH

printf "Check (should be zero)\n%16.6f\n", nH + aH
end function

23.9 Handling non-convergence gracefully

If the numerical aspects of the estimation procedure are complex, it is possible that mTe fails to
find the maximum within the number of iterations stipulated via the bfgs_maxiter state variable
(which defaults to 500).

In these cases, m1e will exit with error and it’s up to the user to handle the situation appropriately.
For example, it is possible that m1e is used inside a loop and you don’t want the loop to stop in case
convergence is not achieved. The catch command modifier (see also the Gretl Command Reference)
is an excellent tool for this purpose.

The example provided in listing 23.5 illustrates the usage of catch in an artificially simple context:
we use the mTe command for estimating mean and variance of a Gaussian rv (of course you don’t
need the m1e apparatus for this, but it makes for a nice example). The gist of the example is using
the set bfgs_maxiter command to force mle to abort after a very small number of iterations, so
that you can have an idea on how to use the catch modifier and the associated $error accessor to
handle the situation.

You may want to increase the maximum number if BFGS iterations in the example to check what
happens if the algorithm is allowed to converge. Note that, upon successful completion of mle,
a bundle named $model is available, containing several quantities that may be of your interest,
including the total number of function evaluations.
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Listing 23.5: Handling non-convergence via catch

set verbose off
nulldata 200
set seed 8118

# generate simulated data from a N(3,4) variate
series x = normal(3,2)

# set starting values
scalar m = 0
scalar s2 = 1

# set iteration Timit to a ridiculously Tow value
set bfgs_maxiter 10

# perform ML estimation; note the "catch" modifier
catch mle loglik = -0.5*% (Tog(2*$pi) + log(s2) + e2/s2)
series e2 = (X - m)A2
params m s2
end mle --quiet

# grab the error and proceed as needed
err = $error
if err
printf "Not converged! (m = %g, s2 = %g)\n", m, s2
else
printf "Converged after %d iterations\n", $model.grcount
cs = $coeff ~ sqrt(diag($vcv))
pn = "m s2"
modprint cs pn
endif
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GMM estimation

24.1 Introduction and terminology

The Generalized Method of Moments (GMM) is a very powerful and general estimation method,
which encompasses practically all the parametric estimation techniques used in econometrics. It
was introduced in Hansen (1982) and Hansen and Singleton (1982); an excellent and thorough
treatment is given in chapter 17 of Davidson and MacKinnon (1993).

The basic principle on which GMM is built is rather straightforward. Suppose we wish to estimate
a scalar parameter 6 based on a sample x1, x>,...,xt. Let Oy indicate the “true” value of 6. Theo-
retical considerations (either of statistical or economic nature) may suggest that a relationship like
the following holds:

E[xt—g(Q)] =0©9=90, (24.1)

with g(-) a continuous and invertible function. That is to say, there exists a function of the data
and the parameter, with the property that it has expectation zero if and only if it is evaluated at the
true parameter value. For example, economic models with rational expectations lead to expressions
like (24.1) quite naturally.

If the sampling model for the x;s is such that some version of the Law of Large Numbers holds,
then
1

T
X==>x 2 g(6o);
t=1

S|

hence, since g(-) is invertible, the statistic
6=g"X) 2 0,

so 0 is a consistent estimator of 0. A different way to obtain the same outcome is to choose, as an
estimator of 0, the value that minimizes the objective function

T 2
F(0) = [; > (x¢ —g(@))} = [X - g9(0)]%; (24.2)
t=1

the minimum is trivially reached at 0 = g~ (X), since the expression in square brackets equals 0.

The above reasoning can be generalized as follows: suppose 0 is an n-vector and we have m
relations like
E[fi(x:,0)]=0 fori=1...m, (24.3)

where E[-] is a conditional expectation on a set of p variables z;, called the instruments. In the
above simple example, m = 1 and f(x¢,0) = x; — g(0), and the only instrument used is z; = 1.
Then, it must also be true that

E[fi(Xt,Q) . zj,t] =E[fi,j,t(9)] =0 fori=1...m and j=1...p; (24.4)

equation (24.4) is known as an orthogonality condition, or moment condition. The GMM estimator is
defined as the minimum of the quadratic form

F(6,w) = fwt, (24.5)

221
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where fis a (1 x m - p) vector holding the average of the orthogonality conditions and W is some
symimetric, positive definite matrix, known as the weights matrix. A necessary condition for the
minimum to exist is the order condition n < m - p.

The statistic A
0 = Argmin F (0, W) (24.6)
0

is a consistent estimator of & whatever the choice of W. However, to achieve maximum asymp-
totic efficiency W must be proportional to the inverse of the long-run covariance matrix of the
orthogonality conditions; if W is not known, a consistent estimator will suffice.

These considerations lead to the following empirical strategy:

1. Choose a positive definite W and compute the one-step GMM estimator 0. Customary choices
for W are Ly.p or I, ® (Z'Z) 1.

2. Use 0, to estimate V/( fi;,:(0)) and use its inverse as the weights matrix. The resulting esti-
mator 0> is called the two-step estimator.

3. Re-estimate V (f;;:(0)) by means of 9, and obtain 93; iterate until convergence. Asymp-
totically, these extra steps are unnecessary, since the two-step estimator is consistent and
efficient; however, the iterated estimator often has better small-sample properties and should
be independent of the choice of W made at step 1.

In the special case when the number of parameters n is equal to the total number of orthogonality
conditions m - p, the GMM estimator 0 is the same for any choice of the weights matrix W, so the
first step is sufficient; in this case, the objective function is 0 at the minimum.

If, on the contrary, n < m - p, the second step (or successive iterations) is needed to achieve
efficiency, and the estimator so obtained can be very different, in finite samples, from the one-
step estimator. Moreover, the value of the objective function at the minimum, suitably scaled by
the number of observations, yields Hansen'’s J statistic; this statistic can be interpreted as a test
statistic that has a x? distribution with m - p — n degrees of freedom under the null hypothesis of
correct specification. See Davidson and MacKinnon (1993, section 17.6) for details.

In the following sections we will show how these ideas are implemented in gretl through some
examples.

24.2 GMM as Method of Moments

This section draws from a kind contribution by Alecos Papadopoulos, whom we thank.

A very simple illustration of GMM can be given by dropping the “G”, via an example of the time-
honored statistical technique known as “method of moments”; let’s see how to estimate the param-
eters of a gamma distribution, which we also used as an example for ML estimation in section 23.2.

Assume that we have an i.i.d. sample of size T from a gamma distribution. The gamma density can
be parameterized in terms of the two parameters p (shape) and 0 (scale), both real and positive.!
In order to estimate them by the method of moments, we need two moment conditions so that we
have two equations and two unknowns (in the GMM jargon, this amounts to exact identification).
The two relations we need are

E(x))=p-0 V(xi)=p-6?

IIn section 23.2 we used a slightly different, perhaps more common, parametrization, employing 0 = 1/x. We are
switching to the shape/scale parametrization here for the sake of convenience.



Chapter 24. GMM estimation 223

These will become our moment conditions; substituting the finite sample analogues of the theoret-
ical moments we have

X
Vixi)

(24.7)
2 (24.8)

(1|
= ™
S

Of course, the two equations above are easy to solve analytically, giving 0 = % and p = %, (V being
the sample variance of x;), but it’s instructive to see how the gmm command will solve this system

of equations numerically.

We feed gretl the necessary ingredients for GMM estimation in a command block, starting with gmm
and ending with end gmm. Three elements are compulsory within a gmm block:

1. one or more orthog statements
2. one weights statement

3. one params statement

The three elements should be given in the stated order.

The orthog statements are used to specify the orthogonality conditions. They must follow the
syntax

orthog x ; Z

where x may be a series, matrix or list of series and Z may also be a series, matrix or list. Note the
structure of the orthogonality condition: it is assumed that the term to the left of the semicolon
represents a quantity that depends on the estimated parameters (and so must be updated in the
process of iterative estimation), while the term on the right is a constant function of the data.

The weights statement is used to specify the initial weighting matrix and its syntax is straightfor-
ward.

The params statement specifies the parameters with respect to which the GMM criterion should be
minimized; it follows the same logic and rules as in the mle and n1s commands.

The minimum is found through numerical minimization via BFGS (see chapters 34 and 23). The
progress of the optimization procedure can be observed by appending the --verbose switch to
the end gmm line.

Equations 24.7 and 24.8 are not yet in the “moment condition” form required by the gmm command.
We need to transform them and arrive at something looking like E(ej;z;;) = 0, with j = 1...2.
Therefore, we need two corresponding observable variables e; and e, with corresponding instru-
ments z; and z, and tell gretl that E(e izj) = 0 must be satisfied (where we used the E(-) notation
to indicate sample moments).

If we define the instrument as a series of ones, and set e; ; = x; — p0, then we can re-write the first
moment condition as
E[(x;i —p0)-1]=0.

This is in the form required by the gmm command: in the required input statement “orthog e ; Zz”,
e will be the variable on the left (defined as a series) and z will the variable to the right of the
semicolon. Since z;,; = 1 for all i, we can use the built-in series const for that.

For the second moment condition we have, analogously,

Eflxi- %)% -po] -1} =0,
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so that by setting e; ; = (x; — X)? — p0? and z, = z; we can re-write the second moment condition

as E[ep; - 1] = 0.

The weighting matrix, which is required by

the gmm command, can be set to any 2 X 2 positive

definite matrix, since under exact identification the choice does not matter and its dimension is
determined by the number of orthogonality conditions. Therefore, we’ll use the identity matrix.

Example code follows:

# create an empty data set
nulldata 200

# fix a random seed
set seed 2207092

#generate a gamma random variable with, say, shape p = 3 and scale theta = 2

series x = randgen(G, 3, 2)

#decTlare and set some initial value for parameters p and theta

scalar p =1
scalar theta =1

#create the weight matrix as the identity matrix

matrix W = I(2)

#declare the series to be used in the orthogonality conditions

series el = 0
series e2 = 0

gmm
scalar m = mean(x)
series el = x - p*theta
series e2 = (x - m)A2 - p*thetaA2
orthog el ; const
orthog e2 ; const
weights W
params p theta
end gmm

The corresponding output is

Model 1: 1-step GMM, using observations 1-200

estimate std. error
p 3.09165 0.346565 8
theta 1.89983 0.224418 8

GMM criterion: Q = 4.97341e-28 (TQ

If we want to use the unbiased estimator for
moment condition by substituting

series e2 = (x - m)A2 - p*thetaA2

with

z p-value
.921 4.63e-19 ***
.466 2.55e-17 %=

9.94682e-26)

the sample variance, we’d have to adjust the second
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scalar adj = $nobs / ($nobs - 1)
series €2 = adj * (x - m)A2 - p*thetaA2

with the corresponding slight change in the output:

Model 1: 1-step GMM, using observations 1-200

estimate std. error z p-value
p 3.07619 0.344832 8.921 4.63e-19 ***
theta 1.90937 0.225546 8.466  2.55e-17 *¥**

GMM criterion: Q = 2.80713e-28 (TQ = 5.61426e-26)

One can observe tiny improvements in the point estimates, since both moved a tad closer to the
true values. This, however, is just a small-sample effect and not something you should expect in
larger samples.

24.3 OLS as GMM

Let us now move to an example that is closer to econometrics proper: the linear model y; =
xtB + u;. Although most of us are used to read it as the sum of a hazily defined “systematic
part” plus an equally hazy “disturbance”, a more rigorous interpretation of this familiar expression
comes from the hypothesis that the conditional mean E(y;|x;) is linear and the definition of u; as
yi — E(yelxe).

From the definition of u,, it follows that E(u¢|x;) = 0. The following orthogonality condition is
therefore available:

E[f(B)]=0, (24.9)

where f(B) = (v — x¢B)x;. The definitions given in section 24.1 therefore specialize here to:

0 is B;
¢ the instrument is x;;

o fi.;t(0)1is (yt—x¢B)xt = urxy; the orthogonality condition is interpretable as the requirement
that the regressors should be uncorrelated with the disturbances;

e W can be any symmetric positive definite matrix, since the number of parameters equals the
number of orthogonality conditions. Let’s say we choose I.

e The function F(0, W) is in this case

1 < :
F(O,W) = [T z(atxt)}
t=1

and it is easy to see why OLS and GMM coincide here: the GMM objective function has the
same minimizer as the objective function of OLS, the residual sum of squares. Note, however,
that the two functions are not equal to one another: at the minimum, F(6, W) = 0 while the
minimized sum of squared residuals is zero only in the special case of a perfect linear fit.

The code snippet contained in Listing 24.1 uses gretl’s gmm command to make the above opera-
tional. In example 24.1, the series e holds the “residuals” and the series x holds the regressor. If x
had been a list (a matrix), the orthog statement would have generated one orthogonality condition
for each element (column) of x.
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Listing 24.1: OLS via GMM

/* initialize stuff */
series e = 0

scalar beta = 0
matrix W = I(1)

/* proceed with estimation */
gmm
series e = y - x*beta
orthog e ; x

weights W
params beta
end gmm

24.4 TSLS as GMM

Moving closer to the proper domain of GMM, we now consider two-stage least squares (TSLS) as a
case of GMM.

TSLS is employed in the case where one wishes to estimate a linear model of the form y; = X¢ B+ uy,
but where one or more of the variables in the matrix X are potentially endogenous— correlated with
the error term, u. We proceed by identifying a set of instruments, Z;, which are explanatory for
the endogenous variables in X but which are plausibly uncorrelated with u. The classic two-stage
procedure is (1) regress the endogenous elements of X on Z; then (2) estimate the equation of
interest, with the endogenous elements of X replaced by their fitted values from (1).

An alternative perspective is given by GMM. We define the residual i; as y; — XtB, as usual. But
instead of relying on E(u|X) = 0 as in OLS, we base estimation on the condition E(u|Z) = 0. In this
case it is natural to base the initial weighting matrix on the covariance matrix of the instruments.
Listing 24.2 presents a model from Stock and Watson’s Introduction to Econometrics. The demand
for cigarettes is modeled as a linear function of the logs of price and income; income is treated as
exogenous while price is taken to be endogenous and two measures of tax are used as instruments.
Since we have two instruments and one endogenous variable the model is over-identified.

In the GMM context, this happens when you have more orthogonality conditions than parameters to
estimate. If so, asymptotic efficiency gains can be expected by iterating the procedure once or more.
This is accomplished by specifying, after the end gmm statement, two mutually exclusive options:
--two-step or --iterate, whose meaning should be obvious. Note that when the problem is over-
identified, the weights matrix will influence the solution you get from the 1- and 2-step procedures.

= |n cases other than one-step estimation the specified weights matrix will be overwritten with the final
weights on completion of the gmm command. If you wish to execute more than one GMM block with a
common starting-point it is therefore necessary to reinitialize the weights matrix between runs.

Partial output from this script is shown in 24.3. The estimated standard errors from GMM are
robust by default; if we supply the --robust option to the ts1s command we get identical results.?

After the end gmm statement two mutually exclusive options can be specified: --two-step or
--iterate, whose meaning should be obvious.

2The data file used in this example is available in the Stock and Watson package for gretl. See http://gretl.
sourceforge.net/gretl_data.html.
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Listing 24.2: TSLS via GMM

open cig_chl0.gdt

# real avg price including sales tax
genr ravgprs = avgprs / cpi

# real avg cig-specific tax

genr rtax = tax / cpi

# real average total tax

genr rtaxs = taxs / cpi

# real average sales tax

genr rtaxso = rtaxs - rtax

# logs of consumption, price, income
genr T1packpc = Tog(packpc)

genr Tlravgprs = Tog(ravgprs)

genr perinc = income / (pop*cpi)

genr lperinc = Tog(perinc)

# restrict sample to 1995 observations
smpl --restrict year==1995

# Equation (10.16) by tsls

Tist x1list = const lravgprs Tperinc
Tist zlist = const rtaxso rtax Tperinc
tsls lpackpc x1list ; zlist --robust

# setup for gmm
matrix Z = { zlist }

matrix W = inv(Z’Z2)
series e = 0
scalar b0 = 1
scalar bl =1
scalar b2 =1

gmm e = lpackpc - b0 - bl*Travgprs - b2*1perinc
orthog e ; Z
weights W
params b0 bl b2

end gmm
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Listing 24.3: TSLS via GMM: partial output

Model 1: TSLS estimates using the 48 observations 1-48
Dependent variable: Tpackpc

Instruments: rtaxso rtax

Heteroskedasticity-robust standard errors, variant HCO

VARIABLE COEFFICIENT STDERROR T STAT P-VALUE
const 9.89496 0.928758 10.654 <0.00001 #**
Travgprs -1.27742 0.241684 -5.286 <0.00001
Tperinc 0.280405 0.245828 1.141 0.25401

Model 2: 1-step GMM estimates using the 48 observations 1-48
e = Ipackpc - b0 - bl*Travgprs - b2*1perinc

PARAMETER ESTIMATE STDERROR T STAT P-VALUE
b0 9.89496 0.928758 10.654 <0.00001 ***
bl -1.27742 0.241684 -5.286 <0.00001 **%*
b2 0.280405 0.245828 1.141 0.25401

GMM criterion = 0.0110046

24.5 Covariance matrix options

The covariance matrix of the estimated parameters depends on the choice of W through
S=gwnltyrwawjgwn! (24.10)

where J is a Jacobian term )

ofi

00;

and Q is the long-run covariance matrix of the orthogonality conditions.

Jij =

Gretl computes J by numeric differentiation (there is no provision for specifying a user-supplied
analytical expression for J at the moment). As for Q, a consistent estimate is needed. The simplest
choice is the sample covariance matrix of the f;s:

T
Qo(0) = % > fi(0)£:(0) (24.11)
t=1

This estimator is robust with respect to heteroskedasticity, but not with respect to autocorrela-
tion. A heteroskedasticity- and autocorrelation-consistent (HAC) variant can be obtained using
the Bartlett kernel or similar. A univariate version of this is used in the context of the 1rvar()
function—see equation (9.1). The multivariate version is set out in equation (24.12).

R 1 T—k k
Ok(0) = = 2| X wife(0)fii(0) |,
t=k

i=—k

(24.12)

Gretl computes the HAC covariance matrix by default when a GMM model is estimated on time
series data. You can control the kernel and the bandwidth (that is, the value of k in 24.12) using
the set command. See chapter 19 for further discussion of HAC estimation. You can also ask gretl
not to use the HAC version by saying

set force_hc on
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24.6 A real example: the Consumption Based Asset Pricing Model

To illustrate gretl’s implementation of GMM, we will replicate the example given in chapter 3 of
Hall (2005). The model to estimate is a classic application of GMM, and provides an example of a
case when orthogonality conditions do not stem from statistical considerations, but rather from
economic theory.

A rational individual who must allocate his income between consumption and investment in a
financial asset must in fact choose the consumption path of his whole lifetime, since investment
translates into future consumption. It can be shown that an optimal consumption path should
satisfy the following condition:

pU’ (ct) = SE [resx U’ (cesr) | Fi] (24.13)

where p is the asset price, U(-) is the individual’s utility function, ¢ is the individual’s subjective
discount rate and ¢, is the asset’s rate of return between time t and time t + k. F; is the infor-
mation set at time t; equation (24.13) says that the utility “lost” at time t by purchasing the asset
instead of consumption goods must be matched by a corresponding increase in the (discounted)
future utility of the consumption financed by the asset’s return. Since the future is uncertain, the
individual considers his expectation, conditional on what is known at the time when the choice is
made.

We have said nothing about the nature of the asset, so equation (24.13) should hold whatever asset
we consider; hence, it is possible to build a system of equations like (24.13) for each asset whose
price we observe.

If we are willing to believe that

e the economy as a whole can be represented as a single gigantic and immortal representative
individual, and

Xaa’l is a faithful representation of the individual’s preferences,

e the function U(x) =

then, setting k = 1, equation (24.13) implies the following for any asset j:

E |:5Tj,t+l (Ct+1 )“1
Pit Ct

j—"t] =1, (24.14)

where C; is aggregate consumption and « and é are the risk aversion and discount rate of the
representative individual. In this case, it is easy to see that the “deep” parameters & and 6 can be
estimated via GMM by using
¥ C ox—1
o = 5701 (Ll) 1

pit \ Ci
as the moment condition, while any variable known at time t may serve as an instrument.

In the example code given in 24.4, we replicate selected portions of table 3.7 in Hall (2005). The
variable consrat is defined as the ratio of monthly consecutive real per capita consumption (ser-
vices and nondurables) for the US, and ewr is the return-price ratio of a fictitious asset constructed
by averaging all the stocks in the NYSE. The instrument set contains the constant and two lags of
each variable.

The command set force_hc on on the second line of the script has the sole purpose of replicating
the given example: as mentioned above, it forces gretl to compute the long-run variance of the
orthogonality conditions according to equation (24.11) rather than (24.12).

We run gmm four times: one-step estimation for each of two initial weights matrices, then iterative
estimation starting from each set of initial weights. Since the number of orthogonality conditions
(5) is greater than the number of estimated parameters (2), the choice of initial weights should
make a difference, and indeed we see fairly substantial differences between the one-step estimates
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Listing 24.4: Estimation of the Consumption Based Asset Pricing Model

open hall.gdt
set force_hc on

scalar alpha
scalar delta
series e = 0

o o
v v

Tist inst = const consrat(-1) consrat(-2) ewr(-1) ewr(-2)

matrix VO 100000*I(neTem(inst))
matrix Z = { inst }
matrix V1 = $nobs*inv(Z’Z)

gmm e = delta*ewr*consratA(alpha-1)

orthog e ; inst

weights VO
params alpha delta
end gmm

gmm e = delta*ewr*consratA(alpha-1)

orthog e ; 1inst

weights V1
params alpha delta
end gmm

gmm e = delta*ewr*consratA(alpha-1)

orthog e ; inst

weights VO

params alpha delta
end gmm --iterate

gmm e = delta*ewr*consratA(alpha-1)

orthog e ; inst

weights V1

params alpha delta
end gmm --iterate

230
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Listing 24.5: Estimation of the Consumption Based Asset Pricing Model — output

Model 1: 1-step GMM estimates using the 465 observations 1959:04-1997:12
e = d*ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -3.14475 6.84439 -0.459 0.64590
d 0.999215 0.0121044 82.549 <0.00001 #**=*

GMM criterion = 2778.08

Model 2: 1l-step GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha 0.398194 2.26359 0.176  0.86036
d 0.993180 0.00439367 226.048 <0.00001 #**=*

GMM criterion = 14.247

Model 3: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -0.344325 2.21458 -0.155 0.87644
d 0.991566 0.00423620 234.070 <0.00001 #***

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)

Model 4: Iterated GMM estimates using the 465 observations 1959:04-1997:12
e = d¥ewr*consratA(alpha-1) - 1

PARAMETER ESTIMATE STDERROR T STAT  P-VALUE
alpha -0.344315 2.21359 -0.156 0.87639
d 0.991566 0.00423469 234.153 <0.00001 #**

GMM criterion = 5491.78
J test: Chi-square(3) = 11.8103 (p-value 0.0081)
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(Models 1 and 2). On the other hand, iteration reduces these differences almost to the vanishing
point (Models 3 and 4).

Part of the output is given in 24.5. It should be noted that the J test leads to a rejection of the
hypothesis of correct specification. This is perhaps not surprising given the heroic assumptions
required to move from the microeconomic principle in equation (24.13) to the aggregate system
that is actually estimated.

24.7 Caveats

A few words of warning are in order: despite its ingenuity, GMM is possibly the most fragile esti-
mation method in econometrics. The number of non-obvious choices one has to make when using
GMM is high, and in finite samples each of these can have dramatic consequences on the eventual
output. Some of the factors that may affect the results are:

1. Orthogonality conditions can be written in more than one way: for example, if E(x; — u) = 0,
then E(x¢/u — 1) = 0 holds too. It is possible that a different specification of the moment
conditions leads to different results.

2. As with all other numerical optimization algorithms, weird things may happen when the ob-
jective function is nearly flat in some directions or has multiple minima. BFGS is usually quite
good, but there is no guarantee that it always delivers a sensible solution, if one at all.

3. The 1-step and, to a lesser extent, the 2-step estimators may be sensitive to apparently trivial
details, like the re-scaling of the instruments. Different choices for the initial weights matrix
can also have noticeable consequences.

4. With time-series data, there is no hard rule on the appropriate number of lags to use when
computing the long-run covariance matrix (see section 24.5). Our advice is to go by trial and
error, since results may be greatly influenced by a poor choice. Future versions of gretl will
include more options on covariance matrix estimation.

Omne of the consequences of this state of things is that replicating various well-known published
studies may be extremely difficult. Any non-trivial result is virtually impossible to reproduce unless
all details of the estimation procedure are carefully recorded.
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Model selection criteria

25.1 Introduction

In some contexts the econometrician chooses between alternative models based on a formal hy-
pothesis test. For example, one might choose a more general model over a more restricted one if
the restriction in question can be formulated as a testable null hypothesis, and the null is rejected
on an appropriate test.

In other contexts one sometimes seeks a criterion for model selection that somehow measures the
balance between goodness of fit or likelihood, on the one hand, and parsimony on the other. The
balancing is necessary because the addition of extra variables to a model cannot reduce the degree
of fit or likelihood, and is very likely to increase it somewhat even if the additional variables are
not truly relevant to the data-generating process.

The best known such criterion, for linear models estimated via least squares, is the adjusted R?,

-2 . SSR/(n—k)
Re=1 TSS/(n — 1)

where n is the number of observations in the sample, k denotes the number of parameters esti-
mated, and SSR and TSS denote the sum of squared residuals and the total sum of squares for
the dependent variable, respectively. Compared to the ordinary coefficient of determination or
unadjusted R?,

SSR

TSS

the “adjusted” calculation penalizes the inclusion of additional parameters, other things equal.

R?=1

25.2 Information criteria

A more general criterion in a similar spirit is Akaike’s (1974) “Information Criterion” (AIC). The
original formulation of this measure is

AIC = —20(0) + 2k (25.1)

where BA(é) represents the maximum loglikelihood as a function of the vector of parameter esti-
mates, 0, and k (as above) denotes the number of “independently adjusted parameters within the
model.” In this formulation, with AIC negatively related to the likelihood and positively related to
the number of parameters, the researcher seeks the minimum AIC.

The AIC can be confusing, in that several variants of the calculation are “in circulation.” For exam-
ple, Davidson and MacKinnon (2004) present a simplified version,

AIC = £(0) — k

which is just —2 times the original: in this case, obviously, one wants to maximize AIC.

In the case of models estimated by least squares, the loglikelihood can be written as

2(0) =—%(1+log2rr—logn)—glogSSR (25.2)

233
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Substituting (25.2) into (25.1) we get
AIC = n(1 + log 2 —logn) + nlog SSR + 2k

which can also be written as

SSR

AIC = nlog (7) + 2k + n(1 + log 271) (25.3)

Some authors simplify the formula for the case of models estimated via least squares. For instance,

William Greene writes SSR ok
AIC = log (—) + — (25.4)
n n

This variant can be derived from (25.3) by dividing through by n and subtracting the constant
1 + log 2. That is, writing AIC; for the version given by Greene, we have

AlCg = %AIC — (1 + log2mT)

Finally, Ramanathan gives a further variant:
R
AICg = (g) e?k/n
n

which is the exponential of the one given by Greene.

Gretl began by using the Ramanathan variant, but since version 1.3.1 the program has used the
original Akaike formula (25.1), and more specifically (25.3) for models estimated via least squares.

Although the Akaike criterion is designed to favor parsimony, arguably it does not go far enough
in that direction. For instance, if we have two nested models with k — 1 and k parameters respec-
tively, and if the null hypothesis that parameter k equals O is true, in large samples the AIC will
nonetheless tend to select the less parsimonious model about 16 percent of the time (see Davidson
and MacKinnon, 2004, chapter 15).

An alternative to the AIC which avoids this problem is the Schwarz (1978) “Bayesian information
criterion” (BIC). The BIC can be written (in line with Akaike’s formulation of the AIC) as

BIC = —24(0) + klogn

The multiplication of k by logn in the BIC means that the penalty for adding extra parameters
grows with the sample size. This ensures that, asymptotically, one will not select a larger model
over a correctly specified parsimonious model.

A further alternative to AIC, which again tends to select more parsimonious models than AIC,
is the Hannan-Quinn criterion or HQC (Hannan and Quinn, 1979). Written consistently with the
formulations above, this is .

HQC = -2£4(0) + 2kloglogn

The Hannan-Quinn calculation is based on the law of the iterated logarithm (note that the last term
is the log of the log of the sample size). The authors argue that their procedure provides a “strongly
consistent estimation procedure for the order of an autoregression”, and that “compared to other
strongly consistent procedures this procedure will underestimate the order to a lesser degree.”

Gretl reports the AIC, BIC and HQC (calculated as explained above) for most sorts of models. The
key point in interpreting these values is to know whether they are calculated such that smaller
values are better, or such that larger values are better. In gretl, smaller values are better: one wants
to minimize the chosen criterion.
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Degrees of freedom correction

26.1 Introduction

This chapter gives a brief account of the issue of correction for degrees of freedom in the context
of econometric modeling, leading up to a discussion of the policies adopted in gretl in this regard.
We also explain how to supplement the results produced automatically by gretl if you want to apply
such a correction where gretl does not, or vice versa.

The first few sections are quite basic; experts are invited to skip to section 26.5.

26.2 Back to basics

It’s well known that given a sample, {x;}, of size n from a normally distributed population, the
Maximum Likelihood (ML) estimator of the population variance, o2, is

A2

oz (x; — %)*? (26.1)

M=

1
nia

where x is the sample mean, n=! > ' | x;. It's also well known that 62, while it is a consistent
estimator, is biased, and it is commonly replaced by the “sample variance”, namely,

5% = n% D (xi - x)? (26.2)
i=1

The intuition behind the bias in (26.1) is straightforward. First, the quantity we seek to estimate is
defined as

o2 =E [(xl- - u)z]

where u = E(x;); it is clear that if u were observable, a perfectly good estimator would be

l n
=2 _ Y
o nlél(xl <.

But this is not a practical option since u is generally unobservable and must be estimated; therefore,
we use X as an estimator of u: it is easily shown that x is the least-squares estimator, and also
(assuming normality) the ML estimator. It is unbiased, but is of course subject to sampling error;
in any given sample it is highly unlikely that X = u. Given that X is the least-squares estimator,
the sum of squared deviations of the x; from any value other than X must be greater than the
summation in (26.1). But since u is almost certainly not equal to X, the sum of squared deviations
of the x; from u will surely be greater than the sum of squared deviations in (26.1). It follows that
the expected value of 62 falls short of the population variance.

The proof that s? is indeed the unbiased estimator can be found in any good statistics textbook,
where we also learn that the magnitude n — 1 in (26.2) can be brought under a general description
as the “degrees of freedom” of the calculation at hand. (Given X, the n sample values provide only
n — 1 items of information since the n'" value can always be deduced via the formula for x.)

235
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26.3 Application to OLS regression

The argument above carries over into the usual calculation of standard errors in the context of OLS
regression as applied to the linear model v = XB + u. If the disturbances, u, are assumed to be
independently and identically distributed (IID), then the variance of the OLS estimator, B, is given
by

Var (B) =o?(X'X)!

where o2 is the variance of the error term and X is an n x k matrix of regressors. But how should
the unknown o2 be estimated? The ML estimator is

62 =

S|

n
> uy (26.3)
i=1

where the ﬁf are squared residuals, u; = y; — X;B. But this estimator is biased and we typically use
the unbiased counterpart

$= Loy (26.4)

n
=1

1

in which n — k is the number of degrees of freedom given n residuals from a regression where k
parameters are estimated.

The standard estimator of the variance of B in the context of OLS is then V = s2(X’X)"!. And the
standard errors of the individual parameter estimates, S being the square roots of the diagonal

elements of V, inherit a degrees of freedom correction from the estimator s?.

Going one step further, consider hypothesis testing in the context of OLS. Since the variance of
B is unknown and must itself be estimated, the sampling distribution of the OLS coefficients is
not, strictly speaking, normal. But if the disturbances are normally distributed (besides being IID)
then, even in small samples, the parameter estimates will follow a distribution that can be specified
exactly, namely the Student t distribution with degrees of freedom equal to the value given above,
v=n-k.

That is, besides using a df correction in computing the standard errors of the OLS coefficients,
one uses the same v in selecting the particular distribution to which the “t-ratio”, (8; — BO)/SBi,
should be referred in order to determine the marginal significance level or p-value for the null
hypothesis that f; = B°. This is the payoff to df correction: we get test statistics that follow a known
distribution in small samples. (In big enough samples the point is moot, since the quantitative
distinction between 62 and s? vanishes.)

So far, so good. Everyone expects df correction in plain OLS standard errors just as we expect
division by n — 1 in the sample variance. And users of econometric software expect that the p-
values reported for OLS coefficients will be based on the t(v) distribution—although they are
not always sufficiently aware that the validity of such statistics in small samples depends on the
assumption of normally distributed errors.

26.4 Beyond OLS

The situation is different when we move beyond estimation of the classical linear model via OLS. We
may wish to estimate nonlinear models (sometimes by least squares), and many models of interest
to econometricians are commonly estimated via maximization of a likelihood function, or via the
generalized method of moments (GMM).

In such cases we do not, in general, have exact small-sample results to rely upon; in particular,
we cannot assume that coefficient estimates follow the t distribution. Rather, we typically appeal
to asymptotic results in statistical theory. We seek consistent estimators which, although they
may be biased, nonetheless converge in probability to the corresponding parameter values as the
sample size goes to infinity. Under the right conditions, laws of large numbers and central limit
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theorems entitle us to expect that test statistics will converge to the normal distribution, or the x?
distribution for multivariate tests, given big enough samples.

To “correct” or not?

The question arises, should we or should we not apply a df “correction” in reporting variance
estimates and standard errors for models that depart from the classical linear specification?

The argument against applying df adjustment is that it lacks a theoretical basis: it does not pro-
duce test statistics that follow any known distribution in small samples. In addition, if parameter
estimates are obtained via ML, it makes sense to report ML estimates of variances even if these
are biased, since it is the ML quantities that are used in computing the criterion function and in
forming likelihood-ratio tests.

On the other hand, pragmatic arguments for doing df adjustment are (a) that it makes for closer
comparability between regular OLS estimates and nonlinear ones, and (b) that it provides a “pinch
of salt” in relation to small-sample results —that is, it inflates standard errors, confidence intervals
and p-values somewhat—even if it lacks rigorous justification.

Note that even for fairly small samples, the difference between the biased and unbiased estimators
in equations (26.1) and (26.2) above will be small. For example, if n = 30 then s2 = %&2. In
econometric modelling proper, however, the difference can be quite substantial. If n = 50 and
k = 10, the s2 defined in (26.4) will be 50/40 = 1.25 as large as the -2 in (26.3), and standard errors
will be about 12 percent larger.! One can make a case for inflating the standard errors obtained
via nonlinear estimators as a precaution against taking results to be “more precise than they really
are”.

In rejoinder to the last point, one might equally say that savvy econometricians should know to
apply a discount factor (albeit an imprecise one) to small-sample estimates outside of the classical,
normal linear model—or even that they should distrust such results and insist on large samples
before making inferences. This line of thinking suggests that test statistics such as z = f;/ @'Bi
should be referred to the distribution to which they conform asymptotically—in this case N(0, 1)
for Hy : B; = 0—if and only if the conditions for appealing to asymptotic results can be considered
as met. From this point of view df adjustment may be seen as providing a false sense of security.

26.5 Consistency and awkward cases

Consistency (in the ordinary sense of uniformity of treatment) is a bugbear when dealing with
this issue. To give a simple example, suppose an econometrics program follows the policy of
applying df correction for OLS estimation but not for ML estimation. One is, of course, free to
estimate the classical, normal linear model via ML, in which case 8 should be numerically identical
to that obtained via OLS. But the user of the software will obtain two different sets of standard
errors depending on the estimation method. Admittedly, this example is not very troublesome;
presumably one would apply ML to the classical linear model only to make a pedagogical point.

Here is a more awkward case. An unrestricted vector autoregression (VAR) is a system of equations,
but the ML estimate of this system, given normal errors, is equivalent to equation-by-equation OLS.
Should df correction be applied to VARs? Consistency with OLS argues Yes. However, a popular
extension of the VAR methodology is the vector error-correction model (VECM). VECMs are closely
related to VARs and one might well be interested in making comparisons across the two, but a
VECM is a nonlinear system and the cointegrating vectors that lie at the heart of this model must
be estimated via Maximum Likelihood. So perhaps VAR results should not be df adjusted, for
comparability with VECMs.

LA fairly typical situation in time-series macroeconometrics would be have between 100 and 200 quarterly observa-
tions, and to be estimating up to maybe 30 parameters including lags. In this case df correction would make a difference
to standard errors on the order of 10 percent.
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Another “grey area” is the class of Feasible Generalized Least Squares (FGLS) estimators —for exam-
ple, weighted least squares following the estimation of a skedastic function, or estimators designed
to handle first-order autocorrelation, such as Cochrane-Orcutt. These depart from the classical lin-
ear model, and the theoreretical basis for inference in such models is asymptotic, yet according to
econometric tradition standard errors are generally df adjusted.

Yet another awkward case: “robust” (heteroskedasticity- and/or autocorrelation-consistent) stan-
dard errors in the context of OLS. Such estimators are justified by asymptotic arguments and in
general we cannot determine their small-sample distributions. That would argue for referring the
associated test statistics to the normal distribution. But comparability with classical standard
errors pulls in the other direction. Suppose in a particular case a robust estimator produces a
standard error that is numerically indistinguishable from the classical one: if the former is referred
to the normal distribution and the latter to the t distribution, switching to robust standard errors
will give a smaller p-value for the coefficient in question, making it appear “more significant,” and
arguably this is misleading.

26.6 What gretl does

First of all, the third column in gretl model output—following “coefficient” and “std. error” —is
labeled either “t-ratio” or “z.” This is your signal: “t-ratio” indicates that the estimated standard
error employs a degrees of freedom adjustment and the reported p-value is obtained from the

Student t distribution, while “z” indicates that no such adjustment is applied and the p-value
comes from the standard normal distribution.

If you see that gretl is applying a df adjustment but you don’t want this, the first point to check is
whether you can switch to the asymptotic variant by using an option flag or other command.

e The ols and ts1s commands support a --no-df-corr option to suppress degrees of freedom
adjustment. In the case of Two-Stage Least Squares it’s certainly arguable that df correction
should not be performed by default, however gretl does this, largely for comparability with
other software (for example Stata’s ivreg command). But you can override the default if you
wish.

e The estimate command, for systems of equations, also supports the --no-df-corr option
when the specified estimation method is OLS or TSLS. (For other estimators supported by
gretl’s system command no df adjustment is applied by default.)

e By default gretl uses the t distribution for statistics based on robust standard errors under
OLS. However, users can specify that p-values be calculated using the standard normal distri-
bution whenever the --robust option is passed to an estimation command, by means of the
following “set” command

set robust_z on

If these possibilities do not apply, it is fairly straightforward to “purge” regression results of df
correction, as illustrated in the following script fragment. We assume that a model has just been
estimated, so that the model-related accessors ($stderr, $coeff and so on) are available.

matrix se = $stderr * sqrt($df/3$T)
matrix zscore = $coeff ./ se

matrix pv = 2 * pvalue(z, abs(zscore))
matrix M = $coeff ~ se ~ zscore ~ pv
colnames (M, "coeff stderr z p-value")
print M

This will print the original coefficient estimates along with asymptotic standard errors and the
associated z-scores and (two-sided) normal p-values. The converse case is left as an exercise for
the reader.
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VARs

As mentioned above, Vector Autoregressions constitute a particularly awkward case, with consid-
erations of consistency of treatment pulling in two opposite directions. For that reason gretl has
adopted an “agnostic” policy in relation to such systems. We do not offer a $vcv accessor, but
instead accessors named $xtxinv (the matrix X’ X! for the system as a whole) and $sigma (an
estimate of the cross-equation variance-covariance matrix, ). It’s then up to the user to build an
estimate of the variance matrix of the parameter estimates—call it V —should that be required.

Note that $sigma gives the Maximum Likelihood Estimator (without a degrees of freedom adjust-
ment) so if you do

matrix Vml = $sigma ** $xtxinv

(where “**” represents Kronecker product) you obtain the MLE of the variance matrix of the param-
eter estimates. But if you want the unbiased estimator you can do

matrix S = $sigma * $T/($T-$ncoeff)
matrix Vu = S ** $xtxinv

to employ a suitably inflated variant of the X estimate. (For VARs, and also VECMs, $ncoeff gives
the number of coefficients per equation.)

The second variant above is such that the vector of standard errors produced by
matrix SE = sqrt(diag(Vu))

agrees with the standard errors printed as part of the per-equation VAR output.

A fuller example of usage of the $xtxinv accessor is given in Listing 26.1: this shows how one can
replicate the F-tests for Granger causality that are displayed by default by the var command, with
the refinement that, depending on the setting of the USE_F flag, these tests can be done using a
small sample correction as in gretl’s output or in asymptotic (x2) form.

Vector Error Correction Models are more complex than VARs in this respect, since we employ
Johansen’s variance estimator for the “” terms. FIXME expand on this.
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Listing 26.1: Computing statistics to test for Granger causality

open denmark.gdt

Tist LST = LRM LRY IBO IDE

scalar p = 2 # lags in VAR

scalar USE_F = 1 # small sample correction?

var p LST --quiet

k = neTem(LST)
matrix theta = vec($coeff)

matrix V = $sigma ** $xtxinv
if USE_F
scalar df = $T - $ncoeff
V *= $T/df
endif

matrix GC = zeros(k, k)
colnames(GC, LST)
rownames (GC, LST)

matrix idx = seq(l,p) + 1
Toop i = 1..k -q
Toop j = 1..k -q
GC[i,]j] = gform(thetalidx]’, invpd(V[idx,idx]))
idx += (3==k)? p+1 : p
endloop
endloop

if USE_F

GC /=p

matrix pvals
else

matrix pvals
endif

pvalue(F, p, df, GO

pvalue(X, p, GO

colnames(pvals, LST)
rownames (pvals, LST)
print GC pvals
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Time series filters

In addition to the usual application of lags and differences, gretl provides fractional differencing
and various filters commonly used in macroeconomics for trend-cycle decomposition: notably the
Hodrick-Prescott filter (Hodrick and Prescott, 1997), the Baxter-King bandpass filter (Baxter and
King, 1999) and the Butterworth filter (Butterworth, 1930).

27.1 Fractional differencing

The concept of differencing a time series d times is pretty obvious when d is an integer; it may seem
odd when d is fractional. However, this idea has a well-defined mathematical content: consider the
function

fl2)=01-274,
where z and d are real numbers. By taking a Taylor series expansion around z = 0, we see that
f(z)=1+dz+Mz2+---

2
or, more compactly, N
f(2) =1+ piz'
i=1

e M, d+i-1) d+k-1

(llk = 7# = (pk—lT
The same expansion can be used with the lag operator, so that if we defined

Ye = (1-0D)%X,

this could be considered shorthand for

Yi = X¢ —0.5X;-1 —0.125X;_» — 0.0625X; -3 — - - -

In gretl this transformation can be accomplished by the syntax

genr Y = fracdiff(X,0.5)

27.2 The Hodrick-Prescott filter

This filter is accessed using the hpfilt() function, which takes as its first argument the name of
the variable to be processed. (Further optional arguments are explained below.)

A time series y; may be decomposed into a trend or growth component g; and a cyclical component
Ct.
Ye=git+c, t=12,...,T

241
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The Hodrick-Prescott filter effects such a decomposition by minimizing the following:

T T-1
-9 +A D> (Gt —g0) — (ge ~gr-))%.
t=1 t=2

The first term above is the sum of squared cyclical components ¢; = y; — g¢. The second term is a
multiple A of the sum of squares of the trend component’s second differences. This second term
penalizes variations in the growth rate of the trend component: the larger the value of A, the higher
is the penalty and hence the smoother the trend series.

Note that the hpfiTt function in gretl produces the cyclical component, c;, of the original series.
If you want the smoothed trend you can subtract the cycle from the original:

genr ct
genr gt

hpfilt(yt)
yt - ct

Hodrick and Prescott (1997) suggest that a value of A = 1600 is reasonable for quarterly data. The
default value in gretl is 100 times the square of the data frequency (which, of course, yields 1600
for quarterly data). The value can be adjusted using an optional second argument to hpfilt(), as
in

genr ct = hpfilt(yt, 1300)

As of version 2018a, the hpfiTt() function accepts a third, optional Boolean argument. If set to
non-zero, what is performed is the so-called one-sided version of the filter. See Section 33.10 for
further details.

27.3 The Baxter and King filter

This filter is accessed using the bkfilt() function, which again takes the name of the variable to
be processed as its first argument. The operation of the filter can be controlled via three further
optional argument.

Consider the spectral representation of a time series y;:
1T .
Vi = J e'’dZ(w)
—TT

To extract the component of y; that lies between the frequencies w and @ one could apply a
bandpass filter:

Tr .
cf = J F*(w)e'dZ(w)
-
where F*(w) = 1 for w < |w|] < @ and O elsewhere. This would imply, in the time domain,

applying to the series a filter with an infinite number of coefficients, which is undesirable. The
Baxter and King bandpass filter applies to y; a finite polynomial in the lag operator A(L):

cr = AL)yr
where A(L) is defined as
k
AL) = > al!
i=—k

The coefficients a; are chosen such that F(w) = A(e'?)A(e %) is the best approximation to F* (w)
for a given k. Clearly, the higher k the better the approximation is, but since 2k observations have
to be discarded, a compromise is usually sought. Moreover, the filter has also other appealing
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theoretical properties, among which the property that A(1) = 0, so a series with a single unit root
is made stationary by application of the filter.

In practice, the filter is normally used with monthly or quarterly data to extract the “business
cycle” component, namely the component between 6 and 36 quarters. Usual choices for k are 8 or
12 (maybe higher for monthly series). The default values for the frequency bounds are 8 and 32,
and the default value for the approximation order, k, is 8. You can adjust these values using the
full form of bkfilt(), which is

bkfilt(seriesname, f1, 2, k)

where f1 and f2 represent the lower and upper frequency bounds respectively.

27.4 The Butterworth filter

The Butterworth filter (Butterworth, 1930) is an approximation to an “ideal” square-wave filter.
The ideal filter divides the spectrum of a time series into a pass-band (frequencies less than some
chosen w* for a low-pass filter, or frequencies greater than w* for high-pass) and a stop-band; the
gain is 1 for the pass-band and O for the stop-band. The ideal filter is unattainable in practice since
it would require an infinite number of coefficients, but the Butterworth filter offers a remarkably
good approximation. This filter is derived and persuasively advocated by Pollock (2000).

For data y, the filtered sequence x is given by

x=y-AZQM +AQ'2Q)"'Qy (27.1)
where
S={2Ir - (Lt +L7H)}T% and M = {2Ir + (Lt + L7Y)}T
It denotes the identity matrix of order T; Lt = [e1,ep,...,er_1,0] is the finite-sample matrix

version of the lag operator; and Q is defined such that pre-multiplication of a T-vector of data by
Q' of order (T — 2) x T produces the second differences of the data. The matrix product

Q'=Q = {2Ir — (Lt + Lz} "
is a Toeplitz matrix.

The behavior of the Butterworth filter is governed by two parameters: the frequency cutoff w* and
an integer order, n, which determines the number of coefficients used. The A that appears in (27.1)
is tan(w™*/2) 2", Higher values of n produce a better approximation to the ideal filter in principle
(i.e. a sharper cut between the pass-band and the stop-band) but there is a downside: with a greater
number of coefficients numerical instability may be an issue, and the influence of the initial values
in the sample may be exaggerated.

In gretl the Butterworth filter is implemented by the bwfiTt() function,! which takes three argu-
ments: the series to filter, the order n and the frequency cutoff, w*, expressed in degrees. The
cutoff value must be greater than 0 and less than 180. This function operates as a low-pass filter;
for the high-pass variant, subtract the filtered series from the original, as in

series bwcycle = y - bwfilt(y, 8, 67)

Pollock recommends that the parameters of the Butterworth filter be tuned to the data: one should
examine the periodogram of the series in question (possibly after removal of a polynomial trend)
in search of a “dead spot” of low power between the frequencies one wishes to exclude and the
frequencies one wishes to retain. If w* is placed in such a dead spot then the job of separation
can be done with a relatively small »n, hence avoiding numerical problems. By way of illustration,
consider the periodogram for quarterly observations on new cars sales in the US,2 1975:1 to 1990:4
(the upper panel in Figure 27.1).

IThe code for this filter is based on D. S. G. Pollock’s programs IDEOLOG and DETREND. The Pascal source code for



Chapter 27. Time series filters

244
periods
64.0 10.7 5.8 4.0 3.0 2.5 2.1
T T T T T T T
300000 | -
250000 - || g
it
200000 L || |
I
I
150000 - 3\ S
‘
100000 - | | i
|
50000 (- | | g
0 \\\ S N N T —
0 20 40 60 80 100 120 140 160 180
degrees
3400 T T T T T T
| QNC (original data) |
3200 | QNC (smoothed) ——— - 1 i
I / \
3000 .l | \
\ n L 0.8 \ :
2800 \
0.6 - | -
2600 ‘
2400 0.4 - \ 1
2200 - 02 F \ .
2000 \ 0 \ A
1800 |- N 0 /4 n/2 3n/4 T
1600 Il Il Il Il Il Il Il Il

1976 1978 1980 1982 1984 1986 1988 1990

Figure 27.1: The Butterworth filter applied

A seasonal pattern is clearly visible in the periodogram, centered at an angle of 90° or 4 periods.
If we set w* = 68° (or thereabouts) we should be able to excise the seasonality quite cleanly using
n = 8. The result is shown in the lower panel of the Figure, along with the frequency response or

gain plot for the chosen filter. Note the smooth and reasonably steep drop-off in gain centered on
the nominal cutoff of 68° ~ 37r/8.

The apparatus that supports this sort of analysis in the gretl GUI can be found under the Variable
menu in the main window: the items Periodogram and Filter. In the periodogram dialog box you
have the option of expressing the frequency axis in degrees, which is helpful when selecting a

Butterworth filter; and in the Butterworth filter dialog you have the option of plotting the frequency
response as well as the smoothed series and/or the residual or cycle.

the former is available from http://www.le.ac.uk/users/dsgpl and the C sources for the latter were kindly made
available to us by the author.

2This is the variable QNC from the Ramanathan data file data9-7.


http://www.le.ac.uk/users/dsgp1

Chapter 28

Univariate time series models

28.1 Introduction

Time series models are discussed in this chapter and the next two. Here we concentrate on ARIMA
models, unit root tests, and GARCH. The following chapter deals with VARs, and chapter 30 with
cointegration and error correction.

28.2 ARIMA models
Representation and syntax

The arma command performs estimation of AutoRegressive, Integrated, Moving Average (ARIMA)
models. These are models that can be written in the form

P(L)y: = O(L)et (28.1)

where ¢ (L), and (L) are polynomials in the lag operator, L, defined such that L"x; = x;_5, and
€; is a white noise process. The exact content of y;, of the AR polynomial ¢ (), and of the MA
polynomial 6 (), will be explained in the following.

Mean terms

The process y; as written in equation (28.1) has, without further qualifications, mean zero. If the
model is to be applied to real data, it is necessary to include some term to handle the possibility
that y; has non-zero mean. There are two possible ways to represent processes with nonzero
mean: one is to define y; as the unconditional mean of y;, namely the central value of its marginal
distribution. Therefore, the series y; = y; — u; has mean 0, and the model (28.1) applies to ;. In
practice, assuming that y; is a linear function of some observable variables x;, the model becomes

d(L) (Yt —xB) = O(L)es (28.2)

This is sometimes known as a “regression model with ARMA errors”; its structure may be more
apparent if we represent it using two equations:

i = xiB+u
P (L)ug O(L)et

The model just presented is also sometimes known as “ARMAX” (ARMA + eXogenous variables). It
seems to us, however, that this label is more appropriately applied to a different model: another
way to include a mean term in (28.1) is to base the representation on the conditional mean of vy,
that is the central value of the distribution of y; given its own past. Assuming, again, that this can
be represented as a linear combination of some observable variables z;, the model would expand
to

dL)ye = zry + O(L)e; (28.3)

The formulation (28.3) has the advantage that y can be immediately interpreted as the vector of
marginal effects of the z; variables on the conditional mean of y;. And by adding lags of z; to

245
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this specification one can estimate Transfer Function models (which generalize ARMA by adding
the effects of exogenous variable distributed across time).

Gretl provides a way to estimate both forms. Models written as in (28.2) are estimated by maximum
likelihood; models written as in (28.3) are estimated by conditional maximum likelihood. (For more
on these options see the section on “Estimation” below.)

In the special case when x; = z; = 1 (that is, the models include a constant but no exogenous
variables) the two specifications discussed above reduce to

dL)(ye — ) = O(L)es (28.4)

and
d(L)yr = x+ O(L)e; (28.5)

respectively. These formulations are essentially equivalent, but if they represent one and the same
process u and « are, fairly obviously, not numerically identical; rather

a=(1-p1—...~pp)u

The gretl syntax for estimating (28.4) is simply

arma p q ; y
The AR and MA lag orders, p and g, can be given either as numbers or as pre-defined scalars.
The parameter u can be dropped if necessary by appending the option --nc (“no constant”) to the
command. If estimation of (28.5) is needed, the switch --conditional must be appended to the
command, as in

arma p q ; y --conditional
Generalizing this principle to the estimation of (28.2) or (28.3), you get that

arma p q ; y const x1 x2
would estimate the following model:

Vi —xtB =1 (V-1 —xt-1B) + ...+ Pp (yt—p - Xt—pB) +e€+ 0161+ ...+ 0464

where in this instance x;8 = B¢ + x:,181 + Xt,282. Appending the --conditional switch, as in

arma p g ; y const x1 x2 --conditional
would estimate the following model:

Vi=XtYy + P11+ ...+ PpYVip €+ 0161+ ...+ 04614

Ideally, the issue broached above could be made moot by writing a more general specification that

nests the alternatives; that is
D(L) (vt — xtB) = zry + O(L)e; (28.6)

we would like to generalize the arma command so that the user could specify, for any estimation
method, whether certain exogenous variables should be treated as x;s or z;s, but we’re not yet at
that point (and neither are most other software packages).
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Seasonal models

A more flexible lag structure is desirable when analyzing time series that display strong seasonal
patterns. Model (28.1) can be expanded to

P(L)P(LY)yr = O(L)O(L?)€. (28.7)

For such cases, a fuller form of the syntax is available, namely,
armapgq; PQ;y

where p and g represent the non-seasonal AR and MA orders, and P and Q the seasonal orders. For
example,

arma 11 ; 11 ; vy

would be used to estimate the following model:
(1-¢pL)(1 L) (yr —p) = (1 +OL)(1 + OL )€,
If y; is a quarterly series (and therefore s = 4), the above equation can be written more explicitly as
Ye—M=P(Ve-1 — ) +P(YVega — ) — (P - P)(Yr-5 — ) + € + O€r—1 + O€t—a + (0 - O)€r—s

Such a model is known as a “multiplicative seasonal ARMA model”.

Gaps in the lag structure

The standard way to specify an ARMA model in gretl is via the AR and MA orders, p and g respec-
tively. In this case all lags from 1 to the given order are included. In some cases one may wish to
include only certain specific AR and/or MA lags. This can be done in either of two ways.

e One can construct a matrix containing the desired lags (positive integer values) and supply
the name of this matrix in place of p or g.

e One can give a comma-separated list of lags, enclosed in braces, in place of p or q.
The following code illustrates these options:

matrix pvec = {1,4}
arma pvec 1 ; vy
arma {1,4} 1 ; vy
Both forms above specify an ARMA model in which AR lags 1 and 4 are used (but not 2 and 3).

This facility is available only for the non-seasonal component of the ARMA specification.

Differencing and ARIMA

The above discussion presupposes that the time series y; has already been subjected to all the
transformations deemed necessary for ensuring stationarity (see also section 28.3). Differencing is
the most common of these transformations, and gretl provides a mechanism to include this step
into the arma command: the syntax

armapdq;y

would estimate an ARMA(p, q) model on A4y;. It is functionally equivalent to
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series tmp =y

Toop i=1..d
tmp = diff(tmp)
endTloop

arma p q ; tmp

except with regard to forecasting after estimation (see below).

When the series y; is differenced before performing the analysis the model is known as ARIMA (“I”
for Integrated); for this reason, gretl provides the arima command as an alias for arma.

Seasonal differencing is handled similarly, with the syntax
armapdq; PDQ; vy

where D is the order for seasonal differencing. Thus, the command
arma 100 ; 111;vy

would produce the same parameter estimates as

series dsy = sdiff(y)
arma 10 ; 11 ; dsy

where we use the sdiff function to create a seasonal difference (e.g. for quarterly data, y; — y;—4).

In specifying an ARIMA model with exogenous regressors we face a choice which relates back to the
discussion of the variant models (28.2) and (28.3) above. If we choose model (28.2), the “regression
model with ARMA errors”, how should this be extended to the case of ARIMA? The issue is whether
or not the differencing that is applied to the dependent variable should also be applied to the
regressors. Consider the simplest case, ARIMA with non-seasonal differencing of order 1. We may
estimate either

(L)1 - L)(ye — XeB) = O(L)€; (28.8)

or
d(L) (1= L)yt — X¢B) = O(L)et (28.9)

The first of these formulations can be described as a regression model with ARIMA errors, while the
second preserves the levels of the X variables. As of gretl version 1.8.6, the default model is (28.8),
in which differencing is applied to both y; and X;. However, when using the default estimation
method (native exact ML, see below), the option --y-diff-onTly may be given, in which case gretl
estimates (28.9).!

Estimation

The default estimation method for ARMA models is exact maximum likelihood estimation (under
the assumption that the error term is normally distributed), using a variety of techniques: the main
algorithm for evaluating the log-likelihood is AS197 by Melard (1984). Maximization is performed
via BFGS and the score is approximated numerically. This method produces results that are di-
rectly comparable with many other software packages. The constant, and any exogenous variables,
are treated as in equation (28.2). The covariance matrix for the parameters is computed using a
numerical approximation to the Hessian at convergence.

The alternative method, invoked with the --conditional switch, is conditional maximum likeli-
hood (CML), also known as “conditional sum of squares” (see Hamilton, 1994, p. 132). This method
was exemplified in the script 12.3, and only a brief description will be given here. Given a sample of
size T, the CML method minimizes the sum of squared one-step-ahead prediction errors generated

IPrior to gretl 1.8.6, the default model was (28.9). We changed this for the sake of consistency with other software.
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by the model for the observations tg,..., T. The starting point ty depends on the orders of the AR
polynomials in the model. The numerical maximization method used is BHHH, and the covariance
matrix is computed using a Gauss-Newton regression.

The CML method is nearly equivalent to maximum likelihood under the hypothesis of normality;
the difference is that the first (to — 1) observations are considered fixed and only enter the like-
lihood function as conditioning variables. As a consequence, the two methods are asymptotically
equivalent under standard conditions —except for the fact, discussed above, that our CML imple-
mentation treats the constant and exogenous variables as per equation (28.3).

The two methods can be compared as in the following example

open datalO-1
arma 11 ; r
arma 1 1 ; r --conditional

which produces the estimates shown in Table 28.1. As you can see, the estimates of ¢ and 0
are quite similar. The reported constants differ widely, as expected —see the discussion following
equations (28.4) and (28.5). However, dividing the CML constant by 1 — ¢ we get 7.38, which is not
far from the ML estimate of 6.93.

Table 28.1: ML and CML estimates

Parameter ML CML
u 6.93042 (0.923882) 1.07322 (0.488661)
o)) 0.855360 (0.0511842) 0.852772 (0.0450252)
0 0.588056 (0.0986096) 0.591838 (0.0456662)

Convergence and initialization

The numerical methods used to maximize the likelihood for ARMA models are not guaranteed
to converge. Whether or not convergence is achieved, and whether or not the true maximum of
the likelihood function is attained, may depend on the starting values for the parameters. Gretl
employs one of the following two initialization mechanisms, depending on the specification of the
model and the estimation method chosen.

1. Estimate a pure AR model by Least Squares (nonlinear least squares if the model requires
it, otherwise OLS). Set the AR parameter values based on this regression and set the MA
parameters to a small positive value (0.0001).

2. The Hannan-Rissanen method: First estimate an autoregressive model by OLS and save the
residuals. Then in a second OLS pass add appropriate lags of the first-round residuals to the
model, to obtain estimates of the MA parameters.

To see the details of the ARMA estimation procedure, add the --verbose option to the command.
This prints a notice of the initialization method used, as well as the parameter values and log-
likelihood at each iteration.

Besides the built-in initialization mechanisms, the user has the option of specifying a set of starting
values manually. This is done via the set command: the first argument should be the keyword
initvals and the second should be the name of a pre-specified matrix containing starting values.
For example

matrix start = { 0, 0.85, 0.34 }
set initvals start
arma 11 ; vy
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The specified matrix should have just as many parameters as the model: in the example above
there are three parameters, since the model implicitly includes a constant. The constant, if present,
is always given first; otherwise the order in which the parameters are expected is the same as the
order of specification in the arma or arima command. In the example the constant is set to zero,
¢1 to 0.85, and 0; to 0.34.

You can get gretl to revert to automatic initialization via the command set initvals auto.

Two variants of the BFGS algorithm are available in gretl. In general we recommend the default vari-
ant, which is based on an implementation by Nash (1990), but for some problems the alternative,
limited-memory version (L-BFGS-B, see Byrd et al., 1995) may increase the chances of convergence
on the ML solution. This can be selected via the --1bfgs option to the arma command.

Estimation via X-12-ARIMA

As an alternative to estimating ARMA models using “native” code, gretl offers the option of using
the external program X-12-ARIMA. This is the seasonal adjustment software produced and main-
tained by the U.S. Census Bureau; it is used for all official seasonal adjustments at the Bureau.

Gretl includes a module which interfaces with X-12-ARIMA: it translates arma commands using the
syntax outlined above into a form recognized by X-12-ARIMA, executes the program, and retrieves
the results for viewing and further analysis within gretl. To use this facility you have to install
X-12-ARIMA separately. Packages for both MS Windows and GNU/Linux are available from the gretl
website, http://gretl.sourceforge.net/.

To invoke X-12-ARIMA as the estimation engine, append the flag --x-12-arima, as in
arma p q ; y --x-12-arima

As with native estimation, the default is to use exact ML but there is the option of using conditional
ML with the --conditional flag. However, please note that when X-12-ARIMA is used in conditional
ML mode, the comments above regarding the variant treatments of the mean of the process y; do
not apply. That is, when you use X-12-ARIMA the model that is estimated is (28.2), regardless
of whether estimation is by exact ML or conditional ML. In addition, the treatment of exogenous
regressors in the context of ARIMA differencing is always that shown in equation (28.8).

Forecasting

ARMA models are often used for forecasting purposes. The autoregressive component, in particu-
lar, offers the possibility of forecasting a process “out of sample” over a substantial time horizon.

Gretl supports forecasting on the basis of ARMA models using the method set out by Box and
Jenkins (1976).2 The Box and Jenkins algorithm produces a set of integrated AR coefficients which
take into account any differencing of the dependent variable (seasonal and/or non-seasonal) in the
ARIMA context, thus making it possible to generate a forecast for the level of the original variable.
By contrast, if you first difference a series manually and then apply ARMA to the differenced series,
forecasts will be for the differenced series, not the level. This point is illustrated in Listing 28.1.
The parameter estimates are identical for the two models. The forecasts differ but are mutually
consistent: the variable fcdiff emulates the ARMA forecast (static, one step ahead within the
sample range, and dynamic out of sample).

2See in particular their “Program 4” on p. 505ff.


http://gretl.sourceforge.net/
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Listing 28.1: ARIMA forecasting

open greenel8_2.gdt

# log of quarterly U.S. nominal GNP, 1950:1 to 1983:4
series y = log(Y)

# and its first difference

series dy = diff(y)

# reserve 2 years for out-of-sample forecast
smpl ; 1981:4

# Estimate using ARIMA

arima 111 ; vy

# forecast over full period

smpl --full

fcast fcl

# Return to sub-sample and run ARMA on the first difference of y

smpl ; 1981:4
arma 1 1 ; dy
smpl --full
fcast fc2

series fcdiff = (t<=1982:1)?7 (fcl - y(-1)) : (fcl - fcl(-1))

# compare the forecasts over the later period
smpl 1981:1 1983:4
print y fcl fc2 fcdiff --byobs

The output from the last command is:

y fcl fc2 fcdiff
1981:1 7.964086 7.940930 0.02668 0.02668
1981:2 7.978654 7.997576 0.03349 0.03349
1981:3 8.009463 7.997503 0.01885 0.01885
1981:4 8.015625 8.033695 0.02423 0.02423
1982:1 8.014997 8.029698 0.01407 0.01407
1982:2 8.026562 8.046037 0.01634 0.01634
1982:3 8.032717 8.063636 0.01760 0.01760
1982:4 8.042249 8.081935 0.01830 0.01830
1983:1 8.062685 8.100623 0.01869 0.01869
1983:2 8.091627 8.119528 0.01891 0.01891
1983:3 8.115700 8.138554 0.01903 0.01903
1983:4 8.140811 8.157646 0.01909 0.01909
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28.3 Unit root tests
The ADF test

The Augmented Dickey-Fuller (ADF) test is, as implemented in gretl, the t-statistic on @ in the
following regression:

4
Ay =l + QY1 + Z Yilye i + €. (28.10)
i=1

This test statistic is probably the best-known and most widely used unit root test. It is a one-sided
test whose null hypothesis is ¢ = 0 versus the alternative ¢ < 0 (and hence large negative values
of the test statistic lead to the rejection of the null). Under the null, y; must be differenced at least
once to achieve stationarity; under the alternative, y; is already stationary and no differencing is
required.

Omne peculiar aspect of this test is that its limit distribution is non-standard under the null hy-
pothesis: moreover, the shape of the distribution, and consequently the critical values for the test,
depends on the form of the u; term. A full analysis of the various cases is inappropriate here:
Hamilton (1994) contains an excellent discussion, but any recent time series textbook covers this
topic. Suffice it to say that gretl allows the user to choose the specification for y; among four
different alternatives:

Uz command option
0 --nc
Ho --C
Mo + pit --ct
Mo + pit + ppt? --ctt

These option flags are not mutually exclusive; when they are used together the statistic will be
reported separately for each selected case. By default, gretl uses the combination --c --ct. For
each case, approximate p-values are calculated by means of the algorithm developed in MacKinnon
(1996).

The gretl command used to perform the test is adf; for example
adf 4 x1

would compute the test statistic as the t-statistic for @ in equation 28.10 with p = 4 in the two
cases Uy = Ho and yy = o + prt.

The number of lags (p in equation 28.10) should be chosen as to ensure that (28.10) is a parametriza-
tion flexible enough to represent adequately the short-run persistence of Ay;. Setting p too low
results in size distortions in the test, whereas setting p too high leads to low power. As a conve-
nience to the user, the parameter p can be automatically determined. Setting p to a negative num-
ber triggers a sequential procedure that starts with p lags and decrements p until the t-statistic for
the parameter y, exceeds 1.645 in absolute value.

The ADF-GLS test

Elliott, Rothenberg and Stock (1996) proposed a variant of the ADF test which involves an alterna-
tive method of handling the parameters pertaining to the deterministic term ;: these are estimated
first via Generalized Least Squares, and in a second stage an ADF regression is performed using the
GLS residuals. This variant offers greater power than the regular ADF test for the cases y; = up and
Hr = Ho + pit.

The ADF-GLS test is available in gretl via the --g1s option to the adf command. When this option
is selected the --nc and --ctt options become unavailable, and only one case can be selected at
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a time; by default the constant-only model is used but a trend can be added using the --ct flag.
When a trend is present in this test MacKinnon-type p-values are not available; instead we show
critical values from Table 1 in Elliott et al. (1996).

The KPSS test

The KPSS test (Kwiatkowski, Phillips, Schmidt and Shin, 1992) is a unit root test in which the null
hypothesis is opposite to that in the ADF test: under the null, the series in question is stationary;
the alternative is that the series is I(1).

The basic intuition behind this test statistic is very simple: if y; can be written as y; = u + uy,
where u; is some zero-mean stationary process, then not only does the sample average of the y;s
provide a consistent estimator of u, but the long-run variance of u; is a well-defined, finite number.
Neither of these properties hold under the alternative.

The test itself is based on the following statistic:

Sio1 St
where S; = Z§=1 es and G2 is an estimate of the long-run variance of e; = (y; — ). Under the null,
this statistic has a well-defined (nonstandard) asymptotic distribution, which is free of nuisance
parameters and has been tabulated by simulation. Under the alternative, the statistic diverges.

As a consequence, it is possible to construct a one-sided test based on n, where Hj is rejected if
n is bigger than the appropriate critical value; gretl provides the 90, 95 and 99 percent quantiles.
The critical values are computed via the method presented by Sephton (1995), which offers greater
accuracy than the values tabulated in Kwiatkowski et al. (1992).

Usage example:
kpss m y

where m is an integer representing the bandwidth or window size used in the formula for estimating

the long run variance:
m

> ] ) N
2= 1-——— ) ¥
. 2. ( m+1)Y
i=—m
The y; terms denote the empirical autocovariances of e; from order —m through m. For this
estimator to be consistent, m must be large enough to accommodate the short-run persistence of
et, but not too large compared to the sample size T. If the supplied m is non-positive a default value

1/4
is computed, namely the integer part of 4 (%) .

The above concept can be generalized to the case where y; is thought to be stationary around a
deterministic trend. In this case, formula (28.11) remains unchanged, but the series e; is defined as

the residuals from an OLS regression of y; on a constant and a linear trend. This second form of
the test is obtained by appending the --trend option to the kpss command:

kpss n y --trend

Note that in this case the asymptotic distribution of the test is different and the critical values
reported by gretl differ accordingly.

Panel unit root tests

The most commonly used unit root tests for panel data involve a generalization of the ADF pro-
cedure, in which the joint null hypothesis is that a given times series is non-stationary for all
individuals in the panel.
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In this context the ADF regression (28.10) can be rewritten as

pi

Ayit = Hit + QiYit-1 + > YijAYVii—j + €ir (28.12)
j=1

The model (28.12) allows for maximal heterogeneity across the individuals in the panel: the param-
eters of the deterministic term, the autoregressive coefficient g, and the lag order p are all specific
to the individual, indexed by i.

One possible modification of this model is to impose the assumption that @; = @ for all i; that is,
the individual time series share a common autoregressive root (although they may differ in respect
of other statistical properties). The choice of whether or not to impose this assumption has an
important bearing on the hypotheses under test. Under model (28.12) the joint null is ; = 0 for
all i, meaning that all the individual time series are non-stationary, and the alternative (simply the
negation of the null) is that at least one individual time series is stationary. When a common @ is
assumed, the null is that ¢ = 0 and the alternative is that ¢ < 0. The null still says that all the
individual series are non-stationary, but the alternative now says that they are all stationary. The
choice of model should take this point into account, as well as the gain in power from forming a
pooled estimate of @ and, of course, the plausibility of assuming a common AR(1) coefficient.3

In gretl, the formulation (28.12) is used automatically when the adf command is used on panel
data. The joint test statistic is formed using the method of Im, Pesaran and Shin (2003). In this
context the behavior of adf differs from regular time-series data: only one case of the deterministic
term is handled per invocation of the command; the default is that y;; includes just a constant but
the --nc and --ct flags can be used to suppress the constant or to include a trend, respectively;
and the quadratic trend option --ctt is not available.

The alternative that imposes a common value of @ is implemented via the Tevinlin command.
The test statistic is computed as per Levin, Lin and Chu (2002). As with the adf command, the first
argument is the lag order and the second is the name of the series to test; and the default case for
the deterministic component is a constant only. The options --nc and --ct have the same effect
as with adf. One refinement is that the lag order may be given in either of two forms: if a scalar
is given, this is taken to represent a common value of p for all individuals, but you may instead
provide a vector holding a set of p; values, hence allowing the order of autocorrelation of the series
to differ by individual. So, for example, given

levinlin 2 vy
levinlin {2,2,3,3,4,4} y

the first command runs a joint ADF test with a common lag order of 2, while the second (which
assumes a panel with six individuals) allows for differing short-run dynamics. The first argument
to Tevinlin can be given as a set of comma-separated integers enclosed in braces, as shown above,
or as the name of an appropriately dimensioned pre-defined matrix (see chapter 16).

Besides variants of the ADF test, the KPSS test also can be used with panel data via the kpss
command. In this case the test (of the null hypothesis that the given time series is stationary for
all individuals) is implemented using the method of Choi (2001). This is an application of meta-
analysis, the statistical technique whereby an overall or composite p-value for the test of a given
null hypothesis can be computed from the p-values of a set of separate tests. Unfortunately, in
the case of the KPSS test we are limited by the unavailability of precise p-values, although if an
individual test statistic falls between the 10 percent and 1 percent critical values we are able to
interpolate with a fair degree of confidence. This gives rise to four cases.

1. All the individual KPSS test statistics fall between the 10 percent and 1 percent critical values:
the Choi method gives us a plausible composite p-value.

3If the assumption of a common ¢ seems excessively restrictive, bear in mind that we routinely assume common
slope coefficients when estimating panel models, even if this is unlikely to be literally true.
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2. Some of the KPSS test statistics exceed the 1 percent value and none fall short of the 10
percent value: we can give an upper bound for the composite p-value by setting the unknown
p-values to 0.01.

3. Some of the KPSS test statistics fall short of the 10 percent critical value but none exceed the
1 percent value: we can give a lower bound to the composite p-value by setting the unknown
p-values to 0.10.

4. None of the above conditions are satisfied: the Choi method fails to produce any result for
the composite KPSS test.

28.4 Cointegration tests

The generally recommended test for cointegration is the Johansen test, which is discussed in detail
in chapter 30. In this context we offer a few remarks on the cointegration test of Engle and Granger
(1987), which builds on the ADF test discussed above (section 28.3).

For the Engle-Granger test, the procedure is:

1. Test each series for a unit root using an ADF test.

2. Run a “cointegrating regression” via OLS. For this we select one of the potentially cointegrated
variables as dependent, and include the other potentially cointegrated variables as regressors.

3. Perform an ADF test on the residuals from the cointegrating regression.

The idea is that cointegration is supported if (a) the null of non-stationarity is not rejected for each
of the series individually, in step 1, while (b) the null is rejected for the residuals at step 3. That is,
each of the individual series is I(1) but some linear combination of the series is I1(0).

This test is implemented in gretl by the coint command, which requires an integer lag order
(for the ADF tests) followed by a list of variables to be tested, the first of which will be taken
as dependent in the cointegrating regression. Please see the online help for coint, or the Gretl
Command Reference, for further details.

28.5 ARCH and GARCH

Heteroskedasticity means a non-constant variance of the error term in a regression model. Autore-
gressive Conditional Heteroskedasticity (ARCH) is a phenomenon specific to time series models,
whereby the variance of the error displays autoregressive behavior; for instance, the time series ex-
hibits successive periods where the error variance is relatively large, and successive periods where
it is relatively small. This sort of behavior is reckoned to be common in asset markets: an unsettling
piece of news can lead to a period of increased volatility in the market.

An ARCH error process of order g can be represented as

a
) 2 ra2 2
Up = Ov&; o =EUZ Q1) = &0 + . Ui
i-1

where the & s are independently and identically distributed (iid) with mean zero and variance 1,
and where oy is taken to be the positive square root of Ut2. Q¢_1 denotes the information set as of
time t — 1 and O'tz is the conditional variance: that is, the variance conditional on information dated
t — 1 and earlier.

It is important to notice the difference between ARCH and an ordinary autoregressive error process.
The simplest (first-order) case of the latter can be written as

Ut = PU—1 + & -1<p<l1
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where the &;s are independently and identically distributed with mean zero and variance o 2. With
an AR(1) error, if p is positive then a positive value of u; will tend to be followed by a positive
U¢+1. With an ARCH error process, a disturbance u; of large absolute value will tend to be followed
by further large absolute values, but with no presumption that the successive values will be of the
same sign. ARCH in asset prices is a “stylized fact” and is consistent with market efficiency; on the
other hand autoregressive behavior of asset prices would violate market efficiency.

One can test for ARCH of order g in the following way:

1. Estimate the model of interest via OLS and save the squared residuals, 7i?.

2. Perform an auxiliary regression in which the current squared residual is regressed on a con-
stant and g lags of itself.

3. Find the TR? value (sample size times unadjusted R?) for the auxiliary regression.

4. Refer the TR? value to the x? distribution with g degrees of freedom, and if the p-value is
“small enough” reject the null hypothesis of homoskedasticity in favor of the alternative of
ARCH(q).

This test is implemented in gretl via the modtest command with the --arch option, which must
follow estimation of a time-series model by OLS (either a single-equation model or a VAR). For
example,

ols y 0 x
modtest 4 --arch

This example specifies an ARCH order of g = 4; if the order argument is omitted, g is set equal to
the periodicity of the data. In the graphical interface, the ARCH test is accessible from the “Tests”
menu in the model window (again, for single-equation OLS or VARS).

GARCH

The simple ARCH(q) process is useful for introducing the general concept of conditional het-
eroskedasticity in time series, but it has been found to be insufficient in empirical work. The
dynamics of the error variance permitted by ARCH(q) are not rich enough to represent the patterns
found in financial data. The generalized ARCH or GARCH model is now more widely used.

The representation of the variance of a process in the GARCH model is somewhat (but not exactly)
analogous to the ARMA representation of the level of a time series. The variance at time t is allowed
to depend on both past values of the variance and past values of the realized squared disturbance,
as shown in the following system of equations:

Ye o= XeB+u (28.13)

Ur = Oré&t (28.14)
q p

of = o+ D oui i+ > 800 (28.15)
i=1 j=1

As above, ¢; is an iid sequence with unit variance. X; is a matrix of regressors (or in the simplest
case, just a vector of 1s allowing for a non-zero mean of ;). Note that if p = 0, GARCH collapses
to ARCH(q): the generalization is embodied in the §; terms that multiply previous values of the
error variance.

In principle the underlying innovation, &;, could follow any suitable probability distribution, and
besides the obvious candidate of the normal or Gaussian distribution the Student’s t distribution
has been used in this context. Currently gretl only handles the case where &; is assumed to be
Gaussian. However, when the --robust option to the garch command is given, the estimator gretl
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uses for the covariance matrix can be considered Quasi-Maximum Likelihood even with non-normal
disturbances. See below for more on the options regarding the GARCH covariance matrix.

Example:
garch p q ; y const X

where p > 0 and g > 0 denote the respective lag orders as shown in equation (28.15). These values
can be supplied in numerical form or as the names of pre-defined scalar variables.

GARCH estimation

Estimation of the parameters of a GARCH model is by no means a straightforward task. (Consider
equation 28.15: the conditional variance at any point in time, 0,?, depends on the conditional
variance in earlier periods, but ¢/ is not observed, and must be inferred by some sort of Maximum
Likelihood procedure.) By default gretl uses native code that employs the BFGS maximizer; you
also have the option (activated by the --fcp command-line switch) of using the method proposed
by Fiorentini et al. (1996),* which was adopted as a benchmark in the study of GARCH results
by McCullough and Renfro (1998). It employs analytical first and second derivatives of the log-
likelihood, and uses a mixed-gradient algorithm, exploiting the information matrix in the early
iterations and then switching to the Hessian in the neighborhood of the maximum likelihood. (This
progress can be observed if you append the --verbose option to gretl’s garch command.)

Several options are available for computing the covariance matrix of the parameter estimates in
connection with the garch command. At a first level, one can choose between a “standard” and a
“robust” estimator. By default, the Hessian is used unless the --robust option is given, in which
case the QML estimator is used. A finer choice is available via the set command, as shown in
Table 28.2.

Table 28.2: Options for the GARCH covariance matrix

command effect

set garch_vcv hessian Use the Hessian

set garch_vcv im Use the Information Matrix

set garch_vcv op Use the Outer Product of the Gradient

set garch_vcv gml QML estimator

set garch_vcv bw Bollerslev-Wooldridge “sandwich” estimator

It is not uncommon, when one estimates a GARCH model for an arbitrary time series, to find that
the iterative calculation of the estimates fails to converge. For the GARCH model to make sense,
there are strong restrictions on the admissible parameter values, and it is not always the case
that there exists a set of values inside the admissible parameter space for which the likelihood is
maximized.

The restrictions in question can be explained by reference to the simplest (and much the most
common) instance of the GARCH model, where p = q = 1. In the GARCH(1, 1) model the conditional
variance is

0f = o + xqUs_| + 6107, (28.16)

Taking the unconditional expectation of (28.16) we get

0% =y + x10°% + 6,07

4The algorithm is based on Fortran code deposited in the archive of the Journal of Applied Econometrics by the
authors, and is used by kind permission of Professor Fiorentini.
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so that
2 &Xo

- 1-—0q — 51
For this unconditional variance to exist, we require that «; + 6; < 1, and for it to be positive we
require that g > 0.

(o2

A common reason for non-convergence of GARCH estimates (that is, a common reason for the non-
existence of «; and §; values that satisfy the above requirements and at the same time maximize
the likelihood of the data) is misspecification of the model. It is important to realize that GARCH, in
itself, allows only for time-varying volatility in the data. If the mean of the series in question is not
constant, or if the error process is not only heteroskedastic but also autoregressive, it is necessary
to take this into account when formulating an appropriate model. For example, it may be necessary
to take the first difference of the variable in question and/or to add suitable regressors, X;, as in
(28.13).
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Vector Autoregressions

Gretl provides a standard set of procedures for dealing with the multivariate time-series models
known as VARs (Vector AutoRegression). More general models —such as VARMASs, nonlinear models
or multivariate GARCH models—are not provided as of now, although it is entirely possible to
estimate them by writing custom procedures in the gretl scripting language. In this chapter, we will
briefly review gretl’s VAR toolbox.

29.1 Notation

A VAR is a structure whose aim is to model the time persistence of a vector of n time series, yy,
via a multivariate autoregression, as in

YV = Alyt,l + Az_’)/tfz + -+ Ap_’)/tfp + Bxt + €¢ (29.1)

The number of lags p is called the order of the VAR. The vector x;, if present, contains a set of
exogenous variables, often including a constant, possibly with a time trend and seasonal dummies.
The vector €; is typically assumed to be a vector white noise, with covariance matrix 3.

Equation (29.1) can be written more compactly as
A(L)_’)/t = Bx: + €; (29.2)

where A(L) is a matrix polynomial in the lag operator, or as

Vi Yi-1 B €t

_ _ 0 0
AR N B G Xt + (29.3)

Yi-p-1 Yi-p 0 0

The matrix A is known as the “companion matrix” and equals

Al Ay - Ay
A=l o 1 ... 0

Equation (29.3) is known as the “companion form” of the VAR.

Another representation of interest is the so-called “VMA representation”, which is written in terms
of an infinite series of matrices ©; defined as

0t

®; = O€r—i

(29.4)

The ©; matrices may be derived by recursive substitution in equation (29.1): for example, assuming
for simplicity that B = 0 and p = 1, equation (29.1) would become

Vi =AYy 1+ €

259
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which could be rewritten as
Ve=A"y €+ A€ + AP€ro+ - + A6ty

In this case ®; = AL, In general, it is possible to compute ©; as the n x n north-west block of the
i-th power of the companion matrix A (so Qg is always an identity matrix).

The VAR is said to be stable if all the eigenvalues of the companion matrix A are smaller than 1
in absolute value, or equivalently, if the matrix polynomial A(L) in equation (29.2) is such that
|A(z)| = 0 implies |z| > 1. If this is the case, lim;,,—» ®, = 0 and the vector y; is stationary; as a
consequence, the equation

ye—E() = D> Oi€r; (29.5)
i=0

is a legitimate Wold representation.

If the VAR is not stable, then the inferential procedures that are called for become somewhat more
specialized, except for some simple cases. In particular, if the number of eigenvalues of A with
modulus 1 is between 1 and n — 1, the canonical tool to deal with these models is the cointegrated
VAR model, discussed in chapter 30.

29.2 Estimation

The gretl command for estimating a VAR is var which, in the command line interface, is invoked
in the following manner:

[ modelname <- ] var p Ylist [; Xlist]

where p is a scalar (the VAR order) and Y1ist is a list of variables specifying the content of y;.
The optional X11 st argument can be used to specify a set of exogenous variables. If this argument
is omitted, the vector x; is taken to contain a constant (only); if present, it must be separated
from YTlist by a semicolon. Note, however, that a few common choices can be obtained in a
simpler way: the options --trend and --seasonals call for inclusion of a linear trend and a set of
seasonal dummies respectively. In addition the --nc option (no constant) can be used to suppress
the standard inclusion of a constant.

The “<-” construct can be used to store the model under a name (see section 3.2), if so desired. To
estimate a VAR using the graphical interface, choose “Time Series, Vector Autoregression”, under
the Model menu.

The parameters in eq. (29.1) are typically free from restrictions, which implies that multivariate
OLS provides a consistent and asymptotically efficient estimator of all the parameters.! Given
the simplicity of OLS, this is what every software package, including gretl, uses; example script
29.1 exemplifies the fact that the var command gives you exactly the output you would have
from a battery of OLS regressions. The advantage of using the dedicated command is that, after
estimation is done, it makes it much easier to access certain quantities and manage certain tasks.
For example, the $coeff accessor returns the estimated coefficients as a matrix with n columns
and $sigma returns an estimate of the matrix 3, the covariance matrix of €;.

Moreover, for each variable in the system an F test is automatically performed, in which the null hy-
pothesis is that no lags of variable j are significant in the equation for variable i. This is commonly
known as a Granger causality test.

In addition, two accessors become available for the companion matrix ($compan) and the VMA rep-
resentation ($vma). The latter deserves a detailed description: since the VMA representation (29.5)
is of infinite order, gretl defines a horizon up to which the ®; matrices are computed automatically.

IIn fact, under normality of €; OLS is indeed the conditional ML estimator. You may want to use other methods if you
need to estimate a VAR in which some parameters are constrained.
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Input:

open sw_chl4.gdt
genr infl = 400%sdiff(Tog(PUNEW))

scalar p = 2

Tist X = LHUR infl
Tist Xlag = Tlags(p,X)

Tloop foreach

iX

ols $i const Xlag

endTloop

var p X

Output (selected portions):

Model 1: OLS, using observations 1960:3-1999:4 (T

Dependent variable: LHUR

coefficient

std. error

Listing 29.1: Estimation of a VAR via OLS

LHUR_1
LHUR_2
infl_1
infl1_2

Mean dependent var
Sum squared resid

0.113673 0.0875210
1.54297 0.0680518
-0.583104 0.0645879
0.0219040 0.00874581
-0.0148408 0.00920536
6.019198

VAR system, lag order 2
OLS estimates, observations 1960:3-1999:4 (T = 158)

Log-Tlikelihood = -322.73663

8.654176

S.D. dependent var
S.E. of regression

Determinant of covariance matrix = 0.20382769

AIC = 4.2119
BIC = 4.4057
HQC = 4.2906

Portmanteau test: LB(39) =

Equation 1: LHUR

coefficient

0.1960
8.78e-51 *?
7.00e-16
0.0133  **
0.1090

1.502549
0.237830

226.984, df = 148 [0.0000]

std. error

const

LHUR_1
LHUR_2
infl_1
infl_2

Mean dependent var
Sum squared resid

0.113673 0.0875210
1.54297 0.0680518
-0.583104 0.0645879
0.0219040 0.00874581
-0.0148408 0.00920536
6.019198

8.654176

S.D. dependent var
S.E. of regression

8.78e-51 #**
7.00e-16 ***

0.0133  *=*
0.1090

1.502549
0.237830

261
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Periodicity horizon
Quarterly 20 (5 years)
Monthly 24 (2 years)
Daily 3 weeks
All other cases 10

Table 29.1: VMA horizon as a function of the dataset periodicity

By default, this is a function of the periodicity of the data (see table 29.1), but it can be set by the
user to any desired value via the set command with the horizon parameter, as in

set horizon 30

Calling the horizon h, the $vma accessor returns an (h + 1) x n? matrix, in which the (i + 1)-th row
is the vectorized form of ©;.

VAR lag-order selection

In order to help the user choose the most appropriate VAR order, gretl provides a special variant
of the var command:

var p Ylist [; Xlist] --Tagselect

When the --Tagselect option is given, estimation is performed for all lags up to p and a table
is printed: it displays, for each order, a Likelihood Ratio test for the order p versus p — 1, plus
an array of information criteria (see chapter 25). For each information criterion in the table, a
star indicates what appears to be the “best” choice. The same output can be obtained through the
graphical interface via the “Time Series, VAR lag selection” entry under the Model menu.

Warning: in finite samples the choice of the maximum lag, p, may affect the outcome of the proce-
dure. This is not a bug, but rather an unavoidable side effect of the way these comparisons should
be made. If your sample contains T observations and you invoke the lag selection procedure with
maximum order p, gretl examines all VARs of order ranging form 1 to p, estimated on a uniform
sample of T — p observations. In other words, the comparison procedure does not use all the avail-
able data when estimating VARs of order less than p, so as to ensure that all the models in the
comparison are estimated on the same data range. Choosing a different value of p may therefore
alter the results, although this is unlikely to happen if your sample size is reasonably large.

An example of this unpleasant phenomenon is given in example script 29.2. As can be seen, ac-
cording to the Hannan-Quinn criterion, order 2 seems preferable to order 1 if the maximum tested
order is 4, but the situation is reversed if the maximum tested order is 6.

29.3 Structural VARs

Gretl’s built-in var command does not support the general class of models known as “Structural
VARs” —though it does support the Cholesky decomposition-based approach, the classic and most
popular SVAR variant. If you wish to go beyond that there is a gretl “addon” named SVAR which
will likely meet your needs. SVAR is supplied as part of the gretl package, you can find its docu-
mentation (which is quite detailed) as follows: under the Tools menu in the gretl main window, go
to “Function packages/On local machine.” (Or use the “fx” button on the toolbar at the foot of the
main window.) In the function packages window either scroll down or use the search box to find
SVAR. Then right-click and select “Info.” This opens a window which gives basic information on the
package, including a link to SVAR. pdf, the full documentation.
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Listing 29.2: VAR lag selection via Information Criteria
Input:

open denmark

list Y=12 34
var 4 Y --Tagselect
var 6 Y --Tagselect

Output (selected portions):

VAR system, maximum lag order 4

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

Tags Toglik p(LR) AIC BIC HQC
1 609.15315 -23.104045 -22.346466* -22.814552
2 631.70153 0.00013 -23.360844* -21.997203 -22.839757*
3 642.38574 0.16478 -23.152382  -21.182677 -22.399699
4 653.22564 0.15383 -22.950025 -20.374257 -21.965748

VAR system, maximum lag order 6

The asterisks below indicate the best (that is, minimized) values
of the respective information criteria, AIC = Akaike criterion,
BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

Tlags Toglik p(LR) AIC BIC HQC

594.38410 -23.444249  -22.672078* -23.151288*
615.43480 0.00038 -23.650400* -22.260491 -23.123070
624.97613 0.26440 -23.386781  -21.379135 -22.625083
636.03766 0.13926 -23.185210 -20.559827 -22.189144
658.36014 0.00016 -23.443271 -20.200150 -22.212836
669.88472 0.11243 -23.260601  -19.399743  -21.795797

AUV A WN R
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IRF and FEVD

Assume that the disturbance in equation (29.1) can be thought of as a linear function of a vector
of structural shocks u¢, which are assumed to have unit variance and to be mutually unncorrelated,
so V(uy) = 1. If ¢, = Kuy, it follows that = = V(e;) = KK'.

The main object of interest in this setting is the sequence of matrices

0
Ch = 2L — kK, (29.6)
oU—i
known as the structural VMA representation. From the Cy matrices defined in equation (29.6) two
quantities of interest may be derived: the Impulse Response Function (IRF) and the Forecast Error
Variance Decomposition (FEVD).

The IRF of variable i to shock j is simply the sequence of the elements in row i and column j of
the Cy matrices. In symbols:
it

Tiig = —==
i,j,k auj,t—k

As a rule, Impulse Response Functions are plotted as a function of k, and are interpreted as the
effect that a shock has on an observable variable through time. Of course, what we observe are
the estimated IRFs, so it is natural to endow them with confidence intervals: following common
practice, gretl computes the confidence intervals by using the bootstrap;? details are given later in
this section.

Another quantity of interest that may be computed from the structural VMA representation is the
Forecast Error Variance Decomposition (FEVD). The forecast error variance after h steps is given by

h
Qn = > GG,
k=0
hence the variance for variable i is
h h n
w? = [Qplii = > diag(CkCp)i = > > (kcin)?
k=0 k=01=1

where c; is, trivially, the i, [ element of Cx. As a consequence, the share of uncertainty on variable
i that can be attributed to the j-th shock after h periods equals
h
Zk=0(kci.j)2
- .
k=0 2ie1 (kCin)?

This makes it possible to quantify which shocks are most important to determine a certain variable
in the short and/or in the long run.

’VDi,j’h =

Triangularization

The formula 29.6 takes K as known, while of course it has to be estimated. The estimation problem
has been the subject of an enormous body of literature we will not even attempt to summarize
here: see for example (Liitkepohl, 2005, chapter 9).

Suffice it to say that the most popular choice dates back to Sims (1980), and consists in assuming
that K is lower triangular, so its estimate is simply the Cholesky decomposition of the estimate of X.
The main consequence of this choice is that the ordering of variables within the vector y; becomes
meaningful: since K is also the matrix of Impulse Response Functions at lag 0, the triangularity

21t is possible, in principle, to compute analytical confidence intervals via an asymptotic approximation, but this is
not a very popular choice: asymptotic formulae are known to often give a very poor approximation of the finite-sample
properties.
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assumption means that the first variable in the ordering responds instantaneously only to shock
number 1, the second one only to shocks 1 and 2, and so forth. For this reason, each variable is
thought to “own” one shock: variable 1 owns shock number 1, and so on.

In this sort of exercise, therefore, the ordering of the y variables is important, and the applied
literature has developed the “most exogenous first” mantra—where, in this setting, “exogenous”
really means “instantaneously insensitive to structural shocks”.3 To put it differently, if variable
foo comes before variable bar in the Y list, it follows that the shock owned by foo affects bar
instantaneously, but not vice versa.

Impulse Response Functions and the FEVD can be printed out via the command line interface by us-
ing the --impulse-response and --variance-decomp options, respectively. If you need to store
them into matrices, you can compute the structural VMA and proceed from there. For example, the
following code snippet shows you how to compute a matrix containing the IRFs:

open denmark

Tist Y =123 4

scalar n = nelem(Y)

var 2 Y --quiet --impulse

matrix K = cholesky($sigma)
matrix V = $vma

matrix IRF =V * (K ** I(n))
print IRF

in which the equality
vec(Cx) = vec(0xK) = (K’ ® I)vec(By)

was used.
FIXME: show all the nice stuff we have under the GUL

IRF bootstrap
FIXME: todo

29.4 Residual-based diagnostic tests

Three diagnostic tests based on residuals are available after estimating a VAR —for normality,
autocorrelation and ARCH (Autoregressive Conditional Heteroskedasticity). These are implemented
by the modtest command, using the options --normality, --autocorr and --arch, respectively.

The (multivariate) normality test is that of Doornik and Hansen (1994); it is based on the skewness
and kurtosis of the VAR residuals.

The autocorrelation and ARCH test are also by default multivariate; they are described in detail
by Liitkepohl (2005) (see sections 4.4.4 and 16.5.1). Both tests are of the LM type, although the
autocorrelation test statistic is referred to a Rao F distribution (Rao, 1973). These tests may involve
estimation of a large number of parameters, depending on the lag horizon chosen, and can fail for
lack of degrees of freedom in small samples. As a fallback, the --univariate option can be used
to specify that the tests be run per-equation rather than in multivariate mode.

Listing 29.3 illustrates the VAR autocorrelation tests, replicating an example given by Liitkepohl
(2005, p. 174). Note the difference in the interpretation of the order argument to modtest with the
--autocorr option (this also applies to the ARCH test): in the multivariate version order is taken
as the maximum lag order and tests are run from lag 1 up to the maximum; but in the univariate

3The word “exogenous” has caught on in this context, but it's a rather unfortunate choice: for a start, each shock
impacts on every variable after one lag, so nothing is really exogenous here. A better choice of words would probably
have been something like “sturdy”, but it’s too late now.
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version a single test is run for each equation using just the specified lag order. The example also
exposes what exactly is returned by the $test and $pvalue accessors in the two variants.

Listing 29.3: VAR autocorrelation test from Liitkepohl
Input:

open wgmacro.gdt --quiet

Tist Y = investment income consumption
Tist dlnY = Tdiff(Y)

smpl 1960:4 1978:4

var 2 dinY

modtest 4 --autocorr

eval $test ~ $pvalue

modtest 4 --autocorr --univariate

eval $test ~ $pvalue

Output from tests:

? modtest 4 --autocorr
Test for autocorrelation of order up to 4

Rao F  Approx dist. p-value

Tag 1 0.615 F(9, 148) 0.7827
Tag 2 0.754 F(18, 164) 0.7507
lag 3 1.143 F(27, 161) 0.2982
Tag 4 1.254 F(36, 154) 0.1743
? eval $test ~ $pvalue
0.61524 0.78269
0.75397 0.75067
1.1429 0.29820
1.2544 0.17431

? modtest 4 --autocorr --univariate
Test for autocorrelation of order 4

Equation 1:
Ljung-Box Q’ = 6.11506 with p-value = P(Chi-square(4) > 6.11506) = 0.191
Equation 2:
Ljung-Box Q’ = 1.67136 with p-value = P(Chi-square(4) > 1.67136) = 0.796
Equation 3:
Ljung-Box Q’ = 1.59931 with p-value = P(Chi-square(4) > 1.59931) = 0.809
? eval $test ~ $pvalue

6.1151 0.19072

1.6714 0.79591

1.5993 0.80892
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Cointegration and Vector Error Correction Models

30.1 Introduction

The twin concepts of cointegration and error correction have drawn a good deal of attention in
macroeconometrics over recent years. The attraction of the Vector Error Correction Model (VECM)
is that it allows the researcher to embed a representation of economic equilibrium relationships
within a relatively rich time-series specification. This approach overcomes the old dichotomy be-
tween (a) structural models that faithfully represented macroeconomic theory but failed to fit the
data, and (b) time-series models that were accurately tailored to the data but difficult if not impos-
sible to interpret in economic terms.

The basic idea of cointegration relates closely to the concept of unit roots (see section 28.3). Sup-
pose we have a set of macroeconomic variables of interest, and we find we cannot reject the hypoth-
esis that some of these variables, considered individually, are non-stationary. Specifically, suppose
we judge that a subset of the variables are individually integrated of order 1, or I(1). That is, while
they are non-stationary in their levels, their first differences are stationary. Given the statistical
problems associated with the analysis of non-stationary data (for example, the threat of spurious
regression), the traditional approach in this case was to take first differences of all the variables
before proceeding with the analysis.

But this can result in the loss of important information. It may be that while the variables in
question are I(1) when taken individually, there exists a linear combination of the variables that
is stationary without differencing, or 1(0). (There could be more than one such linear combina-
tion.) That is, while the ensemble of variables may be “free to wander” over time, nonetheless the
variables are “tied together” in certain ways. And it may be possible to interpret these ties, or
cointegrating vectors, as representing equilibrium conditions.

For example, suppose we find some or all of the following variables are I(1): money stock, M, the
price level, P, the nominal interest rate, R, and output, Y. According to standard theories of the
demand for money, we would nonetheless expect there to be an equilibrium relationship between
real balances, interest rate and output; for example

m-p=yo+y1y +yr y1>0,y2<0

where lower-case variable names denote logs. In equilibrium, then,

m-p-—-yi1y —¥Y2¥r =%o

Realistically, we should not expect this condition to be satisfied each period. We need to allow for
the possibility of short-run disequilibrium. But if the system moves back towards equilibrium fol-
lowing a disturbance, it follows that the vector x = (m, p, yv,*)’ is bound by a cointegrating vector
B’ = (B1, B2, B3, B4), such that B’ x is stationary (with a mean of yq). Furthermore, if equilibrium is
correctly characterized by the simple model above, we have S, = —f1, B3 < 0 and B4 > 0. These
things are testable within the context of cointegration analysis.

There are typically three steps in this sort of analysis:

1. Test to determine the number of cointegrating vectors, the cointegrating rank of the system.

2. Estimate a VECM with the appropriate rank, but subject to no further restrictions.

267
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3. Probe the interpretation of the cointegrating vectors as equilibrium conditions by means of
restrictions on the elements of these vectors.

The following sections expand on each of these points, giving further econometric details and
explaining how to implement the analysis using gretl.

30.2 Vector Error Correction Models as representation of a cointegrated system

Consider a VAR of order p with a deterministic part given by ; (typically, a polynomial in time).
One can write the n-variate process y; as

Ve=Ht +A1Yi-1 +AoYr2+ - ApVip t € (30.1)
But since y;—; = vi-1 — (Ayi—1 + Ayi—o + - - - + AYr_i+1), we can re-write the above as

p-1
Ay = pr + 1y 1 + Z LI Ay:—i + €, (30.2)
i=1
where 1= 37| A; —Tand T; = - 37_; | A;. This is the VECM representation of (30.1).
The interpretation of (30.2) depends crucially on v, the rank of the matrix IT.

e If r = 0, the processes are all I(1) and not cointegrated.
e If ¥ = n, then II is invertible and the processes are all 1(0).

e Cointegration occurs in between, when 0 < ¥ < n and IT can be written as «f’. In this case,
vy is I(1), but the combination z; = B’y; is 1(0). If, for example, ¥ = 1 and the first element
of B was —1, then one could write z; = =y + B2y2,t + - - - + BuYn,t, Which is equivalent to
saying that

Y1, = Beyo + -+ Bt — Zt

is a long-run equilibrium relationship: the deviations z; may not be 0 but they are stationary.
In this case, (30.2) can be written as

p-1
Aye =+ B’ yio1 + > LAy + €. (30.3)
i-1

If B were known, then z; would be observable and all the remaining parameters could be
estimated via OLS. In practice, the procedure estimates S first and then the rest.

The rank of II is investigated by computing the eigenvalues of a closely related matrix whose rank
is the same as IT: however, this matrix is by construction symmetric and positive semidefinite. As a
consequence, all its eigenvalues are real and non-negative, and tests on the rank of IT can therefore
be carried out by testing how many eigenvalues are 0.

If all the eigenvalues are significantly different from 0, then all the processes are stationary. If,
on the contrary, there is at least one zero eigenvalue, then the y; process is integrated, although
some linear combination B’y; might be stationary. At the other extreme, if no eigenvalues are
significantly different from 0, then not only is the process y; non-stationary, but the same holds
for any linear combination S’ y:; in other words, no cointegration occurs.

Estimation typically proceeds in two stages: first, a sequence of tests is run to determine v, the
cointegration rank. Then, for a given rank the parameters in equation (30.3) are estimated. The two
commands that gretl offers for estimating these systems are coint2 and vecm, respectively.

The syntax for coint2 is
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coint2 p ylist [ ; xTist [ ; zlist ] 1]

where p is the number of lags in (30.1); ylist is a list containing the 7y, variables; x1ist is an
optional list of exogenous variables; and z1ist is another optional list of exogenous variables
whose effects are assumed to be confined to the cointegrating relationships.

The syntax for vecm is
vecm p r ylist [ ; xTist [ ; zlist ] ]

where p is the number of lags in (30.1); r is the cointegration rank; and the lists y1ist, x1ist and
z11ist have the same interpretation as in coint2.

Both commands can be given specific options to handle the treatment of the deterministic compo-
nent uy. These are discussed in the following section.

30.3 Interpretation of the deterministic components

Statistical inference in the context of a cointegrated system depends on the hypotheses one is
willing to make on the deterministic terms, which leads to the famous “five cases.”

In equation (30.2), the term L is usually understood to take the form

Uy = po + py - t.

In order to have the model mimic as closely as possible the features of the observed data, there is a
preliminary question to settle. Do the data appear to follow a deterministic trend? If so, is it linear
or quadratic?

Once this is established, one should impose restrictions on py and p; that are consistent with this
judgement. For example, suppose that the data do not exhibit a discernible trend. This means that
Ay; is on average zero, so it is reasonable to assume that its expected value is also zero. Write
equation (30.2) as

[(L)Ay; = pg + My -t + xze—1 + €y, (30.4)

where z; = B’y; is assumed to be stationary and therefore to possess finite moments. Taking
unconditional expectations, we get

O0=po+p -t +oms.

Since the left-hand side does not depend on t, the restriction p; = 0 is a safe bet. As for pg, there are
just two ways to make the above expression true: either pyg = 0 with m_, = 0, or yg equals —om;.
The latter possibility is less restrictive in that the vector py may be non-zero, but is constrained to
be a linear combination of the columns of «. In that case, py can be written as « - ¢, and one may
write (30.4) as

[(L)Ay: = «[B c] [ ytl_l ] + €.

The long-run relationship therefore contains an intercept. This type of restriction is usually written
o' po =0,

where «, is the left null space of the matrix o.

An intuitive understanding of the issue can be gained by means of a simple example. Consider a
series x; which behaves as follows
Xt =M+ Xt—1 + &

where m is a real number and &; is a white noise process: x; is then a random walk with drift m.
In the special case m = 0, the drift disappears and x; is a pure random walk.
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Consider now another process y;, defined by
Yi = k + Xt + Ut

where, again, k is a real number and u; is a white noise process. Since u; is stationary by definition,
x: and y; cointegrate: that is, their difference

Zr=Yr— Xt =k+u;

is a stationary process. For k = 0, z; is simple zero-mean white noise, whereas for k # 0 the process
Z; is white noise with a non-zero mean.

After some simple substitutions, the two equations above can be represented jointly as a VAR(1)
system
k _
ye | _ +m N 01 Vi-1 . U + &
X m 0 1 Xt-1 &t
or in VECM form

MR R SR R
e A IR | B A B

o Vi1
= +
Ho + & [ x

+ +
§§§§

} + Nt = Ho + XZ¢—1 + Ny,
-1

where B is the cointegration vector and « is the “loadings” or “adjustments” vector.

We are now ready to consider three possible cases:
1. m # 0: In this case x; is trended, as we just saw; it follows that y; also follows a linear trend
because on average it keeps at a fixed distance k from x;. The vector pg is unrestricted.

2. m =0 and k # 0: In this case, x; is not trended and as a consequence neither is y;. However,
the mean distance between y; and x; is non-zero. The vector L is given by

=B

which is not null and therefore the VECM shown above does have a constant term. The
constant, however, is subject to the restriction that its second element must be 0. More
generally, uo is a multiple of the vector . Note that the VECM could also be written as

Yi-1
Ayt -1 U + &
[Axt}_[ 0][1 Lk e +[ &t }

1

which incorporates the intercept into the cointegration vector. This is known as the “restricted
constant” case.

3. m =0 and k = 0: This case is the most restrictive: clearly, neither x; nor y; are trended, and
the mean distance between them is zero. The vector g is also 0, which explains why this case
is referred to as “no constant.”

In most cases, the choice between these three possibilities is based on a mix of empirical obser-
vation and economic reasoning. If the variables under consideration seem to follow a linear trend
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then we should not place any restriction on the intercept. Otherwise, the question arises of whether
it makes sense to specify a cointegration relationship which includes a non-zero intercept. One ex-
ample where this is appropriate is the relationship between two interest rates: generally these are
not trended, but the VAR might still have an intercept because the difference between the two (the
“interest rate spread”) might be stationary around a non-zero mean (for example, because of a risk
or liquidity premium).

The previous example can be generalized in three directions:

1. If a VAR of order greater than 1 is considered, the algebra gets more convoluted but the
conclusions are identical.

2. If the VAR includes more than two endogenous variables the cointegration rank » can be
greater than 1. In this case, « is a matrix with r columns, and the case with restricted constant
entails the restriction that py should be some linear combination of the columns of «.

3. If a linear trend is included in the model, the deterministic part of the VAR becomes iy + u;t.
The reasoning is practically the same as above except that the focus now centers on u; rather
than pg. The counterpart to the “restricted constant” case discussed above is a “restricted
trend” case, such that the cointegration relationships include a trend but the first differences
of the variables in question do not. In the case of an unrestricted trend, the trend appears
in both the cointegration relationships and the first differences, which corresponds to the
presence of a quadratic trend in the variables themselves (in levels).

In order to accommodate the five cases, gretl provides the following options to the coint2 and
vecm commands:

Uy option flag description
0 --nc no constant
Mo, &' o =0 --rc restricted constant
Ho --uc unrestricted constant
Ho + tit, oy =0 --crt constant + restricted trend
Uo + it --Cct constant + unrestricted trend

Note that for this command the above options are mutually exclusive. In addition, you have the
option of using the --seasonals options, for augmenting u; with centered seasonal dummies. In
each case, p-values are computed via the approximations devised by Doornik (1998).

30.4 The Johansen cointegration tests

The two Johansen tests for cointegration are used to establish the rank of B, or in other words
the number of cointegrating vectors. These are the “A-max” test, for hypotheses on individual
eigenvalues, and the “trace” test, for joint hypotheses. Suppose that the eigenvalues A; are sorted
from largest to smallest. The null hypothesis for the A-max test on the i-th eigenvalue is that A; = 0
The corresponding trace test, instead, considers the hypothesis A; = 0 for all j > 1.

The gretl command coint2 performs these two tests. The corresponding menu entry in the GUI is
“Model, Time Series, Cointegration Test, Johansen”.

As in the ADF test, the asymptotic distribution of the tests varies with the deterministic component
Uy one includes in the VAR (see section 30.3 above). The following code uses the denmark data file,
supplied with gretl, to replicate Johansen’s example found in his 1995 book.

open denmark
coint2 2 LRM LRY IBO IDE --rc --seasonals
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In this case, the vector y; in equation (30.2) comprises the four variables LRM, LRY, IBO, IDE. The
number of lags equals p in (30.2) (that is, the number of lags of the model written in VAR form).
Part of the output is reported below:

Johansen test:

Number of equations = 4

Lag order = 2

Estimation period: 1974:3 - 1987:3 (T = 53)

Case 2: Restricted constant
Rank Eigenvalue Trace test p-value Lmax test p-value

0 0.43317 49.144 [0.1284] 30.087 [0.0286]
1 0.17758 19.057 [0.7833] 10.362 [0.8017]
2 0.11279 8.6950 [0.7645] 6.3427 [0.7483]
3 0.043411 2.3522 [0.7088] 2.3522 [0.7076]

Both the trace and A-max tests accept the null hypothesis that the smallest eigenvalue is O (see the
last row of the table), so we may conclude that the series are in fact non-stationary. However, some
linear combination may be I(0), since the A-max test rejects the hypothesis that the rank of ITis 0
(though the trace test gives less clear-cut evidence for this, with a p-value of 0.1284).

30.5 Identification of the cointegration vectors

The core problem in the estimation of equation (30.2) is to find an estimate of II that has by con-
struction rank v, so it can be written as IT = «f8’, where f is the matrix containing the cointegration
vectors and « contains the “adjustment” or “loading” coefficients whereby the endogenous vari-
ables respond to deviation from equilibrium in the previous period.

Without further specification, the problem has multiple solutions (in fact, infinitely many). The
parameters « and 8 are under-identified: if all columns of § are cointegration vectors, then any
arbitrary linear combinations of those columns is a cointegration vector too. To put it differently,
if IT = oo, for specific matrices o and By, then IT also equals (xoQ)(Q 1 B;) for any conformable
non-singular matrix Q. In order to find a unique solution, it is therefore necessary to impose
some restrictions on « and/or . It can be shown that the minimum number of restrictions that
is necessary to guarantee identification is 2. Normalizing one coefficient per column to 1 (or —1,
according to taste) is a trivial first step, which also helps in that the remaining coefficients can be
interpreted as the parameters in the equilibrium relations, but this only suffices when r = 1.

The method that gretl uses by default is known as the “Phillips normalization”, or “triangular
representation”.! The starting point is writing B in partitioned form as in

g = [ B1 ]
B2
where f; is an ¥ X ¥ matrix and B, is (n — ) X r. Assuming that B; has full rank, S can be

post-multiplied by 871, giving
~ I 1
= g |1 5 |
32311 -B

The coefficients that gretl produces are B, with B known as the matrix of unrestricted coefficients.
In terms of the underlying equilibrium relationship, the Phillips normalization expresses the system

LFor comparison with other studies, you may wish to normalize B differently. Using the set command you
can do set vecm_norm diag to select a normalization that simply scales the columns of the original 8 such that
Bij = 1fori = jand i < r, as used in the empirical section of Boswijk and Doornik (2004). Another alternative is
set vecm_norm first, which scales B such that the elements on the first row equal 1. To suppress normalization
altogether, use set vecm_norm none. (To return to the default: set vecm_norm phillips.)
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of r equilibrium relations as

Vit = bipayriig+ ...+ binyne
Yot = boyaYVraitt ...+ bonyat
Yrt = br,r+1y1’+1,t +...+ br,nyr,t

where the first v variables are expressed as functions of the remaining n — r.

Although the triangular representation ensures that the statistical problem of estimating B is
solved, the resulting equilibrium relationships may be difficult to interpret. In this case, the user
may want to achieve identification by specifying manually the system of 72 constraints that gretl
will use to produce an estimate of f8.

As an example, consider the money demand system presented in section 9.6 of Verbeek (2004). The
variables used are m (the log of real money stock M1), inf1 (inflation), cpr (the commercial paper
rate), y (log of real GDP) and tbr (the Treasury bill rate).?

Estimation of B can be performed via the commands

open money.gdt
smpl 1954:1 1994:4
vecm 6 2 m infl cpr y tbr --rc

and the relevant portion of the output reads
Maximum likelihood estimates, observations 1954:1-1994:4 (T = 164)
Cointegration rank = 2

Case 2: Restricted constant

beta (cointegrating vectors, standard errors in parentheses)

m 1.0000 0.0000
(0.0000) (0.0000)
infl 0.0000 1.0000
(0.0000) (0.0000)
cpr 0.56108 -24.367
(0.10638) (4.2113)
y -0.40446 -0.91166
(0.10277) (4.0683)
tbr -0.54293 24.786
(0.10962) (4.3394)
const -3.7483 16.751
(0.78082) (30.909)

Interpretation of the coefficients of the cointegration matrix 8 would be easier if a meaning could
be attached to each of its columns. This is possible by hypothesizing the existence of two long-run
relationships: a money demand equation

m=c; + B1infl + Boy + B3tbr
and a risk premium equation

cpr = co + B4infl + Bsy + Bgtbr

2This data set is available in the verbeek data package; see http://gretl.sourceforge.net/gret]_data.html.
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which imply that the cointegration matrix can be normalized as

"1 o°
Bi  Ba
0 -1
B= B2 Bs
B3 Bs

L al c2 _

This renormalization can be accomplished by means of the restrict command, to be given after
the vecm command or, in the graphical interface, by selecting the “Test, Linear Restrictions” menu
entry. The syntax for entering the restrictions should be fairly obvious:3

restrict
b[1,1] = -1
b[1,3] =0
b[2,1] = 0
b[2,3] = -1

end restrict
which produces

Cointegrating vectors (standard errors in parentheses)

m -1.0000 0.0000
(0.0000) (0.0000)

infl -0.023026 0.041039
(0.0054666) (0.027790)

cpr 0.0000 -1.0000
(0.0000) (0.0000)

y 0.42545 -0.037414
(0.033718) (0.17140)

thr -0.027790 1.0172
(0.0045445) (0.023102)

const 3.3625 0.68744
(0.25318) (1.2870)

30.6 Over-identifying restrictions

One purpose of imposing restrictions on a VECM system is simply to achieve identification. If these
restrictions are simply normalizations, they are not testable and should have no effect on the max-
imized likelihood. In addition, however, one may wish to formulate constraints on f and/or « that
derive from the economic theory underlying the equilibrium relationships; substantive restrictions
of this sort are then testable via a likelihood-ratio statistic.

Gretl is capable of testing general linear restrictions of the form
Rypvec(B) =q (30.5)

and/or
Ravec(x) =0 (30.6)

Note that the S restriction may be non-homogeneous (g + 0) but the « restriction must be homoge-
neous. Nonlinear restrictions are not supported, and neither are restrictions that cross between B

3Note that in this context we are bending the usual matrix indexation convention, using the leading index to refer to
the column of B (the particular cointegrating vector). This is standard practice in the literature, and defensible insofar as
it is the columns of B (the cointegrating relations or equilibrium errors) that are of primary interest.
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and «. When v > 1, such restrictions may be in common across all the columns of B (or «) or may
be specific to certain columns of these matrices. For useful discussions of this point see Boswijk
(1995) and Boswijk and Doornik (2004), section 4.4.

The restrictions (30.5) and (30.6) may be written in explicit form as
vec(B) = Hep + hyg (30.7)

and
vec(a') = Gy (30.8)

respectively, where ¢ and  are the free parameter vectors associated with S and « respectively.
We may refer to the free parameters collectively as 6 (the column vector formed by concatenating
¢ and ). Gretl uses this representation internally when testing the restrictions.

If the list of restrictions that is passed to the restrict command contains more constraints than
necessary to achieve identification, then an LR test is performed. In addition, the restrict com-
mand can be given the --ful1 switch, in which case full estimates for the restricted system are
printed (including the I terms) and the system thus restricted becomes the “current model” for
the purposes of further tests. Thus you are able to carry out cumulative tests, as in Chapter 7 of
Johansen (1995).

Syntax

The full syntax for specifying the restriction is an extension of that exemplified in the previous
section. Inside a restrict...end restrict block, valid statements are of the form

parameter linear combination= scalar

where a parameter linear combination involves a weighted sum of individual elements of 8 or «
(but not both in the same combination); the scalar on the right-hand side must be 0 for combina-
tions involving «, but can be any real number for combinations involving . Below, we give a few
examples of valid restrictions:

b[1,1] = 1.618

b[1,4] + 2*b[2,5] = O
al1,3]1 =0

a[1,1] - a[1,2] =0

Special syntax is used when a certain constraint should be applied to all columns of B: in this case,
one index is given for each b term, and the square brackets are dropped. Hence, the following
syntax

restrict
bl + b2 =0
end restrict

corresponds to

Bll BZI

| B —B=a
B= Bz Bos
Bia  Boa

The same convention is used for «: when only one index is given for an “a” term the restriction is
presumed to apply to all » columns of «, or in other words the variable associated with the given
row of « is weakly exogenous. For instance, the formulation
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restrict
a3 =0
a4 =0

end restrict

specifies that variables 3 and 4 do not respond to the deviation from equilibrium in the previous
i 4
period.

A variant on the single-index syntax for common restrictions on « and B is available: you can
replace the index number with the name of the corresponding variable, in square brackets. For
example, instead of a3 = 0 one could write a[cpr] = 0, if the third variable in the system is
named cpr.

Finally, a shortcut (or anyway an alternative) is available for setting up complex restrictions (but
currently only in relation to ): you can specify Ry and g, as in Rpvec(B) = q, by giving the names
of previously defined matrices. For example,

matrix I4 = I1(4)
matrix vR = I4**(I4~zeros(4,1))
matrix vq = mshape(I4,16,1)
restrict

R = vR

a = vq

end restrict

which manually imposes Phillips normalization on the 8 estimates for a system with cointegrating
rank 4.

There are two points to note in relation to this option. First, vec(f) is taken to include the coeffi-
cients on all terms within the cointegration space, including the restricted constant or trend, if any;,
as well as any restricted exogenous variables. Second, it is acceptable to give an R matrix with a
number of columns equal to the number of rows of B; this variant is taken to specify a restriction
that is in common across all the columns of S.

An example

Brand and Cassola (2004) propose a money demand system for the Euro area, in which they postu-
late three long-run equilibrium relationships:

money demand m=Bil+Byy
Fisher equation ™= ¢l

Expectation theory of [=3s
interest rates

where m is real money demand, [ and s are long- and short-term interest rates, y is output and
17 is inflation.” (The names for these variables in the gretl data file are m_p, r1, rs, y and inf1,
respectively.)

The cointegration rank assumed by the authors is 3 and there are 5 variables, giving 15 elements
in the B matrix. 3 x 3 = 9 restrictions are required for identification, and a just-identified system
would have 15 — 9 = 6 free parameters. However, the postulated long-run relationships feature
only three free parameters, so the over-identification rank is 3.

4Note that when two indices are given in a restriction on « the indexation is consistent with that for § restrictions:
the leading index denotes the cointegrating vector and the trailing index the equation number.

>A traditional formulation of the Fisher equation would reverse the roles of the variables in the second equation,
but this detail is immaterial in the present context; moreover, the expectation theory of interest rates implies that the
third equilibrium relationship should include a constant for the liquidity premium. However, since in this example the
system is estimated with the constant term unrestricted, the liquidity premium gets absorbed into the system intercept
and disappears from z;.
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Listing 30.1: Estimation of a money demand system with constraints on
Input:

open brand_cassola.gdt

# perform a few transformations
m_p = m_p*100

y = y*100
infl = infl1/4
rs = rs/4
rl = rl/4

# replicate table 4, page 824
vecm 2 3 m_p infl r1 rs y -q
110 = $1n1

restrict --full
b[1,1] =
b[1,2] =
b[1,4] =
b[2,1] =
b[2,2] =
b[2,4] =
b[2,5] =
b[3,1] =
b[3,2] =
b[3,3] =
b[3,4] =
b[3,5] =0

end restrict

111 = $rinl

RPOOOORrRrROOOR

I
=

Partial output

116.60268

Unrestricted loglikelihood (lu) =
= 115.86451

Restricted loglikelihood (1r)
2 * (Qu - Tr) = 1.47635
P(Chi-Square(3) > 1.47635) = 0.68774

beta (cointegrating vectors, standard errors in parentheses)

m_p 1.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000)
infl 0.0000 1.0000 0.0000
(0.0000) (0.0000) (0.0000)
ri 1.6108 -0.67100 1.0000
(0.62752) (0.049482) (0.0000)
rs 0.0000 0.0000 -1.0000
(0.0000) (0.0000) (0.0000)
y -1.3304 0.0000 0.0000

(0.030533) (0.0000) (0.0000)
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Listing 30.1 replicates Table 4 on page 824 of the Brand and Cassola article.® Note that we use
the $1nT accessor after the vecm command to store the unrestricted log-likelihood and the $rinT
accessor after restrict for its restricted counterpart.

The example continues in script 30.2, where we perform further testing to check whether (a) the
income elasticity in the money demand equation is 1 (8, = 1) and (b) the Fisher relation is homo-
geneous (¢ = 1). Since the --ful1 switch was given to the initial restrict command, additional
restrictions can be applied without having to repeat the previous ones. (The second script contains
a few printf commands, which are not strictly necessary, to format the output nicely.) It turns out
that both of the additional hypotheses are rejected by the data, with p-values of 0.002 and 0.004.

Listing 30.2: Further testing of money demand system
Input:

restrict
b[1,5] = -1

end restrict

11_uie = $rinl

restrict
b[2,3] = -1

end restrict

11_hfh = $rinl

# replicate table 5, page 824

printf "Testing zero restrictions in cointegration space:\n"

printf " LR-test, rank = 3: chiA2(3) = %6.4f [%6.4f]1\n", 2*(110-111), \
pvalue(X, 3, 2*(110-111))

printf "Unit income elasticity: LR-test, rank = 3:\n"
printf " chiA2(4) = %g [%6.4F]\n", 2*(1710-11_uie), \
pvalue(X, 4, 2*(110-11_uie))

printf "Homogeneity in the Fisher hypothesis:\n"
printf " LR-test, rank = 3: chiA2(4) = %6.3f [%6.4f]\n", 2*(110-T1_hfh), \
pvalue(X, 4, 2*(110-11_hfh))

Output:

Testing zero restrictions in cointegration space:
LR-test, rank = 3: chiA2(3) = 1.4763 [0.6877]

Unit income elasticity: LR-test, rank = 3:
chiA2(4) = 17.2071 [0.0018]

Homogeneity in the Fisher hypothesis:
LR-test, rank = 3: chiA2(4) = 15.547 [0.0037]

Another type of test that is commonly performed is the “weak exogeneity” test. In this context, a
variable is said to be weakly exogenous if all coefficients on the corresponding row in the & matrix
are zero. If this is the case, that variable does not adjust to deviations from any of the long-run
equilibria and can be considered an autonomous driving force of the whole system.

The code in Listing 30.3 performs this test for each variable in turn, thus replicating the first
column of Table 6 on page 825 of Brand and Cassola (2004). The results show that weak exogeneity
might perhaps be accepted for the long-term interest rate and real GDP (p-values 0.07 and 0.08
respectively).

6Modulo what appear to be a few typos in the article.
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Listing 30.3: Testing for weak exogeneity

Input:
restrict
al = 0

end restrict
ts_m = 2*¥(110 - $rinl)

restrict
a2 =0
end restrict
ts_p = 2*(110 - $rinl)

restrict
a3 =0
end restrict
ts_1 = 2*(110 - $rlnT)

restrict
a4 = 0
end restrict

ts_s = 2*(110 $rinT)

restrict
a5 =0
end restrict

ts_y = 2*(110 - $rind)

Toop foreach i mp 1 s y --quiet
printf "Delta $i\t%6.3f [%6.4f]\n", ts_$i, pvalue(X, 6, ts_$i)
endloop

Output (variable, LR test, p-value):

Delta 11.335 [0.0786]

Delta m 18.111 [0.0060]

Delta p 21.067 [0.0018]

Delta 1 11.819 [0.0661]

Delta s 16.000 [0.0138]
y

279
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Identification and testability

One point regarding VECM restrictions that can be confusing at first is that identification (does
the restriction identify the system?) and testability (is the restriction testable?) are quite separate
matters. Restrictions can be identifying but not testable; less obviously, they can be testable but
not identifying.

This can be seen quite easily in relation to a rank-1 system. The restriction 8; = 1 is identifying
(it pins down the scale of ) but, being a pure scaling, it is not testable. On the other hand, the
restriction ;1 + B2 = 0 is testable—the system with this requirement imposed will almost certainly
have a lower maximized likelihood —but it is not identifying; it still leaves open the scale of S.

We said above that the number of restrictions must equal at least 2, where r is the cointegrating
rank, for identification. This is a necessary and not a sufficient condition. In fact, when + > 1 it can
be quite tricky to assess whether a given set of restrictions is identifying. Gretl uses the method
suggested by Doornik (1995), where identification is assessed via the rank of the information ma-
trix.

It can be shown that for restrictions of the sort (30.7) and (30.8) the information matrix has the
same rank as the Jacobian matrix

70 = [y @ PG : (x e Ip)H]|

A sufficient condition for identification is that the rank of J(0) equals the number of free param-
eters. The rank of this matrix is evaluated by examination of its singular values at a randomly
selected point in the parameter space. For practical purposes we treat this condition as if it were
both necessary and sufficient; that is, we disregard the special cases where identification could be
achieved without this condition being met.”

30.7 Numerical solution methods

In general, the ML estimator for the restricted VECM problem has no closed-form solution, hence
the maximum must be found via numerical methods.® In some cases convergence may be difficult,
and gretl provides several choices to solve the problem.

Switching and LBFGS

Two maximization methods are available in gretl. The default is the switching algorithm set out
in Boswijk and Doornik (2004). The alternative is a limited-memory variant of the BFGS algorithm
(LBFGS), using analytical derivatives. This is invoked using the --1bfgs flag with the restrict
command.

The switching algorithm works by explicitly maximizing the likelihood at each iteration, with re-
spect to ¢, ¢ and Q (the covariance matrix of the residuals) in turn. This method shares a feature
with the basic Johansen eigenvalues procedure, namely, it can handle a set of restrictions that does
not fully identify the parameters.

LBFGS, on the other hand, requires that the model be fully identified. When using LBFGS, therefore,
you may have to supplement the restrictions of interest with normalizations that serve to identify
the parameters. For example, one might use all or part of the Phillips normalization (see section
30.5).

Neither the switching algorithm nor LBFGS is guaranteed to find the global ML solution.” The

7See Boswijk and Doornik (2004), pp. 447-8 for discussion of this point.

8The exception is restrictions that are homogeneous, common to all 8 or all « (in case * > 1), and involve either 8
only or « only. Such restrictions are handled via the modified eigenvalues method set out by Johansen (1995). We solve
directly for the ML estimator, without any need for iterative methods.

9In developing gretl’s VECM-testing facilities we have considered a fair number of “tricky cases” from various sources.
We’d like to thank Luca Fanelli of the University of Bologna and Sven Schreiber of Goethe University Frankfurt for their
help in devising torture-tests for gretl’s VECM code.
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optimizer may end up at a local maximum (or, in the case of the switching algorithm, at a saddle
point).

The solution (or lack thereof) may be sensitive to the initial value selected for 6. By default, gretl
selects a starting point using a deterministic method based on Boswijk (1995), but two further
options are available: the initialization may be adjusted using simulated annealing, or the user may
supply an explicit initial value for 0.

The default initialization method is:

1. Calculate the unrestricted ML B using the Johansen procedure.

2. If the restriction on B is non-homogeneous, use the method proposed by Boswijk:
bo=—[Ur®B)HI" (I, ® B.) ho (30.9)

where Bl [§ = 0 and A* denotes the Moore-Penrose inverse of A. Otherwise

¢o = (H'H) 'H'vec(p) (30.10)

3. VeC(Bo) = H¢0 + hg.

4. Calculate the unrestricted ML & conditional on S, as per Johansen:
& = S01Bo(BoS11B0) ! (30.11)

5. If « is restricted by vec(«’) = Gy, then o = (G'G)'G' vec(&') and vec () = Gyo.

Alternative initialization methods

As mentioned above, gretl offers the option of adjusting the initialization using simulated anneal-
ing. This is invoked by adding the --jitter option to the restrict command.

The basic idea is this: we start at a certain point in the parameter space, and for each of » iterations
(currently n = 4096) we randomly select a new point within a certain radius of the previous one,
and determine the likelihood at the new point. If the likelihood is higher, we jump to the new point;
otherwise, we jump with probability P (and remain at the previous point with probability 1 — P). As
the iterations proceed, the system gradually “cools” —that is, the radius of the random perturbation
is reduced, as is the probability of making a jump when the likelihood fails to increase.

In the course of this procedure many points in the parameter space are evaluated, starting with the
point arrived at by the deterministic method, which we’ll call 8y. One of these points will be “best”
in the sense of yielding the highest likelihood: call it 6*. This point may or may not have a greater
likelihood than 6y. And the procedure has an end point, 6;,, which may or may not be “best”.

The rule followed by gretl in selecting an initial value for 0 based on simulated annealing is this: use
0* if 6* > 0y, otherwise use 6,,. That is, if we get an improvement in the likelihood via annealing,
we make full use of this; on the other hand, if we fail to get an improvement we nonetheless allow
the annealing to randomize the starting point. Experiments indicate that the latter effect can be
helpful.

Besides annealing, a further alternative is manual initialization. This is done by passing a prede-
fined vector to the set command with parameter initvals, as in

set initvals myvec

The details depend on whether the switching algorithm or LBFGS is used. For the switching algo-
rithm, there are two options for specifying the initial values. The more user-friendly one (for most
people, we suppose) is to specify a matrix that contains vec(f) followed by vec(«x). For example:
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open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals

matrix BA = {1, -1, 6, -6, -6, -0.2, 0.1, 0.02, 0.03}
set initvals BA
restrict
b[1] = 1
b[1] + b[2] =
b[3] + b[4] =0
end restrict

|
o

In this example—from Johansen (1995)—the cointegration rank is 1 and there are 4 variables.
However, the model includes a restricted constant (the --rc flag) so that 8 has 5 elements. The «
matrix has 4 elements, one per equation. So the matrix BA may be read as

(.81’32133! B4’B5s 1, X2, X3, 0(4)

The other option, which is compulsory when using LBFGS, is to specify the initial values in terms
of the free parameters, ¢ and . Getting this right is somewhat less obvious. As mentioned above,
the implicit-form restriction Rvec(B) = q has explicit form vec(f) = H¢ + hg, where H = R, the
right nullspace of R. The vector ¢ is shorter, by the number of restrictions, than vec(f). The
savvy user will then see what needs to be done. The other point to take into account is that if « is
unrestricted, the effective length of y is 0, since it is then optimal to compute « using Johansen’s
formula, conditional on § (equation 30.11 above). The example above could be rewritten as:

open denmark.gdt
vecm 2 1 LRM LRY IBO IDE --rc --seasonals

matrix phi = {-8, -6}
set initvals phi
restrict --Tbfgs
b[1] =1
b[1] + b[2] 0
b[3] + b[4] =0
end restrict

In this more economical formulation the initializer specifies only the two free parameters in ¢ (5
elements in S minus 3 restrictions). There is no call to give values for @ since « is unrestricted.

Scale removal

Consider a simpler version of the restriction discussed in the previous section, namely,

restrict

b[1] = 1

b[1] + b[2] = 0
end restrict

This restriction comprises a substantive, testable requirement—that ; and B> sum to zero—and
a normalization or scaling, f; = 1. The question arises, might it be easier and more reliable to
maximize the likelihood without imposing 81 = 1?9 If so, we could record this normalization,
remove it for the purpose of maximizing the likelihood, then reimpose it by scaling the result.

Unfortunately it is not possible to say in advance whether “scale removal” of this sort will give
better results for any particular estimation problem. However, this does seem to be the case more
often than not. Gretl therefore performs scale removal where feasible, unless you

10As a numerical matter, that is. In principle this should make no difference.
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o explicitly forbid this, by giving the --no-scaling option flag to the restrict command; or
e provide a specific vector of initial values; or

¢ select the LBFGS algorithm for maximization.

Scale removal is deemed infeasible if there are any cross-column restrictions on f, or any non-
homogeneous restrictions involving more than one element of S.

In addition, experimentation has suggested to us that scale removal is inadvisable if the system is
justidentified with the normalization(s) included, so we do not do it in that case. By “just identified”
we mean that the system would not be identified if any of the restrictions were removed. On that
criterion the above example is not just identified, since the removal of the second restriction would
not affect identification; and gretl would in fact perform scale removal in this case unless the user
specified otherwise.
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Multivariate models

By a multivariate model we mean one that includes more than one dependent variable. Certain
specific types of multivariate model for time-series data are discussed elsewhere: chapter 29 deals
with VARs and chapter 30 with VECMs. Here we discuss two general sorts of multivariate model,
implemented in gretl via the system command: SUR systems (Seemingly Unrelated Regressions),
in which all the regressors are taken to be exogenous and interest centers on the covariance of the
error term across equations; and simultaneous systems, in which some regressors are assumed to
be endogenous.

In this chapter we give an account of the syntax and use of the system command and its compan-
ions, restrict and estimate; we also explain the options and accessors available in connection
with multivariate models.

31.1 The system command

The specification of a multivariate system takes the form of a block of statements, starting with
system and ending with end system. Once a system is specified it can estimated via various
methods, using the estimate command, with or without restrictions, which may be imposed via
the restrict command.

Starting a system block

The first line of a system block may be augmented in either (or both) of two ways:

e An estimation method is specified for the system. This is done by following system with
an expression of the form method=estimator, where estimator must be one of o1s (Ordinary
Least Squares), ts1s (Two-Stage Least Squares), sur (Seemingly Unrelated Regressions), 3s1s
(Three-Stage Least Squares), Timl (Limited Information Maximum Likelihood) or fim1 (Full
Information Maximum Likelihood). Two examples:

system method=sur
system method=fiml

OLS, TSLS and LIML are, of course, single-equation methods rather than true system estima-
tors; they are included to facilitate comparisons.

e The system is assigned a name. This is done by giving the name first, followed by a back-
arrow, “<-", followed by system. If the name contains spaces it must be enclosed in double-
quotes. Here are two examples:

sysl <- system
"System 1" <- system

Note, however, that this naming method is not available within a user-defined function, only
in the main body of a gretl script.

If the initial system line is augmented in the first way, the effect is that the system is estimated as
soon as its definition is completed, using the specified method. The effect of the second option is

284
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that the system can then be referenced by the assigned name for the purposes of the restrict and
estimate commands; in the gretl GUI an additional effect is that an icon for the system is added
to the “Session view”.

These two possibilities can be combined, as in
mysys <- system method=3sls

In this example the system is estimated immediately via Three-Stage Least Squares, and is also
available for subsequent use under the name mysys.

If the system is not named via the back-arrow mechanism, it is still available for subsequent use
via restrict and estimate; in this case you should use the generic name $system to refer to the
last-defined multivariate system.

The body of a system block

The most basic element in the body of a system block is the equation statement, which is used
to specify each equation within the system. This takes the same form as the regression specifica-
tion for single-equation estimators, namely a list of series with the dependent variable given first,
followed by the regressors, with the series given either by name or by ID number (order in the
dataset). A system block must contain at least two equation statements, and for systems without
endogenous regressors these statements are all that is required. So, for example, a minimal SUR
specification might look like this:

system method=sur
equation yl const x1
equation y2 const x2
end system

For simultaneous systems it is necessary to determine which regressors are endogenous and which
exogenous. By default all regressors are treated as exogenous, except that any variable that appears
as the dependent variable in one equation is automatically treated as endogeous if it appears as a
regressor elsewhere. However, an explicit list of endogenous regressors may be supplied follow-
ing the equations lines: this takes the form of the keyword endog followed by the names or ID
numbers of the relevant regressors.

When estimation is via TSLS or 3SLS it is possible to specify a particular set of instruments for each
equation. This is done by giving the equation lists in the format used with the ts1s command:
first the dependent variable, then the regressors, then a semicolon followed by the instruments, as
in

system method=3sls
equation yl const x11 x12 ; const x11 z1
equation y2 const x21 x22 ; const x21 z2
end system

An alternative way of specifying instruments is to insert an extra line starting with instr, followed
by the list of variables acting as instruments. This is especially useful for specifying the system with
the equations keyword; see the following subsection. As in ts1s, any regressors that are not also
listed as instruments are treated as endogenous, so in the example above x11 and x21 are treated
as exogenous while x21 and x22 are endogenous, and instrumented by z1 and z2 respectively.

One more sort of statement is allowed in a system block: thatis, the keyword identity followed by
an equation that defines an accounting relationship, rather then a stochastic one, between variables.
For example,

identity Y =C+ I + G+ X
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There can be more than one identity in a system block. But note that these statements are specific
to estimation via FIML; they are ignored for other estimators.

31.2 Equation systems within functions

It is also possible to define a multivariate system in a programmatic way. This is useful if the precise
specification of the system depends on some input parameters that are not known in advance, but
are given when the script is actually run.

The relevant syntax is given by the equations keyword (note the plural), which replaces the block
of equation lines in the standard form. This keyword must be followed by two arguments. The
first is a named list containing all series on the left-hand side of the system, which determines the
number of equations in the system. The nature of the second argument depends on whether or not
the list of regressors is in common for all equations (as in SUR):

e Common regressors: a second named list.

e Differing regressors: an array of lists, one per equation.

The first case is straightforward; the second requires a little more explanation. Suppose we have a
two-equation system with regressors given by the lists x1istl and x1ist2. We can then define a
suitable array as follows:

Tists Xlists = defarray(xTistl, x1ist2)

(See section 10.8 for alternative ways of building an array.)
Therefore, specifying a system generically in this way just involves building the necessary list
arguments, as shown in the following example:

open denmark
Tist LHS = LRM LRY

Tist RHS1 = const LRM(-1) IBO(-1) IDE(-1)
Tist RHS2 = const LRY(-1) IBO(-1)
Tists RHS = defarray(RHS1, RHS2)

system method=01s
equations LHS RHS
end system

As mentioned above, the option of assigning a specific name to a system is not available within
functions, but the generic identifier $system can be used to similar effect. The following example
illustrates how one can define a system, estimate it via two methods, apply a restriction, then
re-estimate it subject to the restriction.

function void anonsys(series x, series y)
system
equation x const
equation y const
end system
estimate $system method=0ls
estimate $system method=sur
restrict $system
b[1,1] - b[2,1] =0
end restrict
estimate $system method=o0ls
end function
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31.3 Restriction and estimation

The behavior of the restrict command is a little different for multivariate systems as compared
with single-equation models.

In the single-equation case, restrict refers to the last-estimated model, and once the command is
completed the restriction is tested. In the multivariate case, you must give the name of the system
to which the restriction is to be applied (or $system to refer to the last-defined system), and the
effect of the command is just to attach the restriction to the system; testing is not done until the
next estimate command is given. In addition, in the system case the default is to produce full
estimates of the restricted model; if you are not interested in the full estimates and just want the
test statistic you can append the --quiet option to estimate.

A given system restriction remains in force until it is replaced or removed. To return a system to
its unrestricted state you can give an empty restrict block, as in

restrict sysname
end restrict

As illustrated above, you can use the method tag to specify an estimation method with the estimate
command. If the system has already been estimated you can omit this tag and the previous method
is used again.

The estimate command is the main locus for options regarding the details of estimation. The
available options are as follows:

o If the estimation method is SUR or 3SLS and the --iterate flag is given, the estimator will be
iterated. In the case of SUR, if the procedure converges the results are maximum likelihood
estimates. Iteration of three-stage least squares, however, does not in general converge on the
full-information maximum likelihood results. This flag is ignored for other estimators.

o If the equation-by-equation estimators OLS or TSLS are chosen, the default is to apply a de-
grees of freedom correction when calculating standard errors. This can be suppressed using
the --no-df-corr flag. This flag has no effect with the other estimators; no degrees of free-
dom correction is applied in any case.

e By default, the formula used in calculating the elements of the cross-equation covariance
matrix is

AT A

Uuj

T

where T is the sample size and 1i; is the vector of residuals from equation i. But if the
--geomean flag is given, a degrees of freedom correction is applied: the formula is

Gij =

AL A

_ u;u;j
J(T = k) (T - k)

where k; denotes the number of independent parameters in equation i.

e If an iterative method is specified, the --verbose option calls for printing of the details of
the iterations.

e When the system estimator is SUR or 3SLS the cross-equation covariance matrix is initially
estimated via OLS or TSLS, respectively. In the case of a system subject to restrictions the
question arises: should the initial single-equation estimator be restricted or unrestricted?
The default is the former, but the --unrestrict-init flag can be used to select unrestricted
initialization. (Note that this is unlikely to make much difference if the --iterate option is
given.)
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31.4 System accessors

After system estimation various matrices may be retrieved for further analysis. Let g denote the
number of equations in the system and let K denote the total number of estimated parameters
(K = >;k;). The accessors $uhat and $yhat get T x g matrices holding the residuals and fitted
values respectively. The accessor $coeff gets the stacked K-vector of parameter estimates; $vcv
gets the K X K variance matrix of the parameter estimates; and $sigma gets the g X g cross-equation
covariance matrix, 3.

A test statistic for the hypothesis that X is diagonal can be retrieved as $diagtest and its p-value
as $diagpval. This is the Breusch-Pagan test except when the estimator is (unrestricted) iterated
SUR, in which case it’s a Likelihood Ratio test. The Breusch-Pagan test is computed as

g i-1

IM=T > Zrl?j

i=2j=1

where v;; = 64;/,/0i0;; the LR test is

9
IR=T (Z log 67 - log |S|>

i=1

where 67 is 4};/T from the individual OLS regressions. In both cases the test statistic is dis-

tributed asymptotically as x? with g(g — 1)/2 degrees of freedom.

Structural and reduced forms

Systems of simultaneous systems can be represented in structural form as
Ty =A1yi 1 +Apye o+ -+ ApYip + Bxy + €

where y; represents the vector of endogenous variables in period t, x; denotes the vector of ex-
ogenous variables, and p is the maximum lag of the endogenous regressors. The structural-form
matrices can be retrieved as $sysGamma, $sysA and $sysB respectively. If y; is m x 1 and x; is
n x 1, thenI'is m x m and B is m X n. If the system contains no lags of the endogenous variables
then the A matrix is not defined, otherwise A is the horizontal concatenation of As,..., A, and is
therefore m x mp.

From the structural form it is straightforward to obtain the reduced form, namely,

p
Yt = 1"’1 (Z Ai_’)/t_i) + l"’let + VUt
i=1

where v; = T ¢;. The reduced form is used by gretl to generate forecasts in response to the fcast
command. This means that—in contrast to single-equation estimation—the values produced via
fcast for a static, within-sample forecast will in general differ from the fitted values retrieved via
$yhat. The fitted values for equation i represent the expectation of y;; conditional on the contem-
poraneous values of all the regressors, while the fcast values are conditional on the exogenous
and predetermined variables only.

The above account has to be qualified for the case where a system is set up for estimation via TSLS
or 3SLS using a specific list of instruments per equation, as described in section 31.1. In that case
it is possible to include more endogenous regressors than explicit equations (although, of course,
there must be sufficient instruments to achieve identification). In such systems endogenous re-
gressors that have no associated explicit equation are treated “as if” exogenous when constructing
the structural-form matrices. This means that forecasts are conditional on the observed values of
the “extra” endogenous regressors rather than solely on the values of the exogenous and predeter-
mined variables.
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Forecasting

32.1 Introduction

In some econometric contexts forecasting is the prime objective: one wants estimates of the future
values of certain variables to reduce the uncertainty attaching to current decision making. In other
contexts where real-time forecasting is not the focus prediction may nonetheless be an important
moment in the analysis. For example, out-of-sample prediction can provide a useful check on
the validity of an econometric model. In other cases we are interested in questions of “what if”:
for example, how might macroeconomic outcomes have differed over a certain period if a different
policy had been pursued? In the latter cases “prediction” need not be a matter of actually projecting
into the future but in any case it involves generating fitted values from a given model. The term
“postdiction” might be more accurate but it is not commonly used; we tend to talk of prediction
even when there is no true forecast in view.

This chapter offers an overview of the methods available within gretl for forecasting or prediction
(whether forward in time or not) and explicates some of the finer points of the relevant commands.

32.2 Saving and inspecting fitted values

In the simplest case, the “predictions” of interest are just the (within sample) fitted values from an
econometric model. For the single-equation linear model, y; = X + u;, these are y; = X;f.

In command-line mode, the ¥ series can be retrieved, after estimating a model, using the accessor
$yhat, as in

series yh = $yhat

If the model in question takes the form of a system of equations, $yhat returns a matrix, each
column of which contains the fitted values for a particular dependent variable. To extract the fitted
series for, e.g., the dependent variable in the second equation, do

matrix Yh = $yhat
series yh2 = Yh[,2]

Having obtained a series of fitted values, you can use the fcstats function to produce a vector of
statistics that characterize the accuracy of the predictions (see section 32.4 below).

The gretl GUI offers several ways of accessing and examining within-sample predictions. In the
model display window the Save menu contains an item for saving fitted values, the Graphs menu
allows plotting of fitted versus actual values, and the Analysis menu offers a display of actual, fitted
and residual values.

32.3 The fcast command

The fcast command generates predictions based on the last estimated model. Several questions
arise here: How to control the range over which predictions are generated? How to control the
forecasting method (where a choice is available)? How to control the printing and/or saving of the
results? Basic answers can be found in the Gretl Command Reference; we add some more details
here.
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The forecast range

The range defaults to the currently defined sample range. If this remains unchanged following esti-
mation of the model in question, the forecast will be “within sample” and (with some qualifications
noted below) it will essentially duplicate the information available via the retrieval of fitted values
(see section 32.2 above).

A common situation is that a model is estimated over a given sample and then forecasts are
wanted for a subsequent out-of-sample range. The simplest way to accomplish this is via the
--out-of-sample option to fcast. For example, assuming we have a quarterly time-series dataset
containing observations from 1980:1 to 2008:4, four of which are to be reserved for forecasting:

# reserve the last 4 observations
smpl 1980:1 2007:4

ols y 0 xTist

fcast --out-of-sample

This will generate a forecast from 2008:1 to 2008:4.

There are two other ways of adjusting the forecast range, offering finer control:

e Use the smp1 command to adjust the sample range prior to invoking fcast.

¢ Use the optional startobs and endobs arguments to fcast (which should come right after the
command word). These values set the forecast range independently of the sample range.

What if one wants to generate a true forecast that goes beyond the available data? In that case
one can use the dataset command with the addobs parameter to add extra observations before
forecasting. For example:

# use the entire dataset, which ends in 2008:4
ols y 0 xTist

dataset addobs 4

fcast 2009:1 2009:4

But this will work as stated only if the set of regressors in x1ist does not contain any stochastic
regressors other than lags of y. The dataset addobs command attempts to detect and extrapolate
certain common deterministic variables (e.g., time trend, periodic dummy variables). In addition,
lagged values of the dependent variable can be supported via a dynamic forecast (see below for
discussion of the static/dynamic distinction). But “future” values of any other included regressors
must be supplied before such a forecast is possible. Note that specific values in a series can be
set directly by date, for example: x1[2009:1] = 120.5. Or, if the assumption of no change in the
regressors is warranted, one can do something like this:

Toop t=2009:1..2009:4
Toop foreach i xlist
$i[t] = $i[2008:4]
endloop
endTloop

Static and dynamic forecasts

The distinction between static and dynamic forecasts applies only to dynamic models, i.e., those
that feature one or more lags of the dependent variable. The simplest case is the AR(1) model,

Yy = &Ko+ X1Yt-1 + € (32.1)
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In some cases the presence of a lagged dependent variable is implicit in the dynamics of the error
term, for example

=B +u
=pPpUt-1 + €

which implies that
Ye=Q-p)B+pYi-1+é€

Suppose we want to forecast y for period s using a dynamic model, say (32.1) for example. If
we have data on 1y available for period s — 1 we could form a fitted value in the usual way: y; =
&o + &1ys—1. But suppose that data are available only up to s — 2. In that case we can apply the
chain rule of forecasting:

Ps-1= &+ X1 Y52

Ps =&+ &1 Vs-1
This is what is called a dynamic forecast. A static forecast, on the other hand, is simply a fitted
value (even if it happens to be computed out-of-sample).

Printing and saving forecasts

To be written.

32.4 Univariate forecast evaluation statistics

Let y; be the value of a variable of interest at time t and let f; be a forecast of y;. We define
the forecast error as e; = y; — f;. Given a series of T observations and associated forecasts we
can construct several measures of the overall accuracy of the forecasts. Some commonly used
measures are the Mean Error (ME), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE). These are defined as
follows.

1 T T 1 T
ME = — RMSE = | = MAE = —
1 T et e
MPE = — 100 — MAPE = 100
thzi e thl yt

A further relevant statistic is Theil’s U (Theil, 1966), defined as the positive square root of

1 Jte1 — Vi1 ? = (Vi1 — Dt
thl< b2 ) Zl< )

The more accurate the forecasts, the lower the value of Theil’s U, which has a minimum of 0.1
This measure can be interpreted as the ratio of the RMSE of the proposed forecasting model to the
RMSE of a naive model which simply predicts y;+; = y; for all t. The naive model yields U = 1;
values less than 1 indicate an improvement relative to this benchmark and values greater than 1 a
deterioration.

-1

LThis statistic is sometimes called Uy, to distinguish it from a related but different U defined in an earlier work by
Theil (1961). It seems to be generally accepted that the later version of Theil’s U is a superior statistic, so we ignore the
earlier version here.
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In addition, Theil (1966, pp. 33-36) proposed a decomposition of the MSE which can be useful in
evaluating a set of forecasts. He showed that the MSE could be broken down into three non-negative

components as follows
2

+ (l —72)532,

L \2

MSE = (f—y) + (Sf —Vsy)
where f and ¥ are the sample means of the forecasts and the observations, s; and s, are the re-
spective standard deviations (using T in the denominator), and 7 is the sample correlation between
v and f. Dividing through by MSE we get

(F-7)" (sr=7sy) (1-r)sy 32.2
MSE | MSE | MSE (32.2)

Theil labeled the three terms on the left-hand side of (32.2) the bias proportion (UM), regression
proportion (UR) and disturbance proportion (UP), respectively. If y and f represent the in-sample
observations of the dependent variable and the fitted values from a linear regression then the first
two components, UM and UR, will be zero (apart from rounding error), and the entire MSE will be
accounted for by the unsystematic part, U, In the case of out-of-sample prediction, however (or
“prediction” over a sub-sample of the data used in the regression), UM and UR are not necessarily
close to zero, although this is a desirable property for a forecast to have. UM differs from zero if
and only if the mean of the forecasts differs from the mean of the realizations, and U® is non-zero
if and only if the slope of a simple regression of the realizations on the forecasts differs from 1.

The above-mentioned statistics are printed as part of the output of the fcast command. They can
also be retrieved in the form of a column vector using the function fcstats, which takes two series
arguments corresponding to y and f. The vector returned is

(ME RMSE MAE MPE MAPE U UM yR ypP )

(Note that the MSE is not included since it can easily be obtained given the RMSE.) The series given
as arguments to fcstats must not contain any missing values in the currently defined sample
range; use the smp1 command to adjust the range if needed.

32.5 Forecasts based on VAR models

To be written properly. For the moment, the following simple example script should hopefully
provide the main info. The code

# open sample data file

open sw_chl4.gdt --quiet

# generate the "inflation" series

series INFL = 100 * sdiff(Tog(PUNEW))

# put Tast year aside for out-of-sample forecast

smpl ; -4

# estimate a 5-Tag VAR

var 5 LHUR INFL --silent

# store fitted values (note: result is a 2-column matrix)
YH = $yhat

# perform out-of-sample forecast (both versions)

fcast LHUR --static --out-of-sample

# note that omission of the variable specification means "all"
fcast --dynamic --out-of-sample

yields

For 95% confidence intervals, t(140, 0.025) = 1.977
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LHUR
1999:1 4.300000
1999:2 4.300000
1999:3 4.233333
1999:4 4.100000

prediction

4.335004
4.243244
4.290981
4.178030

Forecast evaluation statistics

Mean Error

Root Mean Squared Error

Mean Absolute Error
Mean Percentage Error

Mean Absolute Percentage Error

Theil’s U

Bias proportion, UM

Regression proportion, UR
Disturbance proportion, UD

[eNeoNeoNel oo NoNe)

std. error

0.222784
0.222784
0.222784
0.222784

.028481
.058861
.05686
.68977
.3497
.75027
.23414
.0081804
.75768

95%

3.894549
3.802788
3.850525
3.737575

For 95% confidence intervals, t(140, 0.025) = 1.977

LHUR
1999:1 4.300000
1999:2 4.300000
1999:3 4.233333
1999:4 4.100000

prediction

4.335004
4.312724
4.272764
4.223213

Forecast evaluation statistics

Mean Error

Root Mean Squared Error

Mean Absolute Error
Mean Percentage Error

Mean Absolute Percentage Error

Theil’s U

Bias proportion, UM

Regression proportion, UR
Disturbance proportion, UD

INFL
1999:1 1.651245
1999:2 2.048545
1999:3 2.298952
1999:4 2.604836

prediction

1.812250
2.088185
2.266445
2.610037

Forecast evaluation statistics

Mean Error

Root Mean Squared Error

Mean Absolute Error
Mean Percentage Error

Mean Absolute Percentage Error

Theil’s U

Bias proportion, UM

Regression proportion, UR
Disturbance proportion, UD

OO ORrRrRrOOOo

OO OO WNOOO

std. error

0.222784
0.401960
0.539582
0.642001

.052593
.067311
.052593
.2616
.2616
.87334
.61049
.29203
.097478

std. error

0.431335
0.777834
1.075855
1.409676

.043335
.084525
.059588
.6178
.3248
.095932
.26285
.45311
.28404

95%

.894549
.518028
.205982
.953943

N W ww

95%

.959479
.550366
.139423
.176969

[eNeoNeNo)

interval

- 4.775460
- 4.683699
- 4.731436
- 4.618486

interval

- 4.775460
- 5.107421
- 5.339547
- 5.492482

interval

- 2.665022
- 3.626004
- 4.393467
- 5.397043
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32.6 Forecasting from simultaneous systems

To be written.
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State Space Modeling

33.1 Introduction

The original interface to the treatment of linear state space models in gretl (which has now been
retired) predated the development of gretl’s “bundle” type.! In 2016 it struck the gretl authors that
the bundle type could be used to advantage in reformulating the user interface; we suspect people
will find the new interface substantially easier to use. The new interface makes it more practical
to split long portions of code into smaller, dedicated functions, which are arguably easier to debug
and maintain; hopefully this may lead to more function packages using gretl’s native state space
facilities. Moreover, the new design is such that certain operations that would have required a
good deal of low-level coding under the old regime are now simple, fast and natural —for example,
“disturbance smoothing” (see section 33.7) or setting up time-varying system matrices (see section
33.9).

Technically, a gretl bundle is an associative array; that is, an all-purpose container into which you
can put matrices, scalars, strings and so on, identified by keys. A Kalman bundle is a somewhat
regimented version of the same. There are two sets of “reserved” keys, one set pertaining to input
matrices and the other to results generated by the Kalman functions. Beyond that, however, you
are free to add to the bundle whatever extra elements you think may be useful.

Here are the main features of the new interface “at a glance”:

e The Kalman structure, which used to be entirely sui generis, is implemented as a bundle.

¢ You can therefore have as many named models as you like in existence at one time, and you
can pass them as arguments to functions.

e The “block” syntax for defining a filter is replaced by the function ksetup.

e The signatures of the functions kfilter and ksmooth are much simplified. For the most
part you retrieve results by reading bundle members instead of poking in matrix-pointer ar-
guments.

e A new function, kdsmooth, implements Koopman’s “disturbance smoother.”
e The ksimul function has been revamped and improved.

e The mechanism for handling time-varying system matrices has been simplified and general-
ized.

33.2 Notation

In this document our basic representation of a state-space model is given by the following pair of
equations:

&1 = Froge + vy (33.1)
YV = A/tXt + HéO(t + Wt (33.2)

HIf anyone needs documentation for the original interface, available in gretl 2016d and earlier versions, it can be
found at http://gretl.sourceforge.net/papers/kalman_old. pdf.
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where (33.1) is the state transition equation and (33.2) is the observation or measurement equation.
The state vector, «, is (¥ X 1) and the vector of observables, y;, is (n x 1); x; is a (k x 1) vector of
exogenous variables. The (¥ x 1) vector vy and the (n X 1) vector w; are assumed to be vector white
noise:

E(vivg) = Q; for t = s, otherwise 0
E(wiwy) = R; for t = s, otherwise 0

The number of time-series observations is denoted by T. In the case when Fy = F, Hy = H, Ay = A,
Q: = Q and R¢ = R for all t, the model is said to be time-invariant. We assume time-invariance in
most of what follows, but discuss the time-varying case in section 33.9.

33.3 Defining the model as a bundle

The ksetup function is used to initialize a state space model, by specifying only its indispensable
elements: the observables and their link to the unobserved state vector, plus the law of motion for
the latter and the covariance matrix of its innovations. Therefore, the function takes a minimum of
four arguments.? The corresponding bundle keys are as follows:

Symbol Dimensions Reserved key

y Txn obsy

H r¥Xn obsymat
F Y X1 statemat
Q ¥ XV statevar

For example,
bundle SSmod = ksetup(y, H, F, Q

The names of these input matrices don’t matter; in fact they may be anonymous matrices con-
structed on the fly. But if and when you wish to copy them out of the bundle, you must use the
specified keys:

matrix H = SSmod.obsymat

Although all the arguments are in concept matrices, as a convenience you may give obsy as a series
or list of series, and the other arguments can be given as scalars if in context they are 1 x 1.

If applicable you may specify any of the following optional input matrices:?

Symbol Dimensions Key If omitted...
X T xk obsx no exogenous terms in observation equation
A kxn obsxmat no exogenous terms in observation equation
R nxn obsvar no disturbance term in observation equation
&0 rx1 inistate &0 is a zero vector
Pypo ¥ X7r inivar Pyp is set automatically

However, these optional matrices are not passed to ksetup, rather you add them to the bundle
returned by ksetup (under their reserved keys) as you usually add elements to a bundle:

2 An optional, fifth argument is used for initializing a state space model in which there is some non-zero correlation
between the disturbances v; and wy. See section 33.9.
3 An additional optional matrix is described in section 33.9 below.
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SSmod.obsxmat = A

Once setup is complete the dimensions of the model, v, n, k and T, become available as scalar
members of the bundle (under their own names).

It might appear that the obsx (x) and obsxmat (A) matrices must go together —either both are
given or neither is given. But an exception is granted for convenience. If the observation equation
includes a constant but no additional exogenous variables, you can give a (1 x n) value for A without
having to specify obsx. More generally, if the row dimension of A is 1 greater than the column
dimension of x, it is assumed that the first element of A is associated with an implicit column of
ones.

The automatic initialization of P;jo (in case inivar is not specified) is applicable only if all the
eigenvalues of F lie inside the unit circle. In this case, the variance for the marginal distribution of
o; is well defined and equals

vec(Pyjo) = [I - F ® F] ' vec(Q),

which is the formula used internally. Otherwise, we apply a diffuse prior, setting P10 = kI,- with
k = 107. You can impose this diffuse prior from the outset by setting a non-zero scalar value on
the bundle under the (reserved) key diffuse:

SSmod.diffuse = 1

33.4 Special features of state-space bundles

A bundle created by ksetup works in most ways like any other gretl bundle; however, some differ-
ences should be kept in mind. With an ordinary bundle you can replace or delete members at will;
with a state-space bundle there are certain constraints.

e You can replace the coefficient matrices obsymat, statemat, statevar and (if applicable)
obsvar and/or obsxmat in a given bundle if you wish—but only on condition that the re-
placement matrix has the same dimensions as the original. Or in other words, the dimensions
7, n and k are set once and for all by the initialization (section 33.3).

e You can replace the data matrices obsy and (if applicable) obsx subject to the condition that
the number of columns is unchanged (n and k respectively): the time-series length, T, is
mutable. But note that if obsx is present it must have at least as many rows as obsy (which
defines T for the bundle).

¢ None of the input matrices just mentioned can be deleted from the bundle.

¢ Qutput matrices that are automatically added to the bundle by the functions described in the
following sections can be deleted (if you don’t need them and want to save on storage). But
they cannot be replaced by arbitrary user content.

e The only other “special” member that can be deleted is the function call (string) that is dis-
cussed in section 33.9.

Nonetheless, in the “user area” of the bundle (that is, under keys other than the reserved ones
noted in this chapter), the usual rules apply.

For all the “k” functions described below the first argument (in most cases the only argument) must
be a pointer to a bundle obtained via ksetup. Any old bundle will not do. A “pointer to bundle”
is specified by prefixing the name of the bundle with an ampersand, as in “&SSmod”. Passing the
argument in pointer form allows these functions to modify the content of the bundle.
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33.5 The kfilter function

Once a model is established, as described in the previous section, kfilter can be used to run a
forward, forecasting pass. This function takes a single argument, namely a bundle-pointer, and
it returns a scalar code: 0 for successful completion, or non-zero if numerical problems were
encountered.

On successful completion, several elements are added to the input bundle (or updated if they’re al-
ready present). A scalar under the key Tn1 gives the overall log-likelihood under the joint normality
assumption,

T T
{ = —% [nTlog(ZTr) + > log %] + > eéZtlet]

t=1 t=1

and the scalar s2 holds the estimated variance,

1 T
A2_7T§ Z;let

(but see section 33.9 below for modifications to these formulae for the case of a diffuse prior). The
key 11t gives access to a T-vector, element t of which is

0 = —% [nlog(Zn) +log 2] + eizt_let]

Five additional matrices also become available. Each of these has T rows, one for each time-step;
the contents of the rows are shown in the following listing.

Forecast errors for the observable variables, e;, n columns: key prederr.
Variance matrix for the forecast errors, vech(Z;)’, n(n + 1)/2 columns: key pevar.
Estimate of the state vector, &;,_;, ¥ columns: key state.

MSE of estimate of the state vector, vech(P¢;—1)’, ¥ (¥ + 1)/2 columns: key stvar.

RN R

Kalman gain, vec(K;)’, ¥n columns: key gain.

The Kalman gain is defined as
K¢ = FePyje—Hy [H{Pyj—1Hy + R ™!

This matrix is rarely required by the user. However, it is the key quantity in the filtering algorithm,
so we make it available under a dedicated key for diagnostic purposes in case numerical problems
should arise. For example, the following retrieves the gain after a filtering operation:

kfilter(&SSmod)
matrix G = SSmod.gain

Then, for example, if you want to retrieve the matrix K at time 10, you need to reshape the tenth
row of the matrix G into the appropriate dimensions:

matrix K10 = mshape(G[10,], SSmod.r, SSmod.n)

33.6 The ksmooth function

Like kfiTter, this function takes a single bundle-pointer argument and returns an integer error
code (0 indicating success). It runs a forward, filtering pass followed by a backward pass which
computes a smoothed estimate of the state and its MSE using the method of Anderson and Moore.
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Note that since ksmooth starts with a forward pass, it can be run without a prior call to kfilter.
This may appear to be useless duplication, but in fact it enables an efficient scripting option. The
main utility of the forward pass lies in the calculation of the log-likelihood in the context of estima-
tion; however, if a state space model contains no parameters that have to be estimated, the model
setup can be followed directly by a call to ksmooth. (And the same goes for kdsmooth below.)

The backward-pass algorithm is as follows: fort = T,...,1

Li = F, — K:H]
w1 = HiStey + Ly
Ui-1 = He SV HY + LU Ly
QT = Q-1 + Prie-1Ue—1
Pri1 = Prit-1 — Prje—1Ur—1Prie—1

with initial values ur = 0 and Ur = 0.2

On successful completion, all the quantities computed by kfi1ter are available as bundle members
(see section 33.5), but the keys state and stvar now give the smoothed estimates. That is, row ¢t
of the state matrix holds &Q‘T and row t of stvar holds P|r, in transposed vech form (v (v + 1)/2
elements).

33.7 The kdsmooth function

This function requires a bundle-pointer argument and returns an integer error code (0 indicating
success). It runs a forward, filtering pass followed by a backward pass which computes a smoothed
estimate of the disturbances along with a dispersion measure, using the methods described in
Koopman (1993) and Koopman et al. (1999).

Upon successful execution of the function, the bundle will contain under the key smdista T x (v +
1) matrix holding smoothed estimates of v; and w;. That is, a matrix whose t-th row contains

(0, w)) =E[(v,w) |>1,-.., yr]

(This assumes the observation equation has a stochastic component; if it does not, then smdist is
just T x7.)

An associated dispersion measure is provided under the key smdisterr. The precise definition
of this matrix depends on a second, optional Boolean parameter. Before describing the action of
this parameter we need to give a brief account of the two variance measures that are found in the
literature on disturbance smoothing. Our account runs in terms of the state disturbance, v, but it
applies equally to the observation disturbance, wy, if present.

One measure of variance is the mean square distance of the inferred disturbances from zero (that

is, from their unconditional expectation). Let us call this Vt(l):

This measure is used in computing the so-called auxiliary residuals, which are advocated in Durbin
and Koopman (2012) as useful diagnostic tools. Auxiliary residuals for the state equation are ob-
tained by dividing 7; by the square roots of the associated diagonal elements of Vt(l). In computing
this matrix we use the formulae given in Koopman et al. (1999, section 4.4).

A second measure of variance is the mean squared distance of the inferred disturbances around
their true values, or in other words the mean squared error, which we’ll write as Vt(z).

Vt(Z) =E[(Dy —v) (Dt —ve) | y1y.ee, VT

4See 1. Karibzhanov’s clear exposition at http://karibzhanov.com/help/kalcvs.htm.
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We calculate this matrix using the formulae given in Durbin and Koopman (2012, section 4.5.2). Its
diagonal elements can be used to form confidence intervals for the true disturbances.

We are now ready to state what gretl provides under the key smdisterr. If the optional second
argument is present and non-zero the results are based on Vt(Z), otherwise (that is, by default) they

are based on Vtm. In either case row ¢ of smdisterr contains the square roots of the diagonal
elements of the matrix in question: the first ¥ elements pertain to the state disturbances and the
following n elements to the observation equation (if applicable). Like smdist, smdisterr has T
rows and either ¥ + n or r columns depending on whether or not there’s a disturbance term in the
observation equation. We return standard deviations rather than variances since most of the time
it’s the former that users will actually want.

Section 33.10 presents a script which exercises the disturbance smoother and illustrates the differ-
ence between Vt(l) and Vt(z).

33.8 The ksimuT function

This simulation function has as its required arguments a pointer to a Kalman bundle and a matrix
containing artificial disturbances, and it returns a matrix of simulation results. An optional trailing
Boolean argument is supported, the purpose of which is explained below.

If the disturbances are not cross-correlated, the matrix argument must be either T X v, if there is no

disturbance in the observation equation, or T X (v + n) if the R (obsvar) matrix is specified. Row ¢t

holds either v, or (v;,w;). Note that if Q (statevar) is not simply an identity matrix you will have

to scale the artificial state disturbances appropriately; the same goes for R and the observation

disturbances, if present. Given a matrix U containing standard normal variates, in the general case

this requires finding a matrix Z such that
ZZ,:QE<Q OTXTL)

Onxr R

and post-multiplying U by Z’ (although it’s not necessary to form Z explicitly if the disturbance
variance matrices are diagonal). This is not particularly onerous if Q is time-invariant; gretl’s
psdroot function can be used to form Z if it's needed. If Q and/or R are time-varying, however,
this scaling can become quite burdensome. As a convenience, the ancillary function ksimdata can
be used to pre-process the U matrix automatically. Here’s an example (we assume that a bundle
named B has been obtained via ksetup):

matrix N mnormal (500, B.r + B.n)
matrix E = ksimdata(&B, N)
matrix sim = ksimul(&B, E)

or if you have no need to store the disturbances:
matrix sim = ksimul(&B, ksimdata(&B, mnormal (500, B.r + B.n)))

Time-variation or no, ksimdata should ensure that the disturbances are scaled to the variances
specified by Q; and R;.

If the disturbances are cross-correlated (see section 33.9) then the matrix argument to ksimul
should be T X p, each row holding ¢;. In this case no prior scaling is required since it is assumed
that & ~ N(0,I) and the disturbances for the respective equations, B:&; and C:&¢, are computed
internally, with regard to time-variation if applicable.

For the purposes of ksimul the time-series length, T, is defined by the number of rows of the
supplied disturbance matrix. This need not equal the original T value (set from obsy in the initial
call to ksetup), since obsy is ignored under simulation. However, if the model includes exogenous
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variables in the observation equation (obsx) and the simulation length is greater than the original
T, the simulation will run out of data and fail unless you supply a larger x matrix. This can be
done in either of two ways. You can add a suitably sized matrix to the Kalman bundle under the
key simx; if present, this will be used in preference to obsx for simulation. Or if you don’t mind
over-writing the original obsx you can substitute another matrix with the required number of rows
under that key.

By default, the value returned by ksimuT is a (T X n) matrix holding simulated values for the vector
of observables at each time step; that is, row t holds 7/, where the tilde indicates a simulated
quantity. To obtain a record of the simulated state, supply a non-zero value for the final, optional
argument. In that case the returned matrix is T X (» + n) and contains both the simulated state
and the simulated observable; row t holds (&;, /).

Note that the original obsy member of the bundle is not overwritten by ksimul, nor is state or
any other user-accessible output matrix. On exit from ksimul the prior T value is restored.

The recursion that yields y and & is as follows: fort = 1,...,T
Vi = Apxe + H{ & + w;
Xer1 = Fr & + v
This implies that a value for &; is required to get things started. You can add such a value to a
Kalman bundle under the reserved key simstart. If this member is not present in the bundle,

&, defaults to the value given under the key inistate, or if that in turn is not present, to a zero
vector. A further note on initializing the state can be found in section 33.9.

33.9 Some finer points
Cross-correlated disturbances

The formulation given in equations (33.1) and (33.2) assumes mutual independence of the distur-
bances in the state and observation equations, v; and w;. This assumption holds good in many
practical applications, but a more general formulation allows for cross-correlation. In place of
(33.1)-(33.2) we may write

&t+1 = Froee + Brég
Yt = A;xt + HéO(t + Cré&g

where & is a (p x 1) disturbance vector which is assumed to satisfy & ~ N(0,I), B; is (¥ X p) and
Cy is (n X p).

For example, the special case where C = I is referred to as “innovations representation” in Hansen
and Sargent (2013) and is a cornerstone of a sizeable strand of literature in contemporary macroe-
conomics.

In terms of input syntax, if the state and observation disturbances are cross-correlated five argu-
ments should be given to the ksetup function (see section 33.3): in place of giving Q you should
give the two matrices identified above as B and C, as in

bundle SSxmod = ksetup(y, H, F, B, O

In case you wish to retrieve or update information on the variance of the disturbances, note that in
the cross-correlated case the bundle keys statevar and obsvar are taken to designate the factors
B and C respectively.

Intercept in the state equation

In some applications it is useful to be able to have an “intercept” in the state transition equation,
thus generalizing equation (33.1) to

Kti1 = Ut + Froge + v
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The term pu is never strictly necessary: the system (33.1) and (33.2) without u is general enough
to accommodate such a term, by absorbing it as an extra (non time-varying) element in the state
vector. However, this comes at the cost of expanding all the matrices that touch the state (,
F, v, Q, H), making the model relatively awkward to formulate and forecasts more expensive to
compute. Therefore, we adopt the convention above on practical grounds.

The (r x 1) vector u can be specified as a bundle member by the name stconst. Despite its name,
this matrix can be stipulated as time varying, as explained in the next section.

Time-varying matrices

Any or all of the matrices obsymat, obsxmat, obsvar, statemat, statevar and stconst may be
time-varying. In that case you must supply the name of a function to be called to update the matrix
or matrices in question: you add this to the bundle as a string, under the key timevar_cal1.> For
example, if just obsymat (H;) should be updated, by a function named TV_H, you would write

SSmod.timevar_call = "TV_H"

The function that plays this role will be called at each time-step of the filtering or simulation
operation, prior to performing any calculations. It should have a single bundle-pointer parameter,
by means of which it will be passed a pointer to the Kalman bundle to which the call is attached. Its
return value, if any, will not be used, so generally it returns nothing (is of type void). However, you
can use gretl’s funcerr keyword to raise an error if things seem to be going wrong; see chapter 13
for details.

Besides the bundle members noted above, a time variation function has access to the current (1-
based) time step, under the reserved key t, and the n-vector containing the forecast error from the
previous time step, e;_1, under the key uhat; when t = 1 the latter will be a zero vector.

If any additional information is needed for performing the update it can be placed in the bundle
under a user-specified key. So, for example, a simple updater for a (1 x 1) H matrix might look like
this:

function void TV_H (bundle *b)
b.obsymat = b.Hvals[b.t]
end function

where b.Hvals is a bundled T-vector. An updater that operates on both H (¥ x n) and F (v X v)
might be

function void update_2 (bundle *b)
b.obsymat = mshape(b.Hvals[b.t,], b.r, b.n)
b.statemat = unvech(b.Fvals[b.t,])

end function

where in this case we assume that b.Hvals is T X rn, with row t holding the (transposed) vec of
Hi,and b.Fvalsis T x7r (v +1)/2, with row t holding the vech of F;. Simpler variants (e.g. just one
element of a relevant matrix in question is changed) and more complex variants —say, involving
some sort of conditionality—are also possible in this framework.

It is worth noting that this setup lends itself to a much wider scope than time-varying system
matrices. In fact, this syntax allows for the possibility of executing user-defined operations at each
step. The function that goes under timevar_call can read all the elements of the model bundle
and can modify several of them: the system matrices (which can therefore be made time-varying)
as well as the user-defined elements.

An extended example of use of the time-variation facility is presented in section 33.10.

5The choice of the name for the function itself is of course totally up to the user.
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Likelihood under the diffuse prior
This note pertains to the kfiTter function (see section 33.5).

There seems to be general agreement in the literature that the log-likelihood calculation should
be modified in the case of a diffuse prior for P;|o. However, it is not clear to us that there is a
well-defined “correct” method for this. At present we emulate SsfPack. In case Pyjg = kI, we set
d = v and calculate

T T
e —% [(nT —d)log(2m) + > log 5| + > e;%;te — dlog(m]
t=1 t=1

and
T

1

~AD 7 1
g~ = e ‘e
nl—d; tee ot

The initial state under simulation

We pointed out in section 33.8 above that you can specify the initial state, 1, from which recursion
starts under simulation via the bundle key simstart. If you wish to make this starting point
stochastic, you can emulate the procedure followed by SsfPack, namely setting

X1 =a+ Zvg

where a is a non-stochastic r-vector, vg is an 7-vector of standard normal random numbers, and Z
is a matrix such that ZZ" = Py)o.

Let’s say we have a state-space bundle B, on which we have already set suitable values of inistate
(corresponding to a above) and inivar (P;0). Now we want to perform a simulation with a stochas-
tic starting point. In hansl we could set «; thus:

matrix Z = psdroot(B.inivar)
B.simstart = B.inistate + Z * mnormal(B.r, 1)

33.10 Example scripts

This section presents a selection of short sample scripts to illustrate the most important points
covered in this chapter.

ARMA estimation

Functions illustrated in this example: ksetup, kfiTter.

As is well known, the Kalman filter provides a very efficient way to compute the likelihood of ARMA
models; as an example, take an ARMA(1,1) model

Ye=Pyi1+& + 05

One of the ways the above equation can be cast in state-space form is by defining a latent process
& = (1 — L) '&. The observation equation corresponding to (33.2) is then

Ye=8& + 081 (33.3)

and the state transition equation corresponding to (33.1) is
e Lo llEn T
&1 1 0 &2 0

The hansl syntax for a corresponding filter would be
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Listing 33.1: ARMA estimation

function void armall_via_kalman (series y)
/* parameter initialization */
scalar phi =0
scalar theta = 0
scalar sigma = 1

/* state-space model setup */
matrix H = {1; theta}

matrix F = {phi, 0; 1, 0}
matrix Q = {sigmaA2, 0; 0, 0}
bundle kb = ksetup(y, H, F, Q)

/* maximum likelihood estimation */

mle logl = ERR 7 NA : kb.11t
kb.obsymat[2] = theta
kb.statemat[1,1] = phi
kb.statevar[1l,1] = sigmaA2
ERR = kfilter(&kb)
params phi theta sigma

end mle --hessian

end function

open arma.gdt # open the "arma" example dataset
armall_via_kalman(y) # estimate an arma(l,1) model
arma 1 1 ; y --nc # check via native command
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matrix H {1; theta}

matrix F {phi, 0; 1, 0}
matrix Q = {sA2, 0; 0, 0}
bundle kb = ksetup(y, H, F, Q)

or, if you prefer, just a one-liner:
bundle kb = ksetup(y, {1; theta}, {phi, 0; 1, 03}, {sA2, 0; 0, 0})

Note that the observation equation (33.3) does not include an “error term”; this is equivalent to
saying that var(w;) = 0 and there is therefore no need to add an obsvar element to the bundle.

Once the filter is set up, all it takes to compute the log-likelihood for given values of ¢, 0 and
o? is to execute the kfilter function and read the Kalman bundle’s Tn1 member (which holds
the total log-likelihood) or, more appropriately if the likelihood has to be maximized through mle,
11t, which gives the series of individual contribution to the log-likelihood for each observation. An
example is shown in script 33.1.

The Hodrick-Prescott filter
Functions illustrated in this example: ksetup, kfilter, ksmooth.

The Hodrick-Prescott filter (HP for short) can be obtained as the solution of a prediction problem,
that is obtaining estimates of the latent time series p; in

Xt = M+ &
A = g,

where is an observable time series x; and &; and n; are mutually uncorrelated white noise processes;
the ratio between the two variances is the “smoothing” parameter: A = \‘//((;i)) This is normally
calibrated rather than estimated, and a common choice for macro data is to make this a function
of the data periodicity: A = 100 - p?, where p is the number of subperiods in a year. See Harvey

and Jaeger (1993) and King and Rebelo (1993) for details.

The most common usage of the HP filter is to retrieve an estimate of u; by using all the available
data, so that the estimate of the trend p; at some point t uses the future values of x; as well as data
points from the past. In some cases (for example, for forecasting purposes) this is undesirable, and
it may be preferable to construct fi; as a function of x,x;-1,... only. This point was famously
made by Stock and Watson (1999), and the resulting estimator is known as the one-sided HP filter.

A possible space-state representation of the model above is

Xt [1 0] |: He :| + &
Ht-1
u 2 -1 Ui
M1 I 0 He-2
and the estimates for u; can be easily obtained by running a forward filter for the one-sided version
and a smoothing pass for the two-sided one. The corresponding code implementing the filter
is shown in script 33.2, which also shows an example with the “housing starts” series from the

St. Louis Fed database. The example also compares the result of the function to that from the
native hpfilt() function.

Note that, in the case of the one-sided filter, a little trick is required in order to get the desired
result: the state matrix that the kfiTter() function stores in the bundle is the estimate of &;¢-1,
whereas what is required is in fact &;;. In order to circumvent the problem, we add an extra
observation to the end of the series and retrieve the one-step-ahead estimate of the lagged state.
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Listing 33.2: HP filter

function series hp_via_kalman(series y, scalar lambda[0], bool oneside[0])
if lambda == 0
Tambda = 100 * $pdA2
endif
# State transition matrix
matrix F = {2,-1;1,0}
# Observation matrix
matrix H = {1;0}
# Covariance matrix in the state equation
matrix Q = {1/sqrt(lambda), 0; 0, 0}
matrix my = {y}
string desc = ""
if oneside
matrix my = my | O
desc = "1-sided "
endif

ssm = ksetup(my, H, F, Q)

ssm.obsvar = sqrt(lambda)

ssm.inistate = {2*y[1]-y[2] ; 3*y[1]-2*y[2]}
ssm.diffuse = 1

err = oneside ? kfilter(&ssm) : ksmooth(&ssm)

if err
series ret = NA

else
mu = oneside ? ssm.state[2:,2] : ssm.state[,1]
series ret =y - mu

endif

string d = sprintf("%sHP-filtered %s (lambda = %g)", desc, argname(y), Tambda)
setinfo ret --description="@d"
return ret

end function

# ——— example —----- o

clear

open fedstl.bin
data houst

y = log(houst)

# one-sided, built-in then hansl

nlc = hpfilt(y, 1600, 1)

series hlc = hp_via_kalman(y, 1600, 1)
ols nlc const hlc --simple-print

# two-sided, built-in then hansT
n2c = hpfilt(y, 1600)

series h2c = hp_via_kalman(y, 1600)
ols n2c const h2c --simple-print
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Local level model

Functions illustrated in this example: ksetup, kfiTter, ksmooth.

Listing 33.3: Local level model

nulldata 200
set seed 101010
setobs 1 1 --special-time-series

/* set the true variance parameters */
true_sl = 0.5
true_s2 = 0.25

/* and simulate some data */
\% normal() * sqrt(true_sl)
w normal() * sqrt(true_s2)
mu = 2 + cum(v)

y =mu + w

/* starting values for variance estimates */
sl =1
s2 =1

/* state-space model set-up */
bundle kb = ksetup(y, 1, 1, sl)
kb.obsvar s2
kb.diffuse = 1

/* ML estimation of variances */
mle 11 = ERR ? NA : kb.T11t

ERR = kfilter(&kb)

params kb.statevar kb.obsvar
end mle

/* compute the smoothed state */
ksmooth (&kb)
series muhat = kb.state

Suppose we have a series y; = u; + &, where p; is a random walk with normal increments of
variance 012 and &; is normal white noise with variance (7;_2, independent of y;. This is known as
the “local level” model, and it can be cast in state-space form as equations (33.1)-(33.2) with F = 1,
vt ~N(0, 0f), H =1 and w; ~ N(0, 07).% The translation to hansl is

bundle 11mod = ksetup(y, 1, 1, sl)
11mod.obsvar = s2
1Imod.diffuse = 1

The two unknown parameters of and o can be estimated via maximum likelihood. Script 33.3
provides an example of simulation and estimation of such a model. Since simulating the local level
model is trivial using ordinary gretl commands, we don’t use ksimul in this context.”

6Note that the local level model, plus other common “Structural Time Series” models are implemented in the Struc-
TiSM function package.
“Warning: the way the script is, there is an “off-by-one” misalignment between the state vector and the observable
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Time-varying models

In order to illustrate state space models with time-varying system matrices, we will use time-varying
OLS. Suppose the DGP for an observable time series y; is given by

e =Bo+ Brixe + & (33.4)

where the slope coefficient 8, evolves through time according to

Biti1 = Bt + Nt (33.5)

It is easy to see that the pair of equations above define a state space model, with equation (33.4)
as the measurement equation and (33.5) as the state transition equation. In other terms, S, is the
unobservable state, F =1 and Q = V(n;) = (7,3; as for the measurement equation, R = V(&) = 02,
but the matrix multiplying $+, and hence H, is x;, which is clearly time-varying.

-0.05 ]

-0.1

-0.15

tvar_blhat
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Figure 33.1: Phillips Curve on Euro data: time-varying slope and 95% confidence interval

Once the system is framed as a state-space model, estimation of the three unknown parameters
Bo, 02 and (7,? may proceed by maximum likelihood in a manner similar to example 33.1 and 33.3.
The sequence of slope coefficients 8 ; is, instead, estimated by running the smoother, which also
yields a consistent estimate of the dispersion of the estimated state

Script 33.4 presents an example of the above, in which data from the AWM database are used to
estimate a Phillips Curve with time-varying slope:
INFQ; = Bo + B1,tURX; + &

where INFQ is a measure of quarterly inflation and URX a measure of unemployment. At the end
of the script, the evolution through time of the slope coefficient is plotted together with a 95%
confidence band —see Figure 33.1.

series. For convenience, the script is written as if equation (33.1) was modified into the equivalent formulation
ot = Fog—1 + v¢;

we tried to keep the script as simple as possible, so that the reader is free to focus on the interesting aspects.
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Listing 33.4: Phillips curve on Euro data with time-varying slope

function void at_each_step(bundle *b)
b.obsymat = transp(b.mX[b.t,])
end function

open AWM.gdt --quiet
smpl 1974:1 1994:1

/* parameter initialization */
scalar b0 = mean(INFQ)

scalar s_obs = 0.1

scalar s_state = 0.1

/* bundle setup */

bundle B = ksetup(INFQ, 1, 1, 1)
matrix B.mX = {URX}

matrix B.depvar = {INFQ}
B.timevar_call = "at_each_step"
B.diffuse = 1

/* ML estimation of intercept and the two variances */
mle LL = err ? NA : B.11t

B.obsy = B.depvar - b0

B.obsvar = s_obsA2

B.statevar = s_stateA2

err = kfilter(&B)

params b0 s_obs s_state
end mle

/* display the smoothed time-varying slope */

ksmooth(&B)

series tvar_blhat = B.state[,1]

series tvar_blse = sqrt(B.stvar[,1])

gnuplot tvar_blhat --time-series --with-lines --output=display \
--band=tvar_blhat,tvar_blse,1.96 --band-style=fill
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Disturbance smoothing
Functions illustrated in this example: ksetup, kdsmooth.

In section 33.7 we noted that the kdsmooth function can produce two different measures of the
dispersion of the smoothed disturbances, depending on the the value of the (optional) trailing
Boolean parameter. Here we show what these two measures are good for, using the famous Nile
flow data that have been much analysed in the state-space modeling literature. We focus on the
state equation; that is, the random-walk component of the observed series. For consistency with
the literature let us call the t-dated disturbance to the state n;.

In the first call to kdsmooth we omit the optional switch and therefore compute E(fj;j;) for each
t. This quantity is suitable for constructing the auxiliary residuals shown in the top panel of
Figure 33.2 (for similar plots see Koopman et al. (1999), Pelagatti (2011)). This plot suggests the
presence of a structural break shortly prior to 1900, as various authors have observed.

In the second kdsmooth call we ask gretl to compute instead E[ (¢ — n¢) (At — ne)’'|yv1, ..., yrl, the
MSE of 1j; considered as an estimator of n;. And in the lower panel of the Figure we plot fj; along
with a 90% confidence band (roughly, =1.64 times the RMSE). This reveals that, given the sampling
variance of f;, we're not really sure that any of the ns values were truly different from zero. The
resolution of the seeming conflict here is commonly reckoned to be that there was in fact a change
in mean around 1900, but besides that event there’s little evidence for a non-zero (r,?. Or in other
words the standard local level model is not really applicable to the data.

Listing 33.5: Working with smoothed disturbances - Nile data

open nile.gdt

# ML variance estimates
scalar s2_eta = 1468.49
scalar s2_eps = 15099.7

bundle LLM = ksetup(nile, 1, 1, s2_eta)
LLM.obsvar = s2_eps
LLM.diffuse = 1

kdsmooth (&LLM)
series eta_aux = LLM.smdist[,1] ./ LLM.smdisterr[,1]
series zero = 0
plot eta_aux
options time-series with-Tines band=zero,const,?2
option band-style=dash
Titeral set ylabel ’’
Titeral set title ’Auxiliary residual, state equation’
end plot --output=display

kdsmooth (&LLM, 1)
series etahat = LLM.smdist[,1]
series sdeta = LLM.smdisterr[,1]

plot etahat
options time-series with-1ines band=etahat,sdeta,l.64485
option band-style=dash
Titeral set ylabel ’’
Titeral set title ’State disturbance with 90% confidence band’
end plot --output=display
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(a) Auxiliary (standardized) residuals, state equation
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Figure 33.2: Nile data: auxiliary residuals and 1; from disturbance smoother
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Chapter 34

Numerical methods

Several functions are available to aid in the construction of special-purpose estimators: their pur-
pose is to find numerically approximate solutions to problems that in principle could be solved
analytically, but in practice cannot be, for one reason or another. In this chapter, we illustrate the
tools that gretl offers for optimization of functions, differentiation and integration.

34.1 Derivative-based optimization methods

In some cases, the function we want to optimize is differentiable and has a maximum in the interior
of the search space. In these cases, you will want to use algorithms that exploit this feature, such
as BFGS or Newton-Raphson. If this is not the case, you may want to use derivative-free methods,
which are illustrated in section 34.2.

BFGS

The BFGSmax function has two required arguments: a vector holding the initial values of a set of
parameters, and a call to a function that calculates the (scalar) criterion to be maximized, given
the current parameter values and any other relevant data. If the object is in fact minimization, this
function should return the negative of the criterion. On successful completion, BFGSmax returns the
maximized value of the criterion and the vector given via the first argument holds the parameter
values which produce the maximum. It is assumed here that the objective function is a user-defined
function (see Chapter 13) with the following general set-up:

function scalar ObjFunc (const matrix theta, matrix *X)
scalar val = ... # do some computation
return val

end function

The first argument contains the parameter vector (which should not be modified within the func-
tion) and the second may be used to hold “extra” values that are necessary to compute the objective
function, but are not the variables of the optimization problem. Here the pointer form is chosen
for the argument, but depending on the problem it could also be passed as a plain argument, with
our without the const modifier. For example, if the objective function were a log-likelihood, the
first argument would contain the parameters and the second one the data. Or, for more economic-
theory inclined readers, if the objective function were the utility of a consumer, the first argument
might contain the quantities of goods and the second one their prices and disposable income.

The operation of BFGS can be adjusted using the set variables bfgs_maxiter and bfgs_toler
(see Chapter 23). In addition you can provoke verbose output from the maximizer by assigning a
positive value to max_verbose, again via the set command.

The Rosenbrock function is often used as a test problem for optimization algorithms. It is also
known as “Rosenbrock’s Valley” or “Rosenbrock’s Banana Function”, on account of the fact that its
contour lines are banana-shaped. It is defined by:

fx,¥) = (1-x)2+100(y — x?)?

The function has a global minimum at (x,y) = (1, 1) where f(x,y) = 0. Listing 34.1 shows a gretl
script that discovers the minimum using BFGSmax (giving a verbose account of progress). Note
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Listing 34.1: Finding the minimum of the Rosenbrock function

function scalar Rosenbrock(const matrix param)
scalar x = param[1]
scalar y = param[2]
return -(1-x)A2 - 100 * (y - xA2)A2

end function

matrix theta = {0, 0}

set max_verbose 1

M = BFGSmax(&theta, Rosenbrock(theta))
print theta

that, in this particular case, the function to be maximized only depends on the parameters, so the
second parameter is omitted from the definition of the function Rosenbrock.

Supplying analytical derivatives for BFGS

An optional third argument to the BFGSmax function enables the user to supply analytical deriva-
tives of the criterion function with respect to the parameters (without which a numerical approxi-
mation to the gradient is computed). This argument is similar to the second one in that it specifies
a function call. In this case the function that is called must have the following signature.

Its first argument should be a pre-defined matrix correctly dimensioned to hold the gradient; that
is, if the parameter vector contains k elements, the gradient matrix must also be a k-vector. This
matrix argument must be given in “pointer” form so that its content can be modified by the func-
tion. (Note that unlike the parameter vector, where the choice of initial values can be important,
the initial values given to the gradient are immaterial and do not affect the results.)

In addition the gradient function must have as one of its argument the parameter vector. This may
be given in pointer form (which enhances efficiency) but that is not required. Additional arguments
may be specified if necessary.

Given the current parameter values, the function call must fill out the gradient vector appropriately.
It is not required that the gradient function returns any value directly; if it does, that value is
ignored.

Listing 34.2 illustrates, showing how the Rosenbrock script can be modified to use analytical deriva-
tives. (Note that since this is a minimization problem the values written into g[1] and g[2] in the
function Rosen_grad are in fact the derivatives of the negative of the Rosenbrock function.)

Limited-memory variant and constrained optimization

As an alternative to “standard” BFGS gretl offers the limited-memory variant, L-BFGS-B. This is de-
scribed by Byrd et al. (1995) and Zhu et al. (1997). Gretl uses version 3.0 of this code, which features
improvements described by Morales and Nocedal (2011). Some problems that defeat standard BFGS
may be amenable to solution by L-BFGS-B. To see if this is the case, gretl code that uses BFGS can
be pushed into using the alternative algorithm via the set command, as follows:

set 1bfgs on

The primary case for using L-BFGS-B, however, is constrained optimization: this algorithm supports
constraints on the parameters in the form of minima and/or maxima. In gretl this is implemented
by the function BFGScmax (‘c’ for constrained). The syntax is basically similar to that of BFGSmax,
except that the first argument must followed by specification of a “bounds” matrix. This matrix
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Listing 34.2: Rosenbrock function with analytical gradient

function scalar Rosenbrock (const matrix param)
scalar x = param[1]
scalar y = param[2]
return -(1-x)A2 - 100 * (y - xA2)A2

end function

function void Rosen_grad (matrix *g, const matrix param)
scalar x = param[1]
scalar y = param[2]
g[1] = 2*(1-x) + 2*x*(200%*(y-xA2))
g[2] = -200*(y - xA2)
end function

matrix theta = {0, 0}

matrix grad = {0, 0}

set max_verbose 1

M = BFGSmax(&theta, Rosenbrock(theta), Rosen_grad(&grad, theta))
print theta

print grad

should have three columns and as many rows as there are constrained elements of the parameter
vector. Each row should hold the (1-based) index of the constrained parameter, followed by lower
and upper bounds. The values -$huge and $huge should be used to indicate that the parameter
is unconstrained downward or upward, respectively. For example, the following code constructs a
matrix to specify that the second element of the parameter vector must be non-negative, and the
fourth must lie between 0 and 1:

matrix bounds = {2, 0, $huge; 4, 0, 1}

Newton-Raphson

BFGS, discussed above, is an excellent all-purpose maximizer, and about as robust as possible given
the limitations of digital computer arithmetic. The Newton-Raphson maximizer is not as robust,
but may converge much faster than BFGS for problems where the maximand is reasonably well
behaved —in particular, where it is anything like quadratic (see below). The case for using Newton-
Raphson is enhanced if it is possible to supply a function to calculate the Hessian analytically.

The gretl function NRmax, which implements the Newton-Raphson method, has a maximum of four
arguments. The first two (required) arguments are exactly as for BFGS: an initial parameter vector,
and a function call which returns the maximand given the parameters. The (optional) third argu-
ment is again as in BFGS: a function call that calculates the gradient. Specific to NRmax is an optional
fourth argument, namely a function call to calculate the (negative) Hessian. The first argument of
this function must be a pre-defined matrix of the right dimension to hold the Hessian— that is, a
k x k matrix, where k is the length of the parameter vector —given in “pointer” form. The second
argument should be the parameter vector (optionally in pointer form). Other data may be passed
as additional arguments as needed. Similarly to the case with the gradient, if the fourth argument
to NRmax is omitted then a numerical approximation to the Hessian is constructed.

What is ultimately required in Newton-Raphson is the negative inverse of the Hessian. Note that
if you give the optional fourth argument, your function should compute the negative Hessian, but
should not invert it; NRmax takes care of inversion, with special handling for the case where the
matrix is not negative definite, which can happen far from the maximum.
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Script 34.3 extends the Rosenbrock example, using NRmax with a function Rosen_hess to compute
the Hessian. The functions Rosenbrock and Rosen_grad are just the same as in Listing 34.2 and
are omitted for brevity.

Listing 34.3: Rosenbrock function via Newton-Raphson

function void Rosen_hess (matrix *H, const matrix param)
scalar x = param[1]
scalar y = param[2]
H[1,1] = 2 - 400*%y + 1200%xA2
H[1,2] = -400%*x
H[2,1] = -400*x
H[2,2] = 200
end function

matrix theta = { 0, 0 }

matrix grad = { 0, 0 }

matrix H = zeros(2, 2)

set max_verbose 1

M = NRmax(&theta, Rosenbrock(theta), Rosen_grad(&grad, theta),
Rosen_hess(&H, theta))

print theta

print grad

The idea behind Newton-Raphson is to exploit a quadratic approximation to the maximand, under
the assumption that it is concave. If this is true, the method is very effective. However, if the
algorithm happens to evaluate the function at a point where the Hessian is not negative definite,
things may go wrong. Script 34.4 exemplifies this by using a normal density, which is concave in the
interval (-1, 1) and convex elsewhere. If the algorithm is started from within the interval everything
goes well and NR is (slightly) more effective than BFGS. If, however, the Hessian is positive at the
starting point BFGS converges with only little more difficulty, while Newton-Raphson fails.

34.2 Derivative-free optimization methods

Golden section search method

Suppose you have a function f(x) of a scalar argument, that is known to have a unique maximum.
The golden section method is rather effective at finding it quickly without making use of derivatives
(see Press et al. (2007), section 10.2 for a thorough description). The gretl function implementing
this method is called GSSmax.

The idea is, roughly, to take an interval [xg, x;] (also known as the “bracket”) that should contain
the maximizing value. Once yy = f(xo) and y; = f(x1) are computed, the algorithm sets a new
point x» that replaces the end of the previous interval for which the function takes the worse value.
So for example, if vy < y1, then X is replaced and the interval becomes [x, x> ]. The width of the
interval shrinks progressively, so after a few iterations you should end close to the maximum.

As an illustration, consider the function f(x) = 50 - x3/2e~*, which is maximized at x = 1.5. The
following script sets as the initial interval the range [0, 10]:

function scalar g(scalar x)
return 50 * xA(1.5) * exp(-x)
end function
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Listing 34.4: Maximization of a Gaussian density

function scalar ND(matrix x)
scalar z = x[1]
return exp(-0.5%z%z)

end function

set max_verbose 1

x = {0.75}
A = BFGSmax(&x, ND(x))

x = {0.75}
A = NRmax(&x, ND(x))

x = {1.5}
A = BFGSmax(&x, ND(x))

x = {1.5}
A = NRmax(&x, ND(x))

set max_verbose on

m = {5, 0, 10}

y = GSSmax(&m, g(m[1]))

printf "\nf(%g) = %g\n", m[1], vy

The output is

bracket={3.81966,6.18034}, values={8.18747,1.59001}
bracket={2.36068,3.81966}, values={17.1118,8.18747}
bracket={1.45898,2.36068}, values={20.4841,17.1118}
bracket={0.901699,1.45898}, values={17.3764,20.4841}

A wWN R

20: bracket={1.50017,1.50042}, values={20.4958,20.4958}
21: bracket={1.50001,1.50017}, values={20.4958,20.4958}

£(1.49996) = 20.4958

As you can see from the output, the bracket shrinks progressively; the center of the interval when
the algorithm stops is x = 1.49996; figure 34.1 gives a pictorial representation of the process,
where the blue line is the function to maximize and the red segments are the successive choices
for the bracket.

Simulated Annealing

Simulated annealing—as implemented by the gretl function simann—is not a full-blown maxi-
mization method in its own right, but can be a useful auxiliary tool in problems where convergence
depends sensitively on the initial values of the parameters. The idea is that you supply initial values
and the simulated annealing mechanism tries to improve on them via controlled randomization.

The simann function takes up to three arguments. The first two (required) are the same as for
BFGSmax and NRmax: an initial parameter vector and a function that computes the maximand. The
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Figure 34.1: Golden section search method: example

optional third argument is a positive integer giving the maximum number of iterations, n, which
defaults to 1024.

Starting from the specified point in the parameter space, for each of n iterations we select at
random a new point within a certain radius of the previous one and determine the value of the
criterion at the new point. If the criterion is higher we jump to the new point; otherwise, we jump
with probability P (and remain at the previous point with probability 1 — P). As the iterations
proceed, the system gradually “cools” —that is, the radius of the random perturbation is reduced,
as is the probability of making a jump when the criterion fails to increase.

In the course of this procedure n + 1 points in the parameter space are evaluated: call them 0;,i =
0,...,n, where 6y is the initial value given by the user. Let 8* denote the “best” point among
01,...,0, (highest criterion value). The value written into the parameter vector on completion is
then 0* if 0* is better than 0, otherwise 0,. In other words, failing an actual improvement in
the criterion, simann randomizes the starting point, which may be helpful in tricky optimization
problems.

Listing 34.5 shows simann at work as a helper for BFGSmax in finding the maximum of a bimodal
function. Unaided, BFGSmax requires 60 function evaluations and 55 evaluations of the gradient,
while after simulated annealing the maximum is found with 7 function evaluations and 6 evalua-
tions of the gradient.!

Nelder-Mead

The Nelder-Mead derivative-free simplex maximizer (also known as the “amoeba” algorithm) is
implemented by the function NMmax. The argument list of this function is essentially the same as
for simann: the required arguments are an initial parameter vector and a function-call to compute
the maximand, while an optional third argument can be used to set the maximum number of
function evaluations (default value: 2000).

This method is unlikely to produce as close an approximation to the “true” optimum as derivative-
based methods such as BFGS and Newton-Raphson, but it is more robust than the latter. It may
succeed in some cases where derivative-based methods fail, and it may be useful, like simann, for
improving the starting point for an optimization problem so that a derivative-based method can
then take over successfully.

NMmax includes an internal “convergence” check—namely, verification that the best value achieved
for the objective function at termination of the algorithm is at least a local optimum —but by de-

Lyour mileage may vary: these figures are somewhat compiler- and machine-dependent.



Chapter 34. Numerical methods

Listing 34.5: BFGS with initialization via Simulated Annealing

function scalar bimodal (matrix x, matrix A)
scalar ret = exp(-gform((x-1)’, A))
ret += 2*exp(-qform((x+4)’, A))
return ret

end function

set seed 12334
set max_verbose on

scalar k = 2

matrix A = 0.1 * I(k)

matrix x0 = {3; -5}

x = x0

u = BFGSmax(&x, bimodal(x, A))
print x

x = x0

u = simann(&x, bimodal(x, A), 1000)
print x

u = BFGSmax(&x, bimodal(x, A))
print x
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fault it doesn’t flag an error if this condition is not satisfied. This permits a mode of usage where
you set a fairly tight budget of function evaluations (for example, 200) and just take any improve-
ment in the objective function that is available, without worrying about whether an optimum has
truly been reached. However, if you want the convergence check to be enforced you can flag this by
setting a negative value for the maximum function evaluations argument; in that case the absolute

value of the argument is taken and an error is provoked on non-convergence.

If the task for this function is actually minimization, you can either have the function-call return

the negative of the actual criterion or, if you prefer, call NMmax under the alias NMm1in.

Here is an example of use: minimization of the Powell quartic function, which is problematic for

BFGS. (The true minimum is zero, obtained for x a 4-vector of zeros.)

function scalar powell (const matrix x)

fx1 = x[1] + 10 * x[2]

fx2 x[3] - x[4]

x3 = x[2] - 2 * x[3]

x4 = x[1] - x[4]

return fx1A2 + 5.0 * fx2A2 + fx3A4 + 10.0 * fx4A4
end function

matrix x = {3, -1, 0, 1}’

printf "Initial f(X) = %g\n", powell(x)
fmin = NMmin(x, powell1(x))

printf "Estimate of optimal X*:\n%1l4f\n", x
printf "f(X*) = %g\n", fmin
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34.3 Numerical differentiation
Computing a Jacobian

Gretl offers the possibility of differentiating numerically a user-defined function via the fdjac
function.

This function takes two arguments: an n X 1 matrix holding initial parameter values and a function
call that calculates and returns an m x 1 matrix, given the current parameter values and any other
relevant data. On successful completion it returns an m X n matrix holding the Jacobian. For
example,

matrix Jac = fdjac(theta, SumOC(&theta, &X))
where we assume that SumOC is a user-defined function with the following structure:

function matrix SumOC (matrix *theta, matrix *X)
matrix V = ... # do some computation
return V

end function

This may come in handy in several cases: for example, if you use BFGSmax to estimate a model, you
may wish to calculate a numerical approximation to the relevant Jacobian to construct a covariance
matrix for your estimates.

Another example is the delta method: if you have a consistent estimator of a vector of parameters
0, and a consistent estimate of its covariance matrix X, you may need to compute estimates for a
nonlinear continuous transformation v = g(0). In this case, a standard result in asymptotic theory

is that A A
00 @ =90 > y=g0)
A d = N d ,
VT (8- 0) % N(0,5) VT (@ = w) = N(0,JZ])
where T is the sample size and J is the Jacobian % o

Script 34.6 exemplifies such a case: the example is taken from Greene (2003), section 9.3.1. The
slight differences between the results reported in the original source and what gretl returns are due
to the fact that the Jacobian is computed numerically, rather than analytically as in the book.

On the subject of numerical versus analytical derivatives, one may wonder what difference it makes
to use one method or another. Simply put, the answer is: analytical derivatives may be painful to
derive and to translate into code, but in most cases they are much faster than using fdjac; as a
consequence, if you need to use derivatives as part of an algorithm that requires iteration (such
as numerical optimization, or a Monte Carlo experiment), you'll definitely want to use analytical
derivatives.

Analytical derivatives are also, in most cases, more precise than numerical ones, but this advantage
may or may not be negligible in practice depending on the practical details: the two fundamental
aspects to take in consideration are nonlinearity and machine precision.

As an example, consider the derivative of a highly nonlinear function such as the matrix inverse. In
order to keep the example simple, let’s focus on 2 x 2 matrices and define the function

function matrix vecinv(matrix x)
A = mshape(x,2,2)
return vec(inv(A))’

end function

which, given vec(A), returns vec(A™!). As is well known (see for example Magnus and Neudecker
(1988)),

ovec(A™hH) 1
ovec(A) (A7) e 4™,
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Listing 34.6: Delta Method

function matrix MPC(matrix *param, matrix *Y)
beta = param[2]
gamma = param[3]
y = Y[1]
return beta*gamma*yA(gamma-1)
end function

# William Greene, Econometric Analysis, 5e, Chapter 9
set echo off

set messages off

open greene5_1.gdt

# Use OLS to initialize the parameters
ols realcons 0 realdpi --quiet

genr a = $coeff(0)

genr b = $coeff(realdpi)

genr g 1.0

# Run NLS with analytical derivatives
nls realcons = a + b * (realdpiAg)
deriva =1

deriv b = realdpiAg
deriv g = b * realdpiAg * Tog(realdpi)
end nls

matrix Y = realdpi[2000:4]
matrix theta = $coeff
matrix V = $vcv

mpc = MPC(&theta, &Y)
matrix Jac = fdjac(theta, MPC(&theta, &Y))
Sigma = gqform(Jac, V)

printf "\nmpc = %g, std.err = %g\n", mpc, sqrt(Sigma)

scalar teststat = (mpc-1)/sqrt(Sigma)

printf "\nTest for MPC = 1: %g (p-value = %g)\n", \
teststat, pvalue(n,abs(teststat))
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which is rather easy to code in hansl as

function matrix grad(matrix x)
iA = inv(mshape(x,2,2))
return -iA’ ** jA

end function

Using the fdjac function to obtain the same result is even easier: you just invoke it like
fdjac(a, "vecinv(a)™)

In order to see what the difference is, in terms of precision, between analytical and numerical

1
] The following code

Jacobians, let’s start from A = [ 11

a=1{2; 1; 1; 1}

ja = vecinv(a)

ag = grad(a)

ng = fdjac(a, "vecinv(a)")
dg = ag - ng

print ag ng dg

gives

ag (4 x 4
-1 1 1 -1
1 -2 -1 2
1 -1 -2 2
-1 2 2 -4

ng (4 x 4)
-1 1 1 -1
1 -2 -1 2
1 -1 -2 2
-1 2 2 -4

dg (4 x 4)

-3.3530e-08 -3.7251e-08 -3.7251e-08 -3.7255e-08
2.6079e-08 5.2150e-08 3.7251e-08 6.7060e-08
2.6079e-08 3.7251e-08 5.2150e-08 6.7060e-08

-2.2354e-08 -5.9600e-08 -5.9600e-08 -1.4902e-07

in which the analytically-computed derivative and its numerical approximation are essentially the
1.0001 1
1 1
which the function itself is considerably more nonlinear since the matrix is much closer to being
singular. As a consequence, the numerical approximation becomes much less satisfactory:

same. If, however, you set A = [ } you end up evaluating the function at a point in

ag (4 x 4
-1.0000e+08 1.0000e+08 1.0000e+08 -1.0000e+08
1.0000e+08 -1.0001e+08 -1.0000e+08 1.0001e+08
1.0000e+08 -1.0000e+08 -1.0001e+08 1.0001e+08
-1.0000e+08 1.0001e+08 1.0001e+08 -1.0002e+08
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ng (4 x 4)

-9.9985e+07 1.0001e+08 1.0001e+08 -9.9985e+07
9.9985e+07 -1.0002e+08 -1.0001e+08 9.9995e+07
9.9985e+07 -1.0001e+08 -1.0002e+08 9.9995e+07

-9.9985e+07 1.0002e+08 1.0002e+08 -1.0001e+08

dg (4 x 4)

-14899. -14901. -14901. -14900.
14899. 14903. 14901. 14902.
14899. 14901. 14903. 14902.

-14899. -14903. -14903. -14903.

1
1 ], the matrix

itself is not singular at all, but the order of magnitude of its elements is close enough to machine
precision to provoke problems:

Moreover, machine precision may have its impact: if you take A = 0.00001 x [ 1

ag (4 x 4

-1.0000e+10 1.0000e+10 1.0000e+10 -1.0000e+10
1.0000e+10 -2.0000e+10 -1.0000e+10 2.0000e+10
1.0000e+10 -1.0000e+10 -2.0000e+10 2.0000e+10

-1.0000e+10 2.0000e+10 2.0000e+10 -4.0000e+10

ng (4 x 4)

-1.0000e+10 1.0000e+10 1.0000e+10 -1.0000e+10
1.0000e+10 -2.0000e+10 -1.0000e+10 2.0000e+10
1.0000e+10 -1.0000e+10 -2.0000e+10 2.0000e+10

-1.0000e+10 2.0000e+10 2.0000e+10 -4.0000e+10

dg (4 x 4)

-488.30 -390.60 -390.60 -195.33
634.79 781.21 390.60 585.98
634.79 488.26 683.55 585.98

-781.27 -976.52 -781.21 -1367.3

Computing a Hessian

In principle, you can use the fdjac function repeatedly to evaluate higher-order derivatives. How-
ever, you should be aware that you may encounter rather serious numerical issues. For this reason,
gretl provides a function, similar to fdjac, for computing a Hessian directly, called numhess.

An example follows:

function scalar quad(matrix x, matrix A )
return 0.5*qform(x’, A)
end function

function matrix coljac(matrix x, matrix A)
return fdjac(x, quad(x, A))’

end function

A

X

{23, -11; -11, 118}
{1;1}
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set fdjac_quality 2

HO = fdjac(x, "coljac(x, A)'")
H1 = numhess(x, "quad(x, A)")
printf "\n%14.8f", HO

printf "\n%14.8f", Hl

In this example, we use the function quad for evaluating a simple quadratic form f(x) = %x’Ax,
for which the Hessian is trivially the matrix A. The matrix HO is obtained by using fdjac twice
(at its best quality, that is with Richardson extrapolation on); the matrix H1, instead, is obtained
directly via the numhess function. The result of the above script is:

22.99788411 -10.99983724
-10.99902343 117.99161784

23.00000000 -11.00000000
-11.00000000 118.00000000

which makes it apparent how much better the second result is (note that HO is not even symmetric,
as it should be).

34.4 Numerical integration

The main tool that gretl offers in this area is integration via Gaussian quadrature. In practice, the
evaluation of an integral of the kind

C= J f(x)w(x)dx (34.1)
A

is approximated via a suitable linear combination of the form

q
C=> flx)w(xi), (34.2)

i=1
where the g “quadrature points” xi, x2,..., X, are suitably chosen and the corresponding weights

w (x;) ensure that the approximation is optimal.

The quadtable function provides quadrature points and weights for the following list of problems:

Integral Technique Note

[ (x)e~*"dx  Gauss-Hermite see below for the relationship with the
Gaussian distribution
Iy f(x)e™*dx  Gauss-Laguerre can be used for evaluating Laplace
transforms numerically

ff f(x)dx Gauss-Legendre by default,a =0and b =1

The quadtable function returns a g x 2 matrix with the x; points in the first column and the
corresponding weights w; in the second, so in practice you compute the desired integral of f(x)
by applying that function to the first column and then computing the inner product of the result
by the second column.

In econometrics, Gaussian quadrature is most commonly used for evaluating expectations of func-
tions of Gaussian random variables, that is, integrals of the form

ELF001= | Frexdx
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In this case, Gauss-Hermite quadrature can be readily applied, provided one modifies the integral
above via a suitable change of variable, namely by defining z = x/+/2 so that

Jf;fKX)Véﬁ;

For example, consider the following script, in which we evaluate E(eX) and E[cos(X)] via Gaussian
quadrature.

—XZ/Z :ij . . _22
e dx N _oof(\/? z)-e #dz

q = 10
Q = quadtable(q)

x = exp(sqrt(2) * Q[,1])
w = Q[,2] ./ sqrt($pi)
printf "E(exp(x)) = %16.14f (exact = %16.14f)\n", x’w, exp(0.5)

x = cos(sqrt(2) * Q[,1]1)
w = Q[,2] ./ sqrt($pi)
printf "E(cos(x)) = %16.14f (exact = %16.14f)\n", x’w, exp(-0.5)

The result is

E(exp(x)) 1.64872127069823 (exact = 1.64872127070013)
E(cos(x)) = 0.60653065971146 (exact = 0.60653065971263)

Higher values of g will give a more precise approximation.

In fact, the full form of quadtab1e—which supports three optional arguments besides the required
q—provides a shortcut which saves you the hassle of having to recalculate the integral with the
change of variable. Suppose you want something like

C=E[f(X)] X ~N(u,0°)
Then you can use the syntax quadtable(q, 1, m, s), where the 1 indicates Gauss-Hermite inte-
gration and the two final arguments give the mean and standard deviation. So for example if you
want to compute E(X?), where X ~ N(1,0.25), you could use
# Note: no rescaling needed

Q = quadtable(q, 1, 1, 0.5)
printf "E(XA2) = %6.4f (exact = %6.4f)\n", (Q[,1].A2)’Q[,2], 1.25

which vyields
E(XA2) = 1.2500 (exact = 1.2500)

See the Gretl Command Reference for more details.



Chapter 35

Discrete and censored dependent variables

This chapter deals with models for dependent variables that are discrete or censored or otherwise
limited (as in event counts or durations, which must be positive) and that therefore call for estima-
tion methods other than the classical linear model. We discuss several estimators (mostly based on
the Maximum Likelihood principle), adding some details and examples to complement the material
on these methods in the Gretl Command Reference.

35.1 Logit and probit models

It often happens that one wants to specify and estimate a model in which the dependent variable
is not continuous, but discrete. A typical example is a model in which the dependent variable is
the occupational status of an individual (1 = employed, 0 = unemployed). A convenient way of
formalizing this situation is to consider the variable 7y; as a Bernoulli random variable and analyze
its distribution conditional on the explanatory variables x;. That is,

1 P;
i = 35.1
Yi SL 0 1-P ( )
where P; = P(y; = 1|x;) is a given function of the explanatory variables x;.

In most cases, the function P; is a cumulative distribution function F, applied to a linear combi-
nation of the x;s. In the probit model, the normal cdf is used, while the logit model employs the
logistic function A(). Therefore, we have

probit P; = F(zi) = ®(z;) (35.2)
. 1
loglt Pi = F(Zi) = A(Zi) = m (353)
k
zZi = Z Xijﬂj (35.4)
j=1

where z; is commonly known as the index function. Note that in this case the coefficients ; cannot
be interpreted as the partial derivatives of E(y;|x;) with respect to x;;. However, for a given value
of x; it is possible to compute the vector of “slopes”, that is

J0F(z)
an

slopej()'c) =
z=z

Gretl automatically computes the slopes, setting each explanatory variable at its sample mean.

Another, equivalent way of thinking about this model is in terms of an unobserved variable y*

which can be described thus: .

_’)/i* = injﬁj+ei:zi+ei (35.5)
j=1
We observe y; = 1 whenever y;* > 0 and y; = 0 otherwise. If ¢; is assumed to be normal, then we
have the probit model. The logit model arises if we assume that the density function of ¢; is

OA(g) e &
os; (1 +e&)2

Aleq) =

325
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Both the probit and logit model are estimated in gretl via maximum likelihood, where the log-
likelihood can be written as

L(B) = > In[1-F(z)]+ > InF(z), (35.6)

¥i=0 yi=1

which is always negative, since 0 < F(-) < 1. Since the score equations do not have a closed form
solution, numerical optimization is used. However, in most cases this is totally transparent to the
user, since usually only a few iterations are needed to ensure convergence. The --verbose switch
can be used to track the maximization algorithm.

Listing 35.1: Estimation of simple logit and probit models

open greenel9_1

Togit GRADE const GPA TUCE PSI
probit GRADE const GPA TUCE PSI

As an example, we reproduce the results given in chapter 21 of Greene (2000), where the effective-
ness of a program for teaching economics is evaluated by the improvements of students’ grades.
Running the code in example 35.1 gives the output reported in Table 35.1. Note that for the probit
model a conditional moment test on skewness and kurtosis (Bera, Jarque and Lee, 1984) is printed
automatically as a test for normality.

In this context, the $uhat accessor function takes a special meaning: it returns generalized resid-
uals as defined in Gourieroux, Monfort, Renault and Trognon (1987), which can be interpreted as
unbiased estimators of the latent disturbances ¢;. These are defined as

w1 YiT b; for the logit model (35.7)
o e iéj;)) - (1-y) - lﬂz(iz)i) for the probit model '

Among other uses, generalized residuals are often used for diagnostic purposes. For example, it is
very easy to set up an omitted variables test equivalent to the familiar LM test in the context of a
linear regression; example 35.2 shows how to perform a variable addition test.

Listing 35.2: Variable addition test in a probit model

open greenel9_1

probit GRADE const GPA PSI

series u = $uhat

ols u const GPA PSI TUCE -q

printf "Variable addition test for TUCE:\n"

printf "Rsq * T = %g (p. val. = %g)\n", $trsq, pvalue(X,1,$trsq)

The perfect prediction problem

One curious characteristic of logit and probit models is that (quite paradoxically) estimation is not
feasible if a model fits the data perfectly; this is called the perfect prediction problem. The reason
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Model 1: Logit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -13.0213 4.93132 -2.641
GPA 2.82611 1.26294 2.238 0.533859
TUCE 0.0951577 0.141554 0.672 0.0179755
PSI 2.37869 1.06456 2.234 0.449339

Mean of GRADE = 0.344

Number of cases ’correctly predicted’ = 26 (81.2%)

f(beta’x) at mean of independent vars = 0.189

McFadden’s pseudo-R-squared = 0.374038

Log-Tikelihood = -12.8896

Likelihood ratio test: Chi-square(3) = 15.4042 (p-value 0.001502)
Akaike information criterion (AIC) = 33.7793

Schwarz Bayesian criterion (BIC) = 39.6422

Hannan-Quinn criterion (HQC) = 35.7227

Predicted

0 1

Actual 0 18 3
1 3 8

Model 2: Probit estimates using the 32 observations 1-32
Dependent variable: GRADE

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -7.45232 2.54247 -2.931
GPA 1.62581 0.693883 2.343 0.533347
TUCE 0.0517288 0.0838903 0.617 0.0169697
PSI 1.42633 0.595038 2.397 0.467908

Mean of GRADE = 0.344

Number of cases ’correctly predicted’
f(beta’x) at mean of independent vars
McFadden’s pseudo-R-squared = 0.377478
Log-1ikelihood = -12.8188

Likelihood ratio test: Chi-square(3) = 15.5459 (p-value 0.001405)
Akaike information criterion (AIC) = 33.6376

Schwarz Bayesian criterion (BIC) = 39.5006

Hannan-Quinn criterion (HQC) = 35.581

26 (81.2%)
0.328

Predicted

0 1

Actual 0 18 3
1 3 8

Test for normality of residual -
Null hypothesis: error is normally distributed
Test statistic: Chi-square(2) = 3.61059
with p-value = 0.164426

Table 35.1: Example logit and probit
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why this problem arises is easy to see by considering equation (35.6): if for some vector 8 and scalar
k it’s the case that z; < k whenever y; = 0 and z; > k whenever y; = 1, the same thing is true
for any multiple of 8. Hence, L() can be made arbitrarily close to 0 simply by choosing enormous
values for B. As a consequence, the log-likelihood has no maximum, despite being bounded.

Gretl has a mechanism for preventing the algorithm from iterating endlessly in search of a non-
existent maximum. One sub-case of interest is when the perfect prediction problem arises because
of a single binary explanatory variable. In this case, the offending variable is dropped from the
model and estimation proceeds with the reduced specification. Nevertheless, it may happen that
no single “perfect classifier” exists among the regressors, in which case estimation is simply impos-
sible and the algorithm stops with an error. This behavior is triggered during the iteration process
if

max z; <min z;

i:yi=0 iyi=1

If this happens, unless your model is trivially mis-specified (like predicting if a country is an oil
exporter on the basis of oil revenues), it is normally a small-sample problem: you probably just
don’t have enough data to estimate your model. You may want to drop some of your explanatory
variables.

This problem is well analyzed in Stokes (2004); the results therein are replicated in the example
script murder_rates.inp.

35.2 Ordered response models

These models constitute a simple variation on ordinary logit/probit models, and are usually applied
when the dependent variable is a discrete and ordered measurement—not simply binary, but on
an ordinal rather than an interval scale. For example, this sort of model may be applied when the
dependent variable is a qualitative assessment such as “Good”, “Average” and “Bad”.

In the general case, consider an ordered response variable, v, that can take on any of the J+1 values
0,1,2,...,J. We suppose, as before, that underlying the observed response is a latent variable,

y*=XB+e=z+¢
Now define “cut points”, «; < a2 < - - - < &y, such that

y=0 if y* <
y=1 if 1 <y* =<

y=J if y*>aq
For example, if the response takes on three values there will be two such cut points, «; and «».

The probability that individual i exhibits response j, conditional on the characteristics Xx;, is then
given by

P(y* < 1 |xi) = F(og — zi) for j =0
P(yi=jlxi) =1 P(aj < ¥* < js1lxi) = F(xjs1 —zi) —F(etj—z;) for 0<j<J  (35.8)
P(y*>aylxi) =1-F(ay - zi) for j=1J

The unknown parameters «; are estimated jointly with the fs via maximum likelihood. The &;
estimates are reported by gretl as cutl, cut2 and so on. For the probit variant, a conditional
moment test for normality constructed in the spirit of Chesher and Irish (1987) is also included.

Note that the «; parameters can be shifted arbitrarily by adding a constant to z;, so the model is
under-identified if there is some linear combination of the explanatory variables which is constant.
The most obvious case in which this occurs is when the model contains a constant term; for this
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reason, gretl drops automatically the intercept if present. However, it may happen that the user in-
adventently specifies a list of regressors that may be combined in such a way to produce a constant
(for example, by using a full set of dummy variables for a discrete factor). If this happens, gretl will
also drop any offending regressors.

In order to apply these models in gretl, the dependent variable must either take on only non-
negative integer values, or be explicitly marked as discrete. (In case the variable has non-integer
values, it will be recoded internally.) Note that gretl does not provide a separate command for
ordered models: the lTogit and probit commands automatically estimate the ordered version if
the dependent variable is acceptable, but not binary.

Listing 35.3 reproduces the results presented in section 15.10 of Wooldridge (2002a). The question
of interest in this analysis is what difference it makes, to the allocation of assets in pension funds,
whether individual plan participants have a choice in the matter. The response variable is an ordinal
measure of the weight of stocks in the pension portfolio. Having reported the results of estimation
of the ordered model, Wooldridge illustrates the effect of the choice variable by reference to an
“average” participant. The example script shows how one can compute this effect in gretl.

After estimating ordered models, the $uhat accessor yields generalized residuals as in binary mod-
els; additionally, the $yhat accessor function returns Z;, so it is possible to compute an unbiased
estimator of the latent variable y;* simply by adding the two together.

35.3 Multinomial logit

When the dependent variable is not binary and does not have a natural ordering, multinomial
models are used. Multinomial logit is supported in gretl via the --multinomial option to the
Togit command. Simple models can also be handled via the mTe command (see chapter 23). We
give here an example of such a model. Let the dependent variable, y;, take on integer values
0,1,...p. The probability that y; = k is given by

exp(x;Bk)
P(yi = klxi) = =K
& X0 5-;0 exp(x;B;)

For the purpose of identification one of the outcomes must be taken as the “baseline”; it is usually
assumed that By = 0, in which case

exp(x;Pk)
P(yi = klxi) =
¥ 1+ 37 exp(xiB;)
and )
P(yi =0Ix;) =

1+ 37 exp(xifB))’

Listing 35.4 reproduces Table 15.2 in Wooldridge (2002a), based on data on career choice from
Keane and Wolpin (1997). The dependent variable is the occupational status of an individual (0 = in
school; 1 = not in school and not working; 2 = working), and the explanatory variables are education
and work experience (linear and square) plus a “black” binary variable. The full data set is a panel,;
here the analysis is confined to a cross-section for 1987.

35.4 Bivariate probit

The bivariate probit model is simply a two-equation system in which each equation is a probit
model, but the two disturbance terms may not be independent. In formulae,

kq
Yii= 2 xijBi+ v =1y >0 (35.9)
j=1
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Listing 35.3: Ordered probit model

/:“:
Replicate the results in Wooldridge, Econometric Analysis of Cross
Section and Panel Data, section 15.10, using pension-plan data from
Papke (AER, 1998).

The dependent variable, pctstck (percent stocks), codes the asset
allocation responses of "mostly bonds", "mixed" and "mostly stocks"
as {0, 50, 100}.

The independent variable of interest is "choice", a dummy indicating

whether individuals are able to choose their own asset allocations.

z‘:/
open pension.gdt

# demographic characteristics of participant

Tist DEMOG = age educ female black married

# dummies coding for income level

Tist INCOME = finc25 finc35 finc50 finc75 fincl00 finclOl

# Papke’s OLS approach

ols pctstck const choice DEMOG INCOME wealth89 prftshr
# save the OLS choice coefficient

choice_ols = $coeff(choice)

# estimate ordered probit
probit pctstck choice DEMOG INCOME wealth89 prftshr

k = $ncoeff

matrix b = $coeff[1:k-2]
al = $coeff[k-1]

a2 = $coeff[k]

/:’:
Wooldridge illustrates the ’choice’ effect in the ordered probit
by reference to a single, non-black male aged 60, with 13.5 years
of education, income in the range $50K - $75K and wealth of $200K,
participating in a plan with profit sharing.

:'c/

matrix X = {60, 13.5, 0, 0, O, O, O, O, 1, 0, O, 200, 1}

# with ’choice’ =0

scalar Xb = (0 ~ X) * b

PO = cdf(N, al - Xb)

P50 = cdf(N, a2 - Xb) - PO
P100 = 1 - cdf(N, a2 - Xb)
EO = 50 * P50 + 100 * P100

# with ’choice’ =1

Xb = (L ~X) *b

PO = cdf(N, al - Xb)

P50 = cdf(N, a2 - Xb) - PO
P100 = 1 - cdf(N, a2 - Xb)
E1 = 50 * P50 + 100 * P100

printf "\nWith choice, E(y) = %.2f, without E(y) = %.2f\n", E1, EO

printf "Estimated choice effect via ML = %.2f (OLS = %.2f)\n", E1 - EO,

choice_ols

330
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Listing 35.4: Multinomial logit
Input:

open keane.gdt
smpl year==87 --restrict
Togit status 0 educ exper expersq black --multinomial

Output (selected portions):

Model 1: Multinomial Logit, using observations 1-1738 (n = 1717)
Missing or incomplete observations dropped: 21

Dependent variable: status

Standard errors based on Hessian

coefficient std. error z p-value
status = 2
const 10.2779 1.13334 9.069 1.20e-19
educ -0.673631 0.0698999 -9.637 5.57e-22 *
exper -0.106215 0.173282 -0.6130 0.5399
expersq -0.0125152 0.0252291 -0.4961 0.6199
bTack 0.813017 0.302723 2.686 0.0072  *
status = 3
const 5.54380 1.08641 5.103
educ -0.314657 0.0651096 -4.833
exper 0.848737 0.156986 5.406
expersq -0.0773003 0.0229217 -3.372
black 0.311361 0.281534 1.106
Mean dependent var  2.691322 S.D. dependent var 0.573502
Log-1ikeTihood -907.8572 Akaike criterion 1835.714
Schwarz criterion 1890.198 Hannan-Quinn 1855.874

Number of cases ’correctly predicted’ = 1366 (79.6%)
LikeTihood ratio test: Chi-square(8) = 583.722 [0.0000]
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k2

Yii= D Zij¥i+ € Yoi=1e= >0 (35.10)
j=1

[ £21 } ~N[0,< Lor )] (35.11)
£, p 1

e The explanatory variables for the first equation x and for the second equation z may overlap
e example contained in the biprobit.inp sample script.

e $uhat and $yhat are matrices

FIXME: expand.

35.5 Panel estimators

When your dataset is a panel, the traditional choice for binary dependent variable models was,
for many years, to use logit with fixed effects and probit with random effects (see 20.1 for a brief
discussion of this dichotomy in the context of linear models). Nowadays, the choice is somewhat
wider, but the two traditional models are by and large what practitioners use as routine tools.

Gretl provides FE logit as a function package! and RE probit natively. Provided your dataset has
a panel structure, the latter option can be obtained by adding the --random option to the probit
command:

probit depvar const indvarl indvar2 --random

as exemplified in the reprobit.inp sample script. The numerical technique used for this particular
estimator is Gauss-Hermite quadrature, which we’ll now briefly describe. Generalizing equation
(35.5) to a panel context, we get

k
Vi = D XijtBj i+ €ip = Zip + Wiy (35.12)
j=1

in which we assume that the individual effect, «;, and the disturbance term, ¢;;, are mutually
independent zero-mean Gaussian random variables. The composite error term, wi: = &; + &z, iS
therefore a normal r. v. with mean zero and variance 1 + 3. Because of the individual effect, «;,
observations for the same unit are not independent; the likelihood therefore has to be evaluated
on a per-unit basis, as

i =10gP [yi1,Yi2,---, Vir]-

and there’s no way to write the above as a product of individual terms.

However, the above probability could be written as a product if we were to treat «; as a constant;
in that case we would have

T
liloai = D> @ |:(2yi,t -1

t=1

XijeBj + &
\1 +(r§

so that we can compute ; by integrating «; out as

Ui =E(lilog) = JOO (‘gi|ai)mdai

L Although this may change in the near future.
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The technique known as Gauss-Hermite quadrature is simply a way of approximating the above
integral via a sum of carefully chosen terms:?

O = > (bilo = m)wi
k=1

where the numbers ny and wy are known as quadrature points and weights, respectively. Of course,
accuracy improves with higher values of m, but so does CPU usage. Note that this technique can
also be used in more general cases by using the quadtable() function and the mle command via
the apparatus described in chapter 23. Here, however, the calculations were hard-coded in C for
maximal speed and efficiency.

Experience shows that a reasonable compromise can be achieved in most cases by choosing m in
the order of 20 or so; gretl uses 32 as a default value, but this can be changed via the --quadpoints
option, as in

probit y const x1 x2 x3 --random --quadpoints=48

35.6 The Tobit model

The Tobit model is used when the dependent variable of a model is censored. Assume a latent
variable y;* can be described as

k
yi =2 xijBj + &,
j=1
where &; ~ N(0, 02). If v, were observable, the model’s parameters could be estimated via ordinary
least squares. On the contrary, suppose that we observe y;, defined as

a for y*=<a
yi=4 ¥ for a<y’<b (35.13)
b for y*=b

In most cases found in the applied literature, a = 0 and b = oo, so in practice negative values of y*
are not observed and are replaced by zeros.

In this case, regressing y; on the x;s does not yield consistent estimates of the parameters S,
because the conditional mean E(y;|x;) is not equal to Z§:1 xi;jBj. It can be shown that restricting
the sample to non-zero observations would not yield consistent estimates either. The solution is to
estimate the parameters via maximum likelihood. The syntax is simply

tobit depvar indvars

As usual, progress of the maximization algorithm can be tracked via the --verbose switch, while
$uhat returns the generalized residuals. Note that in this case the generalized residual is defined
as 1; = E(g;]y; = 0) for censored observations, so the familiar equality 71; = y; — ; only holds for
uncensored observations, that is, when y; > 0.

An important difference between the Tobit estimator and OLS is that the consequences of non-
normality of the disturbance term are much more severe: non-normality implies inconsistency for
the Tobit estimator. For this reason, the output for the Tobit model includes the Chesher and Irish
(1987) normality test by default.

The general case in which a is nonzero and/or b is finite can be handled by using the options
--1Timit and --rTimit. So, for example,

2Some have suggested using a more refined method called adaptive Gauss-Hermite quadrature; this is not imple-
mented in gretl.
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tobit depvar indvars --11imit=10

would tell gretl that the left bound a is set to 10.

35.7 Interval regression

The interval regression model arises when the dependent variable is unobserved for some (possibly
all) observations; what we observe instead is an interval in which the dependent variable lies. In
other words, the data generating process is assumed to be

yi=xiB+e€

but we only know that m; < y;* < M;, where the interval may be left- or right-unbounded (but
not both). If m; = M;, we effectively observe y;* and no information loss occurs. In practice, each
observation belongs to one of four categories:

1. left-unbounded, when m; = — oo,
2. right-unbounded, when M; = ,
3. bounded, when —~ < m; < M; < o« and

4. point observations when m; = M;.
It is interesting to note that this model bears similarities to other models in several special cases:

o When all observations are point observations the model trivially reduces to the ordinary linear
regression model.

e The interval model could be thought of as an ordered probit model (see 35.2) in which the cut
points (the «; coefficients in eq. 35.8) are observed and don’t need to be estimated.

e The Tobit model (see 35.6) is a special case of the interval model in which m; and M; do not
depend on i, that is, the censoring limits are the same for all observations. As a matter of
fact, gretl’s tobit command is handled internally as a special case of the interval model.

The gretl command intreg estimates interval models by maximum likelihood, assuming normality
of the disturbance term ¢€;. Its syntax is

intreg minvar maxvar X

where minvar contains the m; series, with NAs for left-unbounded observations, and maxvar con-
tains Mj, with NAs for right-unbounded observations. By default, standard errors are computed
using the negative inverse of the Hessian. If the --robust flag is given, then QML or Huber-White
standard errors are calculated instead. In this case the estimated covariance matrix is a “sandwich”
of the inverse of the estimated Hessian and the outer product of the gradient.

If the model specification contains regressors other than just a constant, the output includes a
chi-square statistic for testing the joint null hypothesis that none of these regressors has any
effect on the outcome. This is a Wald statistic based on the estimated covariance matrix. If you
wish to construct a likelihood ratio test, this is easily done by estimating both the full model
and the null model (containing only the constant), saving the log-likelihood in both cases via the
$1n1 accessor, and then referring twice the difference between the two log-likelihoods to the chi-
square distribution with k degrees of freedom, where k is the number of additional regressors (see
the pvalue command in the Gretl Command Reference). Also included is a conditional moment
normality test, similar to those provided for the probit, ordered probit and Tobit models (see
above). An example is contained in the sample script wtp.inp, provided with the gretl distribution.
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Listing 35.5: Interval model on artificial data
Input:

nulldata 100

# generate artificial data
set seed 201449

x = normal()

epsilon = 0.2*normal()
ystar = 1 + x + epsilon
To_bound = floor(ystar)
hi_bound = ceil(ystar)

# run the interval model
intreg lo_bound hi_bound const x

# estimate ystar
gen_resid = $uhat

yhat = $yhat + gen_resid
corr ystar yhat

Output (selected portions):

Model 1: Interval estimates using the 100 observations 1-100
Lower Timit: lo_bound, Upper Tlimit: hi_bound

coefficient std. error t-ratio p-value
const 0.993762 0.0338325 29.37 1.22e-189 *¥**
X 0.986662 0.0319959 30.84 8.34e-209 ***
Chi-square(1) 950.9270 p-value 8.3e-209
Log-1ikeTihood -44.21258 Akaike criterion 94.42517
Schwarz criterion 102.2407 Hannan-Quinn 97.58824

sigma = 0.223273

Left-unbounded observations: 0
Right-unbounded observations: 0
Bounded observations: 100

Point observations: 0O

corr(ystar, yhat) = 0.98960092
Under the null hypothesis of no correlation:
t(98) = 68.1071, with two-tailed p-value 0.0000

As with the probit and Tobit models, after a model has been estimated the $uhat accessor returns
the generalized residual, which is an estimate of €;: more precisely, it equals y; — x;B for point
observations and E(€;|m;, Mj, x;) otherwise. Note that it is possible to compute an unbiased pre-
dictor of y;* by summing this estimate to x;S. Script 35.5 shows an example. As a further similarity
with Tobit, the interval regression model may deliver inconsistent estimates if the disturbances are
non-normal; hence, the Chesher and Irish (1987) test for normality is included by default here too.
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35.8 Sample selection model

In the sample selection model (also known as “Tobit II” model), there are two latent variables:

k
yio= D xiBj+ & (35.14)

J

I
—

I
M

ZijYj+ni (35.15)

J

1l
—_

and the observation rule is given by

* f *>0
yi={yl or S (35.16)

¢ for sf<0

In this context, the 4 symbol indicates that for some observations we simply do not have data on
y: y; may be 0, or missing, or anything else. A dummy variable d; is normally used to set censored
observations apart.

One of the most popular applications of this model in econometrics is a wage equation coupled
with a labor force participation equation: we only observe the wage for the employed. If ;* and s/
were (conditionally) independent, there would be no reason not to use OLS for estimating equation
(35.14); otherwise, OLS does not yield consistent estimates of the parameters f;.

Since conditional independence between y;* and s;* is equivalent to conditional independence be-
tween &; and n;, one may model the co-dependence between &; and n; as

& = Ani + vj;
substituting the above expression in (35.14), you obtain the model that is actually estimated:

k
yi= > xijBj + Afi + vi,
j=1
so the hypothesis that censoring does not matter is equivalent to the hypothesis Hp : A = 0, which
can be easily tested.

The parameters can be estimated via maximum likelihood under the assumption of joint normality
of &; and n;; however, a widely used alternative method yields the so-called Heckit estimator, named
after Heckman (1979). The procedure can be briefly outlined as follows: first, a probit model is fit
on equation (35.15); next, the generalized residuals are inserted in equation (35.14) to correct for
the effect of sample selection.

Gretl provides the heckit command to carry out estimation; its syntax is
heckity X ; d Z

where y is the dependent variable, X is a list of regressors, d is a dummy variable holding 1 for
uncensored observations and Z is a list of explanatory variables for the censoring equation.

Since in most cases maximum likelihood is the method of choice, by default gretl computes ML
estimates. The 2-step Heckit estimates can be obtained by using the --two-step option. After
estimation, the $uhat accessor contains the generalized residuals. As in the ordinary Tobit model,
the residuals equal the difference between actual and fitted y; only for uncensored observations
(those for which d; = 1).

Listing 35.6 shows two estimates from the dataset used in Mroz (1987): the first one replicates
Table 22.7 in Greene (2003),3 while the second one replicates table 17.1 in Wooldridge (2002a).

3Note that the estimates given by gretl do not coincide with those found in the printed volume. They do, however,
match those found on the errata web page for Greene’s book: http://pages.stern.nyu.edu/~wgreene/Text/Errata/
ERRATAS . htm.


http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
http://pages.stern.nyu.edu/~wgreene/Text/Errata/ERRATA5.htm
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Listing 35.6: Heckit model

open mroz87.gdt
genr EXP2 = AXA2
genr WA2 = WAA2
genr KIDS = (KL6+K618)>0

# Greene’s specification

Tist X = const AX EXP2 WE CIT
Tist Z const WA WA2 FAMINC KIDS WE

heckit WWw X ; LFP Z --two-step
heckit Ww X ; LFP Z

# Wooldridge’s specification

series NWINC = FAMINC - WW*WHRS
series Tww = Tog(Ww)

Tist X = const WE AX EXP2

Tist Z = X NWINC WA KL6 K618

heckit Tww X ; LFP Z --two-step

35.9 Count data

Here the dependent variable is assumed to be a non-negative integer, so a probabilistic description
of yi|x; must hinge on some discrete distribution. The most common model is the Poisson model,
in which

uYr

POi=Yix) = embl
Mi = exp (injﬁj)

J

In some cases, an “offset” variable is needed. The number of occurrences of y; in a given time is
assumed to be strictly proportional to the offset variable ;. In the epidemiology literature, the
offset is known as “population at risk”. In this case, the model becomes

Ui = Njexp (2 Xijﬁj)

J

Another way to look at the offset variable is to consider its natural log as just another explanatory
variable whose coefficient is constrained to be one.

Estimation is carried out by maximum likelihood and follows the syntax
poisson depvar indep

If an offset variable is needed, it has to be specified at the end of the command, separated from the
list of explanatory variables by a semicolon, as in

poisson depvar indep ; offset
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It should be noted that the poisson command does not use, internally, the same optimization
engines as most other gretl command, such as arma or tobit. As a consequence, some details may
differ: the --verbose option will yield different output and settings such as bfgs_toTler will not
work.

Overdispersion

In the Poisson model, E(y;|x;) = V(yi|x;) = yj, that is, the conditional mean equals the conditional
variance by construction. In many cases, this feature is at odds with the data, as the conditional
variance is often larger than the mean; this phenomenon is called “overdispersion”. The output
from the poisson command includes a conditional moment test for overdispersion (as per David-
son and MacKinnon (2004), section 11.5), which is printed automatically after estimation.

Overdispersion can be attributed to unmodeled heterogeneity between individuals. Two data points
with the same observable characteristics x; = x; may differ because of some unobserved scale
factor s; # s; so that

E(yilxi,si) = Hisi # 1jSj = E(yjlxj,s;)

even though p; = p;. In other words, y; is a Poisson random variable conditional on both x; and s;,
but since s; is unobservable, the only thing we can we can use, P(y;|x;), will not follow the Poisson
distribution.

It is often assumed that s; can be represented as a gamma random variable with mean 1 and
variance «: the parameter « is estimated together with the vector 8, and measures the degree of
heterogeneity between individuals.

In this case, the conditional probability for y; given x; can be shown to be

-1

o Titah Hi i ot "
POAIXD = Fa DT |:Ui ;i (xl} L{i o (35.17)

which is known as the “Negative Binomial Model”. The conditional mean is still E(y;|x;) = u;, but
the variance equals V (y;|x;) = u; (1 + y;x). The gretl command for this model is negbin depvar
indep.

e There is also a less used variant of the negative binomial model, in which the conditional vari-
ance is a scalar multiple of the conditional mean, thatis V(y;|x;) = y; (1 + y). To distinguish
between the two, the model (35.17) is termed “Type 2”. Gretl implements model 1 via the
option --model1.

e A script which exemplifies the above models is included among gretl’s sample scripts, under
the name camtriv.inp.

FIXME: expand.

35.10 Duration models

In some contexts we wish to apply econometric methods to measurements of the duration of certain
states. Classic examples include the following:

e From engineering, the “time to failure” of electronic or mechanical components: how long do,
say, computer hard drives last until they malfunction?

e From the medical realm: how does a new treatment affect the time from diagnosis of a certain
condition to exit from that condition (where “exit” might mean death or full recovery)?

e From economics: the duration of strikes, or of spells of unemployment.
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In each case we may be interested in how the durations are distributed, and how they are affected
by relevant covariates. There are several approaches to this problem; the one we discuss here—
which is currently the only one supported by gretl—is estimation of a parametric model by means
of Maximum Likelihood. In this approach we hypothesize that the durations follow some definite
probability law and we seek to estimate the parameters of that law, factoring in the influence of
covariates.

We may express the density of the durations as f(t, X, 0), where t is the length of time in the state
in question, X is a matrix of covariates, and 6 is a vector of parameters. The likelihood for a sample
of n observations indexed by i is then

L=]]f(tixi,0)

i=1

Rather than working with the density directly, however, it is standard practice to factor f(-) into
two components, namely a hazard function, A, and a survivor function, S. The survivor function
gives the probability that a state lasts at least as long as t; it is therefore 1 — F(t, X, 0) where F
is the CDF corresponding to the density f(-). The hazard function addresses this question: given
that a state has persisted as long as t, what is the likelihood that it ends within a short increment
of time beyond t —that is, it ends between t and t + A? Taking the limit as A goes to zero, we end
up with the ratio of the density to the survivor function:*

_f(t,X,0)
AL, X,0) = S(L.X.0) (35.18)
so the log-likelihood can be written as
n n
€= > log f(ti,xi,0) = > logA(ti, xi, 0) +1log S (t;, xi, 0) (35.19)

i=1 i=1

One point of interest is the shape of the hazard function, in particular its dependence (or not) on
time since the state began. If A does not depend on t we say the process in question exhibits du-
ration independence: the probability of exiting the state at any given moment neither increases nor
decreases based simply on how long the state has persisted to date. The alternatives are positive
duration dependence (the likelihood of exiting the state rises, the longer the state has persisted)
or negative duration dependence (exit becomes less likely, the longer it has persisted). Finally, the
behavior of the hazard with respect to time need not be monotonic; some parameterizations allow
for this possibility and some do not.

Since durations are inherently positive the probability distribution used in modeling must respect
this requirement, giving a density of zero for t < 0. Four common candidates are the exponential,
Weibull, log-logistic and log-normal, the Weibull being the most common choice. The table below
displays the density and the hazard function for each of these distributions as they are commonly
parameterized, written as functions of t alone. (¢p and ® denote, respectively, the Gaussian PDF
and CDF.)

density, f(t) hazard, A(t)
Exponential yexp (—yt) y
Weibull xy*t* Lexp [—(yt)*] oyl
. (yt)x-1! (yt)x1
Log-logistic xX—— K
8708 Y0 (el Y (e
] 1 _ 1 ¢[dogt —p)/c]
Log-normal Utcb[(logt w /o] oL ®[-(ogl — 1)/0]

4For a fuller discussion see, for example, Davidson and MacKinnon (2004).
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The hazard is constant for the exponential distribution. For the Weibull, it is monotone increasing
in t if @ > 1, or monotone decreasing for &« < 1. (If &« = 1 the Weibull collapses to the exponential.)
The log-logistic and log-normal distributions allow the hazard to vary with ¢t in a non-monotonic
fashion.

Covariates are brought into the picture by allowing them to govern one of the parameters of the
density, so that durations are not identically distributed across cases. For example, when using
the log-normal distribution it is natural to make u, the expected value of logt, depend on the
covariates, X. This is typically done via a linear index function: u = Xg.

Note that the expressions for the log-normal density and hazard contain the term (logt — u)/o.
Replacing u with X this becomes (logt — XB)/o. As in Kalbfleisch and Prentice (2002), we define
a shorthand label for this term:

w; = (logt; — xiB) /o (35.20)

It turns out that this constitutes a useful simplifying change of variables for all of the distributions
discussed here. The interpretation of the scale factor, o, in the expression above depends on the
distribution. For the log-normal, o represents the standard deviation of log t; for the Weibull and
the log-logistic it corresponds to 1/«; and for the exponential it is fixed at unity. For distributions
other than the log-normal, X corresponds to —log y, or in other words y = exp(—Xp).

With this change of variables, the density and survivor functions may be written compactly as
follows (the exponential is the same as the Weibull).

density, f(w;) survivor, S(w;)
Weibull exp (w; — e%i) exp(—eWi)
Log-logistic eWi (1 + ewi) =2 (1 +ewi)™!
Log-normal ¢ (wy) d(—w;)

In light of the above we may think of the generic parameter vector 0, as in f(t, X, 8), as composed of
the coefficients on the covariates, 3, plus (in all cases but the exponential) the additional parameter
o.

A complication in estimation of 0 is posed by “incomplete spells”. That is, in some cases the state
in question may not have ended at the time the observation is made (e.g. some workers remain
unemployed, some components have not yet failed). If we use t; to denote the time from entering
the state to either (a) exiting the state or (b) the observation window closing, whichever comes first,
then all we know of the “right-censored” cases (b) is that the duration was at least as long as t;.
This can be handled by rewriting the the log-likelihood (compare 35.19) as

£ = > 5ilogS (wi) + (1 —6;) [-logo +1og f (w;)] (35.21)

i=1

where §; equals 1 for censored cases (incomplete spells), and 0 for complete observations. The
rationale for this is that the log-density equals the sum of the log hazard and the log survivor
function, but for the incomplete spells only the survivor function contributes to the likelihood. So
in (35.21) we are adding up the log survivor function alone for the incomplete cases, plus the full
log density for the completed cases.

Implementation in gretl and illustration

The duration command accepts a list of series on the usual pattern: dependent variable followed
by covariates. If right-censoring is present in the data this should be represented by a dummy
variable corresponding to §; above, separated from the covariates by a semicolon. For example,

duration durat 0 X ; cens
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where durat measures durations, 0 represents the constant (which is required for such models), X
is a named list of regressors, and cens is the censoring dummy.

By default the Weibull distribution is used; you can substitute any of the other three distribu-
tions discussed here by appending one of the option flags --exponential, --Toglogistic or
--Tognormal.

Interpreting the coefficients in a duration model requires some care, and we will work through
an illustrative case. The example comes from section 20.3 of Wooldridge (2002a) and it concerns
criminal recidivism.”> The data (filename recid.gdt) pertain to a sample of 1,445 convicts released
from prison between July 1, 1977 and June 30, 1978. The dependent variable is the time in months
until they are again arrested. The information was gathered retrospectively by examining records
in April 1984; the maximum possible length of observation is 81 months. Right-censoring is impor-
tant: when the date were compiled about 62 percent had not been rearrested. The dataset contains
several covariates, which are described in the data file; we will focus below on interpretation of the
married variable, a dummy which equals 1 if the respondent was married when imprisoned.

Listing 35.7 shows the gretl commands for Weibull and log-normal models along with most of the
output. Consider first the Weibull scale factor, o. The estimate is 1.241 with a standard error of
0.048. (We don’t print a z score and p-value for this term since Hy : 0 = 0 is not of interest.)
Recall that o corresponds to 1/«; we can be confident that « is less than 1, so recidivism displays
negative duration dependence. This makes sense: it is plausible that if a past offender manages
to stay out of trouble for an extended period his risk of engaging in crime again diminishes. (The
exponential model would therefore not be appropriate in this case.)

On a priori grounds, however, we may doubt the monotonic decline in hazard that is implied by
the Weibull specification. Even if a person is liable to return to crime, it seems relatively unlikely
that he would do so straight out of prison. In the data, we find that only 2.6 percent of those
followed were rearrested within 3 months. The log-normal specification, which allows the hazard
to rise and then fall, may be more appropriate. Using the duration command again with the same
covariates but the --Tognormal flag, we get a log-likelihood of —1597 as against —1633 for the
Weibull, confirming that the log-normal gives a better fit.

Let us now focus on the married coefficient, which is positive in both specifications but larger and
more sharply estimated in the log-normal variant. The first thing is to get the interpretation of the
sign right. Recall that XS enters negatively into the intermediate variable w (equation 35.20). The
Weibull hazard is A(w;) = e%i, so being married reduces the hazard of re-offending, or in other
words lengthens the expected duration out of prison. The same qualitative interpretation applies
for the log-normal.

To get a better sense of the married effect, it is useful to show its impact on the hazard across time.
We can do this by plotting the hazard for two values of the index function Xf: in each case the
values of all the covariates other than married are set to their means (or some chosen values) while
married is set first to O then to 1. Listing 35.8 provides a script that does this, and the resulting
plots are shown in Figure 35.1. Note that when computing the hazards we need to multiply by the
Jacobian of the transformation from t; to w; = log(t; — x;B)/0, namely 1/t. Note also that the
estimate of o is available via the accessor $sigma, but it is also present as the last element in the
coefficient vector obtained via $coeff.

A further difference between the Weibull and log-normal specifications is illustrated in the plots.
The Weibull is an instance of a proportional hazard model. This means that for any sets of values of
the covariates, x; and x;, the ratio of the associated hazards is invariant with respect to duration. In
this example the Weibull hazard for unmarried individuals is always 1.1637 times that for married.
In the log-normal variant, on the other hand, this ratio gradually declines from 1.6703 at one month
to 1.1766 at 100 months.

5German Rodriguez of Princeton University has a page discussing this example and displaying estimates from Stata
at http://data.princeton.edu/pop509/recidl.html.


http://data.princeton.edu/pop509/recid1.html
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Listing 35.7: Models for recidivism data
Input:

open recid.gdt

Tist X = workprg priors tserved felon alcohol drugs \
black married educ age

duration durat 0 X ; cens

duration durat 0 X ; cens --Tognormal

Partial output:

Model 1: Duration (Weibull1), using observations 1-1445
Dependent variable: durat

coefficient std. error z p-value

const 4.22167 0.341311 12.37 3.85e-35 *¥*

workprg -0.112785 0.112535 -1.002 0.

priors -0.110176 0.0170675 -6.455 1.

tserved -0.0168297 0.00213029 -7.900 2.

felon 0.371623 0.131995 2.815 0.

alcohol -0.555132 0.132243 -4.198 2.

drugs -0.349265 0.121880 -2.866 0.

bTack -0.563016 0.110817 -5.081 3.

married 0.188104 0.135752 1.386 0.

educ 0.0289111 0.0241153 1.199 0.

age 0.00462188 0.000664820 6.952 3.

sigma 1.24090 0.0482896
Chi-square(10) 165.4772 p-value 2.39e-30
Log-Tikelihood -1633.032 Akaike criterion 3290.065

Model 2: Duration (log-normal), using observations 1-1445
Dependent variable: durat

coefficient std. error z p-value
const 4.09939 0.347535 11.80 4.
workprg -0.0625693 0.120037 -0.5213 0.
priors -0.137253 0.0214587 -6.396 1.
tserved -0.0193306 0.00297792 -6.491 8.
felon 0.443995 0.145087 3.060 0.
alcohol -0.634909 0.144217 -4.402 1.
drugs -0.298159 0.132736 -2.246 0.
black -0.542719 0.117443 -4.621 3.
married 0.340682 0.139843 2.436 0.
educ 0.0229194 0.0253974 0.9024 0.
age 0.00391028 0.000606205 6.450 1.
sigma 1.81047 0.0623022
Chi-square(10) 166.7361 p-value 1.31e-30

Log-Tikelihood -1597.059 Akaike criterion 3218.118
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Listing 35.8: Create plots showing conditional hazards

open recid.gdt -q

# leave 'married’ separate for analysis
Tist X = workprg priors tserved felon alcohol drugs \
bTlack educ age

# Weibull variant

duration durat 0 X married ; cens

# coefficients on all Xs apart from married
matrix beta_w = $coeff[1l:$ncoeff-2]

# married coefficient

scalar mc_w = $coeff[$ncoeff-1]

scalar s_w = $sigma

# Log-normal variant

duration durat 0 X married ; cens --lognormal
matrix beta_n = $coeff[1l:$ncoeff-2]

scalar mc_n = $coeff[$ncoeff-1]

scalar s_n = $sigma

Tist allX = 0 X

# evaluate X\beta at means of all variables except marriage
scalar Xb_w = meanc({all1X}) * beta_w

scalar Xb_n = meanc({all1X}) * beta_n

# construct two plot matrices
matrix mat_w = zeros(100, 3)
matrix mat_n = zeros(100, 3)

Toop t=1..100 -q

# first column, duration

mat_w[t, 1] = t

mat_n[t, 1] = t

wi_w = (Tog(t) - Xb_w)/s_w

wi_n = (Tog(t) - Xb_n)/s_n

# second col: hazard with married = 0

mat_wl[t, 2] = (1/t) * exp(wi_w)

mat_n[t, 2] = (1/t) * pdf(z, wi_n) / cdf(z, -wi_n)

wi_w = (Tog(t) - (Xb_w + mc_w))/s_w

wi_n = (log(t) - (Xb_n + mc_n))/s_n

# third col: hazard with married = 1

mat_w[t, 3] = (1/t) * exp(wi_w)

mat_n[t, 3] (1/t) * pdf(z, wi_n) / cdf(z, -wi_n)
endloop

colnames(mat_w, "months unmarried married")
colnames(mat_n, "months unmarried married")

gnuplot 2 3 1 --with-Tines --supp --matrix=mat_w --output=weibull.plt
gnuplot 2 3 1 --with-Tines --supp --matrix=mat_n --output=Tognorm.plt
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Figure 35.1: Recidivism hazard estimates for married and unmarried ex-convicts
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Alternative representations of the Weibull model

One point to watch out for with the Weibull duration model is that the estimates may be represented
in different ways. The representation given by gretl is sometimes called the accelerated failure-time
(AFT) metric. An alternative that one sometimes sees is the log relative-hazard metric; in fact this is
the metric used in Wooldridge’s presentation of the recidivism example. To get from AFT estimates
to log relative-hazard form it is necessary to multiply the coefficients by —o~!. For example, the
married coefficient in the Weibull specification as shown here is 0.188104 and & is 1.24090, so the
alternative value is —0.152, which is what Wooldridge shows (2002a, Table 20.1).

Fitted values and residuals

By default, gretl computes fitted values (accessible via $yhat) as the conditional mean of duration.
The formulae are shown below (where I' denotes the gamma function, and the exponential variant
is just Weibull with o = 1).

Weibull Log-logistic Log-normal
o

2
Sin(ro) exp(XB+0°/2)

exp(XB)T(1+0)  exp(Xp)

The expression given for the log-logistic mean, however, is valid only for o < 1; otherwise the
expectation is undefined, a point that is not noted in all software.6

Alternatively, if the --med1ians option is given, gretl’s duration command will produce conditional
medians as the content of $yhat. For the Weibull the median is exp(X ) (log 2)7; for the log-logistic
and log-normal it is just exp(Xf).

The values we give for the accessor $uhat are generalized (Cox-Snell) residuals, computed as the
integrated hazard function, which equals the negative log of the survivor function:

Under the null of correct specification of the model these generalized residuals should follow the
unit exponential distribution, which has mean and variance both equal to 1 and density exp(—¢).
See chapter 18 of Cameron and Trivedi (2005) for further discussion.

6The predict adjunct to the streg command in Stata 10, for example, gaily produces large negative values for the
log-logistic mean in duration models with o > 1.
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Quantile regression

36.1 Introduction

In Ordinary Least Squares (OLS) regression, the fitted values, y; = Xiﬁ, represent the conditional
mean of the dependent variable —conditional, that is, on the regression function and the values
of the independent variables. In median regression, by contrast and as the name implies, fitted
values represent the conditional median of the dependent variable. It turns out that the principle of
estimation for median regression is easily stated (though not so easily computed), namely, choose
B so as to minimize the sum of absolute residuals. Hence the method is known as Least Absolute
Deviations or LAD. While the OLS problem has a straightforward analytical solution, LAD is a linear
programming problem.

Quantile regression is a generalization of median regression: the regression function predicts the
conditional T-quantile of the dependent variable—for example the first quartile (t = .25) or the
ninth decile (T = .90).

If the classical conditions for the validity of OLS are satisfied —that is, if the error term is indepen-
dently and identically distributed, conditional on X —then quantile regression is redundant: all the
conditional quantiles of the dependent variable will march in lockstep with the conditional mean.
Conversely, if quantile regression reveals that the conditional quantiles behave in a manner quite
distinct from the conditional mean, this suggests that OLS estimation is problematic.

As of version 1.7.5, gretl offers quantile regression functionality (in addition to basic LAD regres-
sion, which has been available since early in gretl’s history via the 1ad command).!

36.2 Basic syntax

The basic invocation of quantile regression is
quantreg tau reglist
where

e reglist is a standard gretl regression list (dependent variable followed by regressors, including
the constant if an intercept is wanted); and

e tau is the desired conditional quantile, in the range 0.01 to 0.99, given either as a numerical
value or the name of a pre-defined scalar variable (but see below for a further option).

Estimation is via the Frisch-Newton interior point solver (Portnoy and Koenker, 1997), which is sub-
stantially faster than the “traditional” Barrodale-Roberts (1974) simplex approach for large prob-
lems.

Iwe gratefully acknowledge our borrowing from the quantreg package for GNU R (version 4.17). The core of the
quantreg package is composed of Fortran code written by Roger Koenker; this is accompanied by various driver and
auxiliary functions written in the R language by Koenker and Martin Méchler. The latter functions have been re-worked
in C for gretl. We have added some guards against potential numerical problems in small samples.

346
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By default, standard errors are computed according to the asymptotic formula given by Koenker
and Bassett (1978). Alternatively, if the --robust option is given, we use the sandwich estimator
developed in Koenker and Zhao (1994).2

36.3 Confidence intervals

An option --intervals is available. When this is given we print confidence intervals for the param-
eter estimates instead of standard errors. These intervals are computed using the rank inversion
method and in general they are asymmetrical about the point estimates — that is, they are not sim-
ply “plus or minus so many standard errors”. The specifics of the calculation are inflected by
the --robust option: without this, the intervals are computed on the assumption of IID errors
(Koenker, 1994); with it, they use the heteroskedasticity-robust estimator developed by Koenker
and Machado (1999).

By default, 90 percent intervals are produced. You can change this by appending a confidence value
(expressed as a decimal fraction) to the intervals option, as in

quantreg tau reglist --intervals=.95

When the confidence intervals option is selected, the parameter estimates are calculated using
the Barrodale-Roberts method. This is simply because the Frisch-Newton code does not currently
support the calculation of confidence intervals.

Two further details. First, the mechanisms for generating confidence intervals for quantile esti-
mates require that the model has at least two regressors (including the constant). If the --intervals
option is given for a model containing only one regressor, an error is flagged. Second, when a model
is estimated in this mode, you can retrieve the confidence intervals using the accessor $coeff_ci.
This produces a k x 2 matrix, where k is the number of regressors. The lower bounds are in the
first column, the upper bounds in the second. See also section 36.5 below.

36.4 Multiple quantiles

As a further option, you can give tau as a matrix—either the name of a predefined matrix or in
numerical form, as in {.05, .25, .5, .75, .95}. The given model is estimated for all the T
values and the results are printed in a special form, as shown below (in this case the --intervals
option was also given).

Model 1: Quantile estimates using the 235 observations 1-235
Dependent variable: foodexp
With 90 percent confidence intervals

VARIABLE TAU COEFFICIENT LOWER UPPER
const 0.05 124.880 98.3021 130.517
0.25 95.4835 73.7861 120.098

0.50 81.4822 53.2592 114.012

0.75 62.3966 32.7449 107.314

0.95 64.1040 46.2649 83.5790

income 0.05 0.343361 0.343327 0.389750
0.25 0.474103 0.420330 0.494329

0.50 0.560181 0.487022 0.601989

0.75 0.644014 0.580155 0.690413

0.95 0.709069 0.673900 0.734441

2These correspond to the iid and nid options in R’s quantreg package, respectively.
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Figure 36.1: Regression of food expenditure on income; Engel’s data

The gretl GUI has an entry for Quantile Regression (under /Model/Robust estimation), and you can
select multiple quantiles there too. In that context, just give space-separated numerical values (as
per the predefined options, shown in a drop-down list).

When you estimate a model in this way most of the standard menu items in the model window
are disabled, but one extra item is available —graphs showing the T sequence for a given coeffi-
cient in comparison with the OLS coefficient. An example is shown in Figure 36.1. This sort of
graph provides a simple means of judging whether quantile regression is redundant (OLS is fine) or
informative.

In the example shown—based on data on household income and food expenditure gathered by
Ernst Engel (1821-1896)—it seems clear that simple OLS regression is potentially misleading. The
“crossing” of the OLS estimate by the quantile estimates is very marked.

However, it is not always clear what implications should be drawn from this sort of conflict. With
the Engel data there are two issues to consider. First, Engel’s famous “law” claims an income-
elasticity of food consumption that is less than one, and talk of elasticities suggests a logarithmic
formulation of the model. Second, there are two apparently anomalous observations in the data
set: household 105 has the third-highest income but unexpectedly low expenditure on food (as
judged from a simple scatter plot), while household 138 (which also has unexpectedly low food
consumption) has much the highest income, almost twice that of the next highest.

With n = 235 it seems reasonable to consider dropping these observations. If we do so, and adopt
a log-log formulation, we get the plot shown in Figure 36.2. The quantile estimates still cross the
OLS estimate, but the “evidence against OLS” is much less compelling: the 90 percent confidence
bands of the respective estimates overlap at all the quantiles considered.

36.5 Large datasets

As noted above, when you give the --intervals option with the quantreg command, which calls
for estimation of confidence intervals via rank inversion, gretl switches from the default Frisch-
Newton algorithm to the Barrodale-Roberts simplex method.
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Figure 36.2: Log-log regression; 2 observations dropped from full Engel data set.

This is OK for moderately large datasets (up to, say, a few thousand observations) but on very large
problems the simplex algorithm may become seriously bogged down. For example, Koenker and
Hallock (2001) present an analysis of the determinants of birth weights, using 198377 observations
and with 15 regressors. Generating confidence intervals via Barrodale-Roberts for a single value of
T took about half an hour on a Lenovo Thinkpad T60p with 1.83GHz Intel Core 2 processor.

If you want confidence intervals in such cases, you are advised not to use the --intervals option,
but to compute them using the method of “plus or minus so many standard errors”. (One Frisch-
Newton run took about 8 seconds on the same machine, showing the superiority of the interior
point method.) The script below illustrates:

quantreg .10 y 0 xTist

scalar crit = gnorm(.95)

matrix ci = $coeff - crit * $stderr
ci = ci~($coeff + crit * $stderr)
print ci

The matrix ci will contain the lower and upper bounds of the (symmetrical) 90 percent confidence
intervals.

To avoid a situation where gretl becomes unresponsive for a very long time we have set the maxi-
mum number of iterations for the Borrodale-Roberts algorithm to the (somewhat arbitrary) value
of 1000. We will experiment further with this, but for the meantime if you really want to use this
method on a large dataset, and don’t mind waiting for the results, you can increase the limit using
the set command with parameter rq_maxiter, as in

set rg_maxiter 5000
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Nonparametric methods

The main focus of gretl is on parametric estimation, but we offer a selection of nonparametric
methods. The most basic of these

o various tests for difference in distribution (Sign test, Wilcoxon rank-sum test, Wilcoxon signed-
rank test);

¢ the Runs test for randomness; and

e nonparametric measures of association: Spearman’s rho and Kendall’s tau.

Details on the above can be found by consulting the help for the commands difftest, runs, corr
and spearman. In the GUI program these items are found under the Tools menu and the Robust
estimation item under the Model menu.

In this chapter we concentrate on two relatively complex methods for nonparametric curve-fitting
and prediction, namely William Cleveland’s “loess” (also known as “lowess”) and the Nadaraya-
Watson estimator.

37.1 Locally weighted regression (loess)

Loess (Cleveland, 1979) is a nonparametric smoother employing locally weighted polynomial re-
gression. It is intended to yield an approximation to g(-) when the dependent variable, v, can be
expressed as
Yi=9(xi) +€i

for some smooth function g(-).

Given a sample of n observations on the variables y and x, the procedure is to run a weighted least
squares regression (a polynomial of order d = 0, 1 or 2 in x) localized to each data point, i. In each
such regression the sample consists of the v nearest neighbors (in the x dimension) to the point i,
with weights that are inversely related to the distance |x; — xx|, k = 1,...,7. The predicted value

v; is then obtained by evaluating the estimated polynomial at x;. The most commonly used order
isd=1.

A bandwidth parameter 0 < g < 1 controls the proportion of the total number of data points used
in each regression; thus » = gn (rounded up to an integer). Larger values of g lead to a smoother
fitted series, smaller values to a series that tracks the actual data more closely; 0.25 < g < 0.5 is
often a suitable range.

In gretl’s implementation of loess the weighting scheme is that given by Cleveland, namely,
wi(x;) = W (xk — xi))
where h; is the distance between x; and its ¥ nearest neighbor, and W (-) is the tricube function,

(1-|x]3)3 for|x| <1
0 for x| =1

Wix) = {

350
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The local regression can be made robust via an adjustment based on the residuals, e; = y; — ;.
Robustness weights, 8, are defined by

Ox = B(ey/6s)
where s is the median of the |e;| and B(-) is the bisquare function,

(1-x2)2 for|x|<1
Bix) = {0 for x| =1

The polynomial regression is then re-run using weight 6wy (x;) at (xg, Vk).

The Toess () function in gretl takes up to five arguments as follows: the y series, the x series, the
order d, the bandwidth g, and a Boolean switch to turn on the robust adjustment. The last three
arguments are optional: if they are omitted the default values are d = 1, g = 0.5 and no robust
adjustment. An example of a full call to Toess() is shown below; in this case a quadratic in x is
specified, three quarters of the data points will be used in each local regression, and robustness is
turned on:

series yh = loess(y, x, 2, 0.75, 1)

An illustration of loess is provided in Listing 37.1: we generate a series that has a deterministic
sine wave component overlaid with noise uniformly distributed on (-1, 1). Loess is then used to
retrieve a good approximation to the sine function. The resulting graph is shown in Figure 37.1.

Listing 37.1: Loess script

nulldata 120

series x = index

scalar n $nobs

series y sin(2*pi*x/n) + uniform(-1, 1)
series yh = loess(y, x, 2, 0.75, 0)

gnuplot y yh x --output=display --with-Tlines=yh

T
+ 4+ loess fit ——

Figure 37.1: Loess: retrieving a sine wave



Chapter 37. Nonparametric methods 352

37.2 The Nadaraya-Watson estimator

The Nadaraya-Watson nonparametric estimator (Nadaraya, 1964; Watson, 1964) is an estimator
for the conditional mean of a variable Y, available in a sample of size n, for a given value of a
conditioning variable X, and is defined as

Sy Kn(X - x;)

M0 = TS (X - x))

where Kj, (-) is the so-called kernel function, which is usually some simple transform of a density
function that depends on a scalar, h, known as the bandwidth. The one used by gretl is

2
Kp(x) =exp (—;)

for |x| < T and zero otherwise. Larger values of h produce a smoother function. The scalar T,
known as the trim parameter, is used to prevent numerical problems when the kernel function is
evaluated too far away from zero.

A common variant of Nadaraya-Watson is the so-called “leave-one-out” estimator, which omits the
i-th observation when evaluating #1(x;). The formula therefore becomes
i Vi Kn(xi— x;j)

i Kn(xi — xj)

m(x;) =

This makes the estimator more robust numerically and its usage is often advised for inference
purposes.

The nadarwat() function in gretl takes up to five arguments as follows: the dependent series Y,
the independent series x, the bandwidth h, a Boolean switch to turn on “leave-one-out”, and a value
for the trim parameter T, expressed as a multiple of h. The last three arguments are optional; if
they are omitted the default values are, respectively, an automatic data-determined value for h (see
below), leave-one-out not activated, and T = 4. The default value of T offers a relatively safe guard
against numerical problems; in some cases a larger T may produce more sensible values in regions
of X with sparse support.

Choice of bandwidth

As mentioned above, larger values of h lead to a smoother m(-) function; smaller values make
the m(-) function follow the y; values more closely, so that the function appears more “jagged”.
In fact, as h — o, m(x;) — Y; on the contrary, if h — 0, observations for which x; # X are not
taken into account at all when computing m(X). Also, the statistical properties of m(-) vary with
h: its variance can be shown to be decreasing in h, while its squared bias is increasing in h. It
can be shown that choosing h ~ n~1/> minimizes the RMSE, so that value is customarily taken as a
reference point.

If the argument h is omitted or set to 0, gretl uses the following data-determined value:

_ i r Laa-1/5
h=09 1’1’111’1[5, 1.349] n

where s is the sample standard deviation of x and v is its interquartile range.

Example and prediction
By way of example, Listing 37.2 produces the graph shown in Figure 37.2 (after some slight editing).

Although X could be, in principle, any value, in the typical usage of this estimator you want to
compute m(X) for X equal to one or more values actually observed in your sample, that is m(x;).
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Listing 37.2: Nadaraya-Watson example

# Nonparametric regression example: husband’s age on wife’s age
open mroz87.gdt

# initial value for the bandwidth
scalar h = $nobsA(-0.2)

# three increasingly smooth estimates
series mO nadarwat(HA, WA, h)
series ml = nadarwat(HA, WA, h * 5)
series m2 nadarwat(HA, WA, h * 10)

# produce the graph
dataset sortby WA
gnuplot HA mO ml m2 WA --output=display --with-Tines=m0,ml,m2

60 T T T T T
mo0 —— X X X X X X X X
ml —— X X X X X X X X X X
m2 —— X X X X X R :

X X X
55 X X X —
X X X X
X
X X
X X
50 + X X X —
X X
X X X
X X X
X X X X
< 45t X x i
X
X X
40 N
X
X
X X
X
35 >< X N
X X X X
X X X X X X X
X X X X
X X X X X

30\1/ | | | | | |

30 35 40 45 50 55 60
WA

Figure 37.2: Nadaraya-Watson example for several choices of the bandwidth parameter
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If you need a point estimate of m(X) for some value of X which is not present among the valid
observations of your dependent variable, you may want to add some “fake” observations to your
dataset in which vy is missing and x contains the values you want m(x) evaluated at. For example,
the following script evaluates m(x) at regular intervals between —2.0 and 2.0:

nulldata 120
set seed 120496

# first part of the sample: actual data
smp1 1 100

X = normal ()

y = xA2 + sin(x) + normal()

# second part of the sample: fake x data
smp1l 101 120
x = (obs-110) / 5

# compute the Nadaraya-Watson estimate

# with bandwidth equal to 0.4 (note that
# 100A(-0.2) = 0.398)

smp1 full

m = nadarwat(y, x, 0.4)

# show m(x) for the fake x values only

smp1 101 120
print x m -o

and running it produces

X m
101 -1.8 1.165934
102 -1.6 0.730221
103 -1.4 0.314705
104 -1.2 0.026057
105 -1.0 -0.131999
106 -0.8 -0.215445
107 -0.6 -0.269257
108 -0.4 -0.304451
109 -0.2 -0.306448
110 0.0 -0.238766
111 0.2 -0.038837
112 0.4 0.354660
113 0.6 0.908178
114 0.8 1.485178
115 1.0 2.000003
116 1.2 2.460100
117 1.4 2.905176
118 1.6 3.380874
119 1.8 3.927682
120 2.0 4.538364
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Technical details
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Chapter 38

Gretl and TgX

38.1 Introduction

TgX — initially developed by Donald Knuth of Stanford University and since enhanced by hundreds
of contributors around the world — is the gold standard of scientific typesetting. Gretl provides
various hooks that enable you to preview and print econometric results using the TgX engine, and
to save output in a form suitable for further processing with TgX.

This chapter explains the finer points of gretl’s TgX-related functionality. The next section describes
the relevant menu items; section 38.3 discusses ways of fine-tuning TgX output; and section 38.4
gives some pointers on installing (and learning) TgX if you do not already have it on your computer.
(Just to be clear: TgX is not included with the gretl distribution; it is a separate package, including
several programs and a large number of supporting files.)

Before proceeding, however, it may be useful to set out briefly the stages of production of a final
document using TgX. For the most part you don’t have to worry about these details, since, in regard
to previewing at any rate, gretl handles them for you. But having some grasp of what is going on
behind the scences will enable you to understand your options better.

The first step is the creation of a plain text “source” file, containing the text or mathematics to
be typset, interspersed with mark-up that defines how it should be formatted. The second step
is to run the source through a processing engine that does the actual formatting. Typically this a
program called pdflatex that generates PDF output.' (In times gone by it was a program called latex
that generated so-called DVI (device-independent) output.)

So gretl calls pdflatex to process the source file. On MS Windows and Mac OS X, gretl expects the
operating system to find the default viewer for PDF output. On GNU/Linux you can specify your
preferred PDF viewer via the menu item “Tools, Preferences, General,” under the “Programs” tab.

38.2 TpX-related menu items

The model window

The fullest TgX support in gretl is found in the GUI model window. This has a menu item titled
“LaTeX” with sub-items “View”, “Copy”, “Save” and “Equation options” (see Figure 38.1).

The first three sub-items have branches titled “Tabular” and “Equation”. By “Tabular” we mean that
the model is represented in the form of a table; this is the fullest and most explicit presentation of
the results. See Table 38.1 for an example; this was pasted into the manual after using the “Copy,
Tabular” item in gretl (a few lines were edited out for brevity).

The “Equation” option is fairly self-explanatory — the results are written across the page in equation
format, as below:

ENROLL = 0.241105 + 0.223530 CATHOL — 0.00338200 PUPIL — 0.152643 WHITE
(0.066022) (0.04597) (0.0027196) (0.040706)

=51 R%=0.4462 F(3,47) = 14.431 & = 0.038856

LExperts will be aware of something called “plain TgX”, which is processed using the program tex. The great majority
of TgX users, however, use the IXIgX macros, initially developed by Leslie Lamport. gretl does not support plain TgX.
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Figure 38.1: ETgX menu in model window

File Edit Tests Sawe Graphs gnalysm:]

Wiew k
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Dependent variable: EWROLL Save .
VARIABLE COEFFICIENT Equation options M| P-VALUE
Tabular options...
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CATHOL ©.223530 B.0459781 4.863 0.0008]1 #=x=*

Table 38.1: Example of ETgX tabular output

Model 1: OLS estimates using the 51 observations 1-51
Dependent variable: ENROLL

Variable Coefficient Std. Error t-statistic  p-value
const 0.241105 0.0660225 3.6519 0.0007
CATHOL 0.223530 0.0459701 4.8625 0.0000
PUPIL —0.00338200 0.00271962 —-1.2436 0.2198
WHITE —0.152643 0.0407064 -3.7499 0.0005

Mean of dependent variable 0.0955686

S.D. of dependent variable 0.0522150

Sum of squared residuals 0.0709594

Standard error of residuals (&) 0.0388558

Unadjusted R? 0.479466

Adjusted R? 0.446241

F(3,47) 14.4306
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(standard errors in parentheses)

The distinction between the “Copy” and “Save” options (for both tabular and equation) is twofold.
First, “Copy” puts the TgX source on the clipboard while with “Save” you are prompted for the name
of a file into which the source should be saved. Second, with “Copy” the material is copied as a
“fragment” while with “Save” it is written as a complete file. The point is that a well-formed TgX
source file must have a header that defines the documentclass (article, report, book or whatever)
and tags that say \begin{document} and \end{document}. This material is included when you do
“Save” but not when you do “Copy”, since in the latter case the expectation is that you will paste
the data into an existing TgX source file that already has the relevant apparatus in place.

The items under “Equation options” should be self-explanatory: when printing the model in equa-
tion form, do you want standard errors or t-ratios displayed in parentheses under the parameter
estimates? The default is to show standard errors; if you want t-ratios, select that item.

Other windows

Several other sorts of output windows also have TgX preview, copy and save enabled. In the case of
windows having a graphical toolbar, look for the TgX button. Figure 38.2 shows this icon (second
from the right on the toolbar) along with the dialog that appears when you press the button.

Figure 38.2: TgX icon and dialog

By [ ™ x|,

l@ View
Summarf ) Copy
Variable MEANY () Save
ENROLL 0.8
CATHOL 0.1 &Jok M cancel
PUPIL 17.3

One aspect of gretl’s TgX support that is likely to be particularly useful for publication purposes is
the ability to produce a typeset version of the “model table” (see section 3.4). An example of this is
shown in Table 38.2.

38.3 Fine-tuning typeset output

There are three aspects to this: adjusting the appearance of the output produced by gretl in
KTEX preview mode; adjusting the formatting of gretl’s tabular output for models when using the
tabprint command; and incorporating gretl’s output into your own TgX files.

Previewing in the GUI

As regards preview mode, you can control the appearance of gretl’s output using a file named
gretipre.tex, which should be placed in your gretl user directory (see the Gretl Command Ref-
erence). If such a file is found, its contents will be used as the “preamble” to the TgX source. The
default value of the preamble is as follows:

\documentclass[1llpt]{article}
\usepackage[utf8]{inputenc}
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Table 38.2: Example of model table output

OLS estimates
Dependent variable: ENROLL

Model 1 Model 2 Model 3
const 0.2907** 0.2411** 0.08557
(0.07853) (0.06602) (0.05794)
CATHOL 0.2216** 0.2235** 0.2065**
(0.04584) (0.04597) (0.05160)
PUPIL —-0.003035 -0.003382 —0.001697
(0.002727) (0.002720) (0.003025)
WHITE —0.1482** -0.1526**
(0.04074) (0.04071)
ADMEXP —0.1551
(0.1342)
n 51 51 51
R? 0.4502 0.4462 0.2956
Y 96.09 95.36 88.69

Standard errors in parentheses
* indicates significance at the 10 percent level
** indicates significance at the 5 percent level
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\usepackage{amsmath}
\usepackage{dcoTlumn,longtable}
\begin{document}
\thispagestyle{empty}

Note that the amsmath and dcolumn packages are required. (For some sorts of output the Tongtable
package is also needed.) Beyond that you can, for instance, change the type size or the font by al-
tering the documentclass declaration or including an alternative font package.

In addition, if you wish to typeset gretl output in more than one language, you can set up per-
language preamble files. A “localized” preamble file is identified by a name of the form gretlpre_xx. tex,
where xx is replaced by the first two letters of the current setting of the LANG environment vari-

able. For example, if you are running the program in Polish, using LANG=p1_PL, then gretl will do

the following when writing the preamble for a TgX source file.

1. Look for a file named gretlpre_p1.tex in the gretl user directory. If this is not found, then
2. look for a file named gretlpre.tex in the gretl user directory. If this is not found, then

3. use the default preamble.

Conversely, suppose you usually run gretl in a language other than English, and have a suitable
gretipre.tex file in place for your native language. If on some occasions you want to produce TgX
output in English, then you could create an additional file gretTpre_en. tex: this file will be used
for the preamble when gretl is run with a language setting of, say, en_US.

Command-line options

After estimating a model via a script—or interactively via the gretl console or using the command-
line program gretlcli—you can use the commands tabprint or egnprint to print the model to
file in tabular format or equation format respectively. These options are explained in the Gretl
Command Reference.

If you wish alter the appearance of gretl’s tabular output for models in the context of the tabprint
command, you can specify a custom row format using the --format flag. The format string must
be enclosed in double quotes and must be tied to the flag with an equals sign. The pattern for the
format string is as follows. There are four fields, representing the coefficient, standard error, t-
ratio and p-value respectively. These fields should be separated by vertical bars; they may contain
a printf-type specification for the formatting of the numeric value in question, or may be left
blank to suppress the printing of that column (subject to the constraint that you can’t leave all the
columns blank). Here are a few examples:

--format="%.4f|%.4f|%.4f|%.4f"
--format="%.4f|%.4f|%.3f|"
--format="%.5f|%.4f| |%.4f"
--format="%.8g|%.8g| |%.4f"

The first of these specifications prints the values in all columns using 4 decimal places. The second
suppresses the p-value and prints the t-ratio to 3 places. The third omits the t-ratio. The last one
again omits the t, and prints both coefficient and standard error to 8 significant figures.

Once you set a custom format in this way, it is remembered and used for the duration of the gretl
session. To revert to the default formatting you can use the special variant --format=default.

Further editing

Once you have pasted gretl’s TgX output into your own document, or saved it to file and opened it
in an editor, you can of course modify the material in any wish you wish. In some cases, machine-
generated TgX is hard to understand, but gretl’s output is intended to be human-readable and
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-editable. In addition, it does not use any non-standard style packages. Besides the standard KIgX
document classes, the only files needed are, as noted above, the amsmath, dcolumn and longtabTle
packages. These should be included in any reasonably full TgX implementation.

38.4 Installing and learning TgX

This is not the place for a detailed exposition of these matters, but here are a few pointers.

So far as we know, every GNU/Linux distribution has a package or set of packages for TgX, and in
fact these are likely to be installed by default. Check the documentation for your distribution. For
MS Windows, several packaged versions of TgX are available: one of the most popular is MiKTgX at
http://www.miktex.org/. For Mac OS X a nice implementation is iTgXMac, at http://itexmac.
sourceforge.net/. An essential starting point for online TgX resources is the Comprehensive TgX
Archive Network (CTAN) at http://www.ctan.org/.

As for learning TgX, many useful resources are available both online and in print. Among online
guides, Tony Roberts’ “BIgX: from quick and dirty to style and finesse” is very helpful, at

http://www.sci.usq.edu.au/staff/robertsa/LaTeX/Tatexintro.html

An excellent source for advanced material is The BTgX Companion (Goossens et al., 2004).


http://www.miktex.org/
http://itexmac.sourceforge.net/
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Chapter 39

Gretl and R

39.1 Introduction

R is, by far, the largest free statistical project.! Like gretl, it is a GNU project and the two have a
lot in common; however, gretl’s approach focuses on ease of use much more than R, which instead
aims to encompass the widest possible range of statistical procedures.

As is natural in the free software ecosystem, we don’t view ourselves as competitors to R,2 but
rather as projects sharing a common goal who should support each other whenever possible. For
this reason, gretl provides a way to interact with R and thus enable users to pool the capabilities of
the two packages.

In this chapter, we will explain how to exploit R’s power from within gretl. We assume that the
reader has a working installation of R available and a basic grasp of R’s syntax.3

Despite several valiant attempts, no graphical shell has gained wide acceptance in the R community:
by and large, the standard method of working with R is by writing scripts, or by typing commands
at the R prompt, much in the same way as one would write gretl scripts or work with the gretl
console. In this chapter, the focus will be on the methods available to execute R commands without
leaving gretl.

39.2 Starting an interactive R session

The easiest way to use R from gretl is in interactive mode. Once you have your data loaded in gretl,
you can select the menu item “Tools, Start GNU R” and an interactive R session will be started, with
your dataset automatically pre-loaded.

A simple example: OLS on cross-section data

For this example we use Ramanathan’s dataset data4-1, one of the sample files supplied with gretl.
We first run, in gretl, an OLS regression of price on sqft, bedrms and baths. The basic results are
shown in Table 39.1.

Table 39.1: OLS house price regression via gretl

Variable Coefficient Std. Error t-statistic  p-value
const 129.062 88.3033 1.4616 0.1746
sqft 0.154800 0.0319404 4.8465 0.0007
bedrms -21.587 27.0293 -0.7987 0.4430
baths -12.192 43.2500 -0.2819 0.7838

LR’s homepage is at http://www.r-project.org/.

20K, who are we kidding? But it's friendly competition!

3The main reference for R documentation is http://cran.r-project.org/manuals.html. In addition, R tutorials
abound on the Net; as always, Google is your friend.
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We will now replicate the above results using R. Select the menu item “Tools, Start GNU R”. A
window similar to the one shown in figure 39.1 should appear.

R version 2,10,1 (2009-12-14)
Copyright (C) 2009 The R Foundation for Statistical Computing
ISEM 2-300051-07-0

R iz free software and comes with ABSOLUTELY MO WARRAMTY,
You are welcome to redistribute it under certain conditions,
Type 'license()' or 'licence()' for distribution details,

Hatural language support but running in an Englizh locale

R iz a collaborative project with many contributors,
Type 'contributors()' for more information and
'‘citation{)' on how to cite R or R packages in publications,

Type 'demol)' for some demos, 'help()' for on-line help, ar
'help,start()' for an HTHL browser interface to help,
Type 'qi)' to quit R,

cu?ﬂent data loaded az data frame "gretldata”
>

Figure 39.1: R window

The actual look of the R window may be somewhat different from what you see in Figure 39.1
(especially for Windows users), but this is immaterial. The important point is that you have a
window where you can type commands to R. If the above procedure doesn’t work and no R window
opens, it means that gretl was unable to launch R. You should ensure that R is installed and working
on your system and that gretl knows where it is. The relevant settings can be found by selecting
the “Tools, Preferences, General” menu entry, under the “Programs” tab.

Assuming R was launched successfully, you will see notification that the data from gretl are avail-
able. In the background, gretl has arranged for two R commands to be executed, one to load the
gretl dataset in the form of a data frame (one of several forms in which R can store data) and one
to attach the data so that the variable names defined in the gretl workspace are available as valid
identifiers within R.

In order to replicate gretl’s OLS estimation, go into the R window and type at the prompt

model <- Tm(price ~ sqft + bedrms + baths)
summary (model)

You should see something similar to Figure 39.2. Surprise —the estimates coincide! To get out, just
close the R window or type q() at the R prompt.

Time series data

We now turn to an example which uses time series data: we will compare gretl’s and R’s estimates
of Box and Jenkins’ immortal “airline” model. The data are contained in the bjg sample dataset.
The following gretl code

open bjg
arimm 011 ; 011; 1g --nc

produces the estimates shown in Table 39.2.
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» model <- lm{price ™ sqft + bedrms + baths)
» summarymode] )

Call:
Inifornula = price ™ sgft + bedrms + baths)
Residuals:

Min 10 HMedian a0 Maz

-bh, 033 -16,219 6,093 22,432 68,703

Coefficientss
Estimate Std, Error t walue Priltl)
(Intercept) 129,06163  88,30328 1,462 0,174569

sqft 0,15480  0,03134 4,847 0000675
bedrms -21,58752  27,02333 -0,733 0,443057

baths -12,18276  43.25000 -0,282 0,783758
Signif, codesy O ©FEET 0001 7 0,01 %7 000 .7 0,1 71

Residual standard error: 40,87 on 10 degrees of freedom

Multiple R-squared: 0,836, Adjusted R-squared: 0,7068
F-statistic: 16,93 on 3 and 10 OF, p-value: 0,0002336
> 1

Figure 39.2: OLS regression on house prices via R

Table 39.2: Airline model from Box and Jenkins (1976) - selected portion of gretl’s estimates

Variable Coefficient Std. Error t-statistic ~ p-value

01 -0.401824 0.0896421 —-4.4825 0.0000

0, -0.556936 0.0731044 —7.6184 0.0000
Variance of innovations 0.00134810
Log-likelihood 244.696

Akaike information criterion —483.39
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If we now open an R session as described in the previous subsection, the data-passing mechanism
is slightly different. Since our data were defined in gretl as time series, we use an R time-series
object (ts for short) for the transfer. In this way we can retain in R useful information such as the
periodicity of the data and the sample limits. The downside is that the names of individual series,
as defined in gretl, are not valid identifiers. In order to extract the variable 1g, one needs to use the
syntax 1g <- gretldatal, "1g"].

ARIMA estimation can be carried out by issuing the following two R commands:

1g <- gretldata[, "1g"]
arima(lg, c(0,1,1), seasonal=c(0,1,1))

which yield

Coefficients:
mal smal
-0.4018 -0.5569
s.e. 0.0896 0.0731

sigmaA2 estimated as 0.001348: Tog Tikelihood = 244.7, aic = -483.4

Happily, the estimates again coincide.

39.3 Running an R script

Opening an R window and keying in commands is a convenient method when the job is small. In
some cases, however, it would be preferable to have R execute a script prepared in advance. One
way to do this is via the source() command in R. Alternatively, gretl offers the facility to edit an R
script and run it, having the current dataset pre-loaded automatically. This feature can be accessed
via the “File, Script Files” menu entry. By selecting “User file”, one can load a pre-existing R script;
if you want to create a new script instead, select the “New script, R script” menu entry.

(=
BlesoPRE @ x

lg =- gretldatal, "lg"]
arima(lg, c(@,1,1), seasonal=c(C,1,1])

Figure 39.3: Editing window for R scripts

In either case, you are presented with a window very similar to the editor window used for ordinary
gretl scripts, as in Figure 39.3.

There are two main differences. First, you get syntax highlighting for R’s syntax instead of gretl’s.
Second, clicking on the Execute button (the gears icon), launches an instance of R in which your
commands are executed. Before R is actually run, you are asked if you want to run R interactively
or not (see Figure 39.4).

An interactive run opens an R instance similar to the one seen in the previous section: your data
will be pre-loaded (if the “pre-load data” box is checked) and your commands will be executed.
Once this is done, you will find yourself at the R prompt, where you can enter more commands.
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R mode

® Mon-interactive (just get output)

() Interactive R session

v| pre-load data

| Ogancel | Qﬂgk:

Figure 39.4: Editing window for R scripts

A non-interactive run, on the other hand, will execute your script, collect the output from R and
present it to you in an output window; R will be run in the background. If, for example, the script
in Figure 39.3 is run non-interactively, a window similar to Figure 39.5 will appear.

gretl: script cutput

current data loaded as ts object "gretldata"

Call:
arima(x = lg, order = c(®, 1, 1), seasonal =c(®, 1, 1))
Coefficients:

mal smal

-0.4018 -0.5569
5.8, 0.0896 0.0731

sigma™2 estimated as 0.001348: log likelihood = 244.7, aic = -483.4

Figure 39.5: Output from a non-interactive R run

39.4 Taking stuff back and forth

As regards the passing of data between the two programs, so far we have only considered passing
series from gretl to R. In order to achieve a satisfactory degree of interoperability, more is needed.
In the following sub-sections we see how matrices can be exchanged, and how data can be passed
from R back to gretl.
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Passing matrices from gretl to R

For passing matrices from gretl to R, you can use the mwrite matrix function described in section
16.7. For example, the following gretl code fragment generates the matrix

3 7 11
A= 4 8 12
5 9 13
6 10 14

and stores it into the file mymatfile.mat in the user’s “dotdir”(see section 14.2). Note that writing
to this special directory, which is sure to exist and be writable by the user, is mandated by the
non-zero value for the third, optional argument to mwrite.

matrix A = mshape(seq(3,14),4,3)
err = mwrite(A, "mymatfile.mat", 1)

The recommended R code to import such a matrix is
A <- gretl.loadmat("mymatfile.mat™)

The function gretl1.Toadmat, which is predefined when R is called from gretl, retrieves the matrix
from dotdir. (The “.mat” extension for gretl matrix files is not compulsory; you can name these
files as you wish.)

It's also possible to take more control over the details of the transer if you wish. You have the
built-in string variable $dotdir in gretl, while in R you have the same variable under the name
gretl.dotdir. To use a location other than $dotdir you may (a) omit the third argument to
mwrite and supply a full path to the matrix file, and (b) use a more generic approach to reading
the file in R. Here’s an example:

Gretl side:
mwrite(A, "/path/to/mymatfile.mat")
R side:

A <- as.matrix(read.table("/path/to/mymatfile.mat", skip=1))

Passing data from R to gretl

For passing data in the opposite direction, gretl defines a special function that can be used in the
R environment. An R object will be written as a temporary file in $dotdir, from where it can be
easily retrieved from within gretl.

The name of this function is gretl1.export(); it takes one required argument, the object to be
exported. At present, the objects that can be exported with this method are matrices, data frames
and time-series objects. The function creates a text file, by default with the same name as the
exported object (plus an appropriate suffix), in gretl’s temporary directory. Data frames and time-
series objects are stored as CSV files, and can be retrieved by using gretl’s append command.
Matrices are stored in a special text format that is understood by gretl (see section 16.7); the file
suffix is in this case .mat, and to read the matrix in gretl you must use the mread () function.

This function also has an optional second argument, namely a string which specifies a basename
for the export file, in case you want to use a name other than that attached to the object within R.
As in the default case an appropriate suffix, . csv or .mat, will be added to the basename.
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As an example, we take the airline data and use them to estimate a structural time series model a
la Harvey (1989).* The model we will use is the Basic Structural Model (BSM), in which a time series
is decomposed into three terms:

Ye=Ht + Yt t &

where p; is a trend component, y; is a seasonal component and &; is a noise term. In turn, the
following is assumed to hold:

Apr = B+
ABr = T
Asyr = Awg

where A; is the seasonal differencing operator, (1 — L¥), and n¢, {; and w; are mutually uncorre-
lated white noise processes. The object of the analysis is to estimate the variances of the noise
components (which may be zero) and to recover estimates of the latent processes u; (the “level”),
B: (the “slope”) and y;.

We will use R’s StructTS command and import the results back into gretl. Once the bjg dataset is
loaded in gretl, we pass the data to R and execute the following script:

# extract the Tog series

y <- gretldatal[, "1g"]

# estimate the model

strmod <- StructTS(y)

# save the fitted components (smoothed)
compon <- as.ts(tsSmooth(strmod))

# save the estimated variances

vars <- as.matrix(strmod$coef)

# export into gretl’s temp dir
gretl.export(compon)
gretl.export(vars)

Running this script via gretl produces minimal output:

current data loaded as ts object "gretldata"
wrote /home/cottrell/.gretl/compon.csv
wrote /home/cottrell/.gretl/vars.mat

However, we are now able to pull the results back into gretl by executing the following commands,
either from the console or by creating a small script:

string fname = sprintf("%s/compon.csv", $dotdir)
append @fname
vars = mread("vars.mat", 1)

The first command reads the estimated time-series components from a CSV file, which is the format
that the passing mechanism employs for series. The matrix vars is read from the file vars.mat.

After the above commands have been executed, three new series will have appeared in the gretl
workspace, namely the estimates of the three components; by plotting them together with the
original data, you should get a graph similar to Figure 39.6. The estimates of the variances can be
seen by printing the vars matrix, as in

? print vars
vars (4 x 1)

4The function package StucTiSM is available to handle this class of models natively in gretl.



Chapter 39. Gretl and R 369

6.2 T T
6 VA
Vad
5.8 | Vs -
5.6 | /// g
5.4 | f .
52 o 4
5+ 4/ .
ag PV .
46 : L
1949 1955 1961
slope sea
0.01025 T T 0.3 T T
0.25 - R
. [
0.0102 - B 0.2 O ‘r‘ I U‘ \‘\ H \‘ ‘ 4
o5t I ‘\ ]
o1, | [l || .
0.01015 | E f .
0.05 | (/1 {/1 /1] ]| “‘ “‘ “\ N
0 UH‘\“‘\\\\““\‘A\“\‘JHMNH M"u‘ i
0.0101 | b -0.05 |||V ‘\r‘”‘ I \M\ Iatatal .
o1 b W\MWJW‘M‘MM -
0.01005 | 1 ol V‘ NS aEE
02| [ 1] [ 4
0.01 L 1 -0.25 I 1
1949 1955 1961 1949 1955 1961
Figure 39.6: Estimated components from BSM
0.00077185
0.0000
0.0013969
0.0000

That is,
G5 =0.00077185, &7 =0, &g =0.0013969, &7 =0

Notice that, since &g = 0, the estimate for B; is constant and the level component is simply a
random walk with a drift.

39.5 Interacting with R from the command line

Up to this point we have spoken only of interaction with R via the GUI program. In order to do the
same from the command line interface, gretl provides the foreign command. This enables you to
embed non-native commands within a gretl script.

A “foreign” block takes the form

foreign language=R [--send-data[=T1ist]] [--quiet]
. R commands ...
end foreign

and achieves the same effect as submitting the enclosed R commands via the GUI in the non-
interactive mode (see section 39.3 above). The --send-data option arranges for auto-loading of
the data present in the gretl session, or a subset thereof specified via a named list. The --quiet
option prevents the output from R from being echoed in the gretl output.

Using this method, replicating the example in the previous subsection is rather easy: basically, all it
takes is encapsulating the content of the R script in a foreign...end foreign block; see example
39.1.
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Listing 39.1: Estimation of the Basic Structural Model - simple

open bjg.gdt

foreign language=R --send-data
y <- gretldatal[, "1g"]
strmod <- StructTS(y)
compon <- as.ts(tsSmooth(strmod))
vars <- as.matrix(strmod$coef)
gretl.export(compon)
gretl.export(vars)

end foreign

append @dotdir/compon.csv
rename Tlevel Tg_level
rename slope Tg_slope
rename sea lg_seas

vars = mread('"vars.mat", 1)

Listing 39.2: Estimation of the Basic Structural Model - via a function

function 1list RStructTS(series myseries)
smp1 ok(myseries) --restrict
sx = argname(myseries)

foreign language=R --send-data --quiet
@sx <- gretldatal[, "myseries"]
strmod <- StructTS(@sx)
compon <- as.ts(tsSmooth(strmod))
gretl.export(compon)

end foreign

append @dotdir/compon.csv
rename level @sx_Tlevel
rename slope @sx_sTope
rename sea @sx_seas

Tist ret = @sx_level @sx_sTope @sx_seas
return ret
end function

open bjg.gdt
Tist X = RStructTS(lg)
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The above syntax, despite being already quite useful by itself, shows its full power when it is used
in conjunction with user-written functions. Listing 39.2 shows how to define a gretl function that
calls R internally.

39.6 Performance issues with R

R is a large and complex program, which takes an appreciable time to initialize itself. In interactive
use this not a significant problem, but if you have a gretl script that calls R repeatedly the cumulated
start-up costs can become bothersome. To get around this, gretl calls the R shared library by
preference; in this case the start-up cost is borne only once, on the first invocation of R code from
within gretl.

Support for the R shared library is built into the gretl packages for MS Windows and OS X—but
the advantage is realized only if the library is in fact available at run time. If you are building gretl
yourself on Linux and wish to make use of the R library, you should ensure (a) that R has been
built with the shared library enabled (specify --enable-R-sh1ib when configuring your build of
R), and (b) that the pkg-config program is able to detect your R installation. We do not link to the
R library at build time, rather we open it dynamically on demand. The gretl GUI has an item under
the Tools/Preferences menu which enables you to select the path to the library, if it is not detected
automatically.

If you have the R shared library installed but want to force gretl to call the R executable instead,
you can do

set R_1ib off

39.7 Further use of the R library

Besides improving performance, as noted above, use of the R shared library makes possible a
further refinement. That is, you can define functions in R, within a foreign block, then call those
functions later in your script much as if they were gretl functions. This is illustrated below.

set R_functions on
foreign language=R
plus_one <- function(q) {
z = g+l
invisible(z)
}

end foreign
scalar b=R.plus_one(2)

The R function plus_one is obviously trivial in itself, but the example shows a couple of points.
First, for this mechanism to work you need to enable R_functions via the set command. Second,
to avoid collision with the gretl function namespace, calls to functions defined in this way must be
prefixed with “R.”, as in R.plus_one. But note, this mechanism will not work if you have defined
a gretl bundle named R: in that case identifiers beginning with “R.” will be understood as referring
to members of the bundle in question.

Built-in R functions may also be called in this way, once R_functions is set on. For example one
can invoke R’s choose function, which computes binomial coefficients:

set R_functions on
scalar b = R.choose(10,4)

Note, however, that the possibilities for use of built-in R functions are limited; only functions
whose arguments and return values are sufficiently generic (basically scalars, matrices or strings)
will work.
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Gretl and Ox

40.1 Introduction

Ox, written by Jurgen A. Doornik (see Doornik, 2007), is described by its author as “an object-
oriented statistical system. At its core is a powerful matrix language, which is complemented by
a comprehensive statistical library. Among the special features of Ox are its speed [and] well-
designed syntax.... Ox comes in two versions: Ox Professional and Ox Console. Ox is available for
Windows, Linux, Mac (OS X), and several Unix platforms.” (www.doornik.com)

Ox is proprietary, closed-source software. The command-line version of the program is, however,
available free of change for academic users. Quoting again from Doornik’s website: “The Console
(command line) versions may be used freely for academic research and teaching purposes only....
The Ox syntax is public, and, of course, you may do with your own Ox code whatever you wish.”
If you wish to use Ox in conjunction with gretl please refer to doornik.com for further details on
licensing.

As the reader will no doubt have noticed, most other software that we discuss in this Guide is open-
source and freely available for all users. We make an exception for Ox on the grounds that it is
indeed fast and well designed, and that its statistical library —along with various add-on packages
that are also available—has exceptional coverage of cutting-edge techniques in econometrics. The
gretl authors have used Ox for benchmarking some of gretl’s more advanced features such as
dynamic panel models and state space models.!

40.2 Ox support in gretl
The support offered for Ox in gretl is similar to that offered for R, as discussed in chapter 39.

= To enable support for Ox, go to the Tools/Preferences/General menu item and look under the Programs
tab. Find the entry for the path to the ox1 executable, that is, the program that runs Ox files (on MS Windows
it is called ox1.exe). Adjust the path if it’s not already right for your system and you should be ready to go.

With support enabled, you can open and edit Ox programs in the gretl GUI. Clicking the “execute”
icon in the editor window will send your code to Ox for execution. Figures 40.1 and Figure 40.2
show an Ox program and part of its output.

In addition you can embed Ox code within a gretl script using a foreign block, as described in
connection with R. A trivial example, which simply prints the gretl data matrix within Ox, is shown
below:

open data4-1
matrix m = { dataset }
mwrite(m, "gretl.mat", 1)

foreign language=0x
#include <oxstd.h>
main()

{

IFor a review of Ox, see Cribari-Neto and Zarkos (2003) and for a (somewhat dated) comparison of Ox with other
matrix-oriented packages such as GAUSS, see Steinhaus (1999).
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gretl: edit Ox program

NBEEE® OXA O R

{

Binclude <oxstd.h>
#include <packages/ssfpack/ssfpack.h=

main()

decl mphi, momega, msigma;
GetSsfArma(<0.6,0.2>, =-0.2>, 0.9, &mphi, &momega, &msigma);
print{"Phi =" , msigmal;

, mphi, "Omega =", momega, "Sigma =

decl myt = loadmat("armaZl. mat")";
decl mkf = KalmanFil(myt, mphi, momega, msigma);
printimkf'};

decl sm = SsfCondDens(5T_SMO, myt, mphi, momega, msigma);
printism")

decl dLL, dVar;

SsfLiki(&dLL, &dVar, myt, mphi, momega, msigmal;
print{"dLL = ", dLL, "\n");

print{"dvar =", dvar, "\n")

[« |

Figure 40.1: Ox editing window

gretl: script cutput

Ox Console version 5.10 (Linux) (C) J.A. Doornik, 1994-2008
This version may be used for academic research and teaching only
Phi =
0, 60000 1.0000
0, 20000 0.0000
1.0000 0.0000
Omega =
0.81000 -0, 16200 0. 0000
-0, 16200 0. 032400 0, 0000
0.0000 0.0000 0. 0000
Sigma =
1.4271 0.011571
0.011571 0. 089486
0.0000 0.0000
2.0334 0.60811 0,20000 0, 70070
0.028437 0.41988 0.20000 1.1119
-0.29212 0.400879 0.20000 1.2297

Figure 40.2: Output from Ox
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decl gmat = gretl_Toadmat(''gretl.mat");
print(gmat);
}

end foreign

The above example illustrates how a matrix can be passed from gretl to Ox. We use the mwrite
function to write a matrix into the user’s “dotdir” (see section 14.2), then in Ox we use the function
gretl_loadmat to retrieve the matrix.

How does gret1_Toadmat come to be defined? When gretl writes out the Ox program correspond-
ing to your foreign block it does two things in addition. First, it writes a small utility file named
gretl_io.ox into your dotdir. This contains a definition for gretl1_loadmat and also for the
function gretT1_export (see below). Second, gretl interpolates into your Ox code a line which in-
cludes this utility file (it is inserted right after the inclusion of oxstd.h, which is needed in all Ox
programs). Note that gret1_loadmat expects to find the named file in the user’s dotdir.

40.3 lllustration: replication of DPD model

Listing 40.1 shows a more ambitious case. This script replicates one of the dynamic panel data
models in Arellano and Bond (1991), first using gretl and then using Ox; we then check the relative
differences between the parameter estimates produced by the two programs (which turn out to be
reassuringly small).

Unlike the previous example, in this case we pass the dataset from gretl to Ox as a CSV file in
order to preserve the variable names. Note the use of the internal variable csv_na to get the right
representation of missing values for use with Ox —and also note that the --send-data option for
the foreign command is not available in connection with Ox.

We get the parameter estimates back from Ox using gret1_export on the Ox side and mread on
the gretl side. The gret1_export function takes two arguments, a matrix and a file name. The file
is written into the user’s dotdir, from where it can be picked up using mread. The final portion of
the output from Listing 40.1 is shown below:

? matrix oxparm = mread("oxparm.mat", 1)

Generated matrix oxparm

? eval abs((parm - oxparm) ./ oxparm)
1.4578e-13

.5642e-13

.0672e-15

.6091e-13

.9808e-15

.0450e-14

.0218e-13

.1048e-13

.5898e-15

.8658e-14

.1852e-14

.9451e-13

.9398e-13

P NNRFRPONRKRENOORUVIW
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Listing 40.1: Estimation of dynamic panel data model via gretl and Ox

open abdata.gdt

# Take first differences of the independent variables
genr Dw = diff(w)

genr Dk diffck)

genr Dys = diff(ys)

# 1-step GMM estimation
arbond 2 ; n Dw Dw(-1) Dk Dys Dys(-1) 0 --time-dummies
matrix parm = $coeff

# Write CSV file for Ox
set csv_na .NaN
store @dotdir/abdata.csv

# Replicate using the Ox DPD package
foreign language=0x

#include <oxstd.h>

#import <packages/dpd/dpd>

main ()

{
decl dpd = new DPDQ);
dpd.Load("@dotdir/abdata.csv");
dpd.SetYear("YEAR");

dpd.Select(Y_VAR, {"n", 0, 2});
dpd.Select(X_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});

dpd.Gmm("n", 2, 99); // GMM-type instrument
dpd.SetDummies (D_CONSTANT + D_TIME);
dpd.SetTest(2, 2); // Sargan, AR 1-2 tests
dpd.Estimate(); // l-step estimation

decl parm = dpd.GetPar();

gretl_export(parm, "oxparm.mat");

delete dpd;
}

end foreign

# Compare the results
matrix oxparm = mread("oxparm.mat", 1)
eval abs((parm - oxparm) ./ oxparm)



Chapter 41

Gretl and Octave

41.1 Introduction

GNU Octave, written by John W. Eaton and others, is described as “a high-level language, primar-
ily intended for numerical computations.” The program is oriented towards “solving linear and
nonlinear problems numerically” and “performing other numerical experiments using a language
that is mostly compatible with Matlab.” (www.gnu.org/software/octave) Octave is available in
source-code form (naturally, for GNU software) and also in the form of binary packages for MS Win-
dows and Mac OS X. Numerous contributed packages that extend Octave’s functionality in various
ways can be found at octave.sf.net.

41.2 Octave support in gretl

The support offered for Octave in gretl is similar to that offered for R (chapter 39). For example,
you can open and edit Octave scripts in the gretl GUI Clicking the “execute” icon in the editor
window will send your code to Octave for execution. Figures 41.1 and Figure 41.2 show an Octave
script and its output; in this example we use the function Togistic_regression to replicate some
results from Greene (2000).

In addition you can embed Octave code within a gretl script using a foreign block, as described
in connection with R. A trivial example, which simply loads and prints the gretl data matrix within

Octave, is shown below. (Note that in Octave, appending “;” to a line suppresses verbose output;
leaving off the semicolon results in printing of the object that is produced, if any.)

open data4-1
matrix m = { dataset }
mwrite(m, "gretl.mat", 1)

foreign language=0Octave
gmat = gretl_Toadmat('"gretl.mat™)
end foreign

We use the mwri te function to write a matrix into the user’s “dotdir” (see section 14.2), then in Oc-
tave we use the function gret1_loadmat to retrieve the matrix. The “magic” behind gret1_loadmat
works in essentially the same way as for Ox (chapter 40).

41.3 lllustration: spectral methods

We now present a more ambitious example which exploits Octave’s handling of the frequency
domain (and also its ability to use code written for MATLAB), namely estimation of the spec-
tral coherence of two time series. For this illustration we require two extra Octave packages
from octave.sf.net, namely those supporting spectral functions (specfun) and signal process-
ing (signal). After downloading the packages you can install them from within Octave as follows
(using version numbers as of March 2010):

pkg install specfun-1.0.8.tar.gz
pkg install signal-1.0.10.tar.gz
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gretl: edit Octave script

NPBEBAS0D0AR D X

## logistic regression from William Greene's
## Econometric Analysis, 4e, ch. 19.

load spector.dat
n = rows(GPAETC);
¥ = [ones{n, 1) GPAETC ];

beta(l) = beta(l) - theta;
beta

k = columns(X);
second = zerosi(k, k);

for i=1:k
for j=1:k
second(i, j) = d21{i+l, j+1};
endfor
endfor
vcw = -1 * inv{second);
se = zeros(k, 1)
for i=1:k
sel(i) = sgri(vev(i,i));
endfor
se

[theta, beta, dewv, dl, d21] = logistic_regression(GRADE, X};

Ix]

Figure 41.1: Octave editing window

gretl: script ocutput

-13.020386
2.825937
0.095146
2.378536

se

4.93100
1.26289
@.14155
1.06452

Figure 41.2: Output from Octave
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In addition we need some specialized MATLAB files made available by Mario Forni of the Univer-
sity of Modena, at http://morgana.unimore.it/forni_mario/matlab.htm. The files needed are
coheren2.m, coheren.m, coher.m, cospec.m, crosscov.m, crosspec.m, crosspe.m and spec.m.
These are in a form appropriate for MS Windows. On Linux you could run the following shell script
to get the files and remove the Windows end-of-file character (which prevents the files from running
under Octave):

SITE=http://morgana.unimore.it/forni_mario/MYPROG
# download files and delete trailing Ctrl1-Z
for f in \
coheren2.m \
coheren.m \
coher.m \
cospec.m \
crosscov.m \
crosspec.m \
crosspe.m \
spec.m ; do
wget $SITE/$F && \
cat $f | tr -d \\032 > tmp.m && mv tmp.m $f
done

The Forni files should be placed in some appropriate directory, and you should tell Octave where
to find them by adding that directory to Octave’s Toadpath. On Linux this can be done via an entry
in one’s ~/.octaverc file. For example

addpath("~/stats/octave/forni");

Alternatively, an addpath directive can be written into the Octave script that calls on these files.

With everything set up on the Octave side we now write a gretl script (see Listing 41.1) which opens
a time-series dataset, constructs and writes a matrix containing two series, and defines a foreign
block containing the Octave statements needed to produce the spectral coherence matrix. The
matrix is exported via the gretl_export function, which is automatically defined for you; this
function takes two arguments, a matrix and a file name. The file is written into the user’s “dotdir”,
from where it can be picked up using mread. Finally, we produce a graph from the matrix in gretl.
In the script this is sent to the screen; Figure 41.3 shows the same graph in PDF format.
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Listing 41.1: Estimation of spectral coherence via Octave

open data9-7
matrix xy = { PRIME, UNEMP }
mwrite(xy, "xy.mat", 1)

foreign language=Octave
# uncomment and modify the following if necessary
# addpath("~/stats/octave/forni");
xy = gretl_loadmat("xy.mat");
x = xy(:,1);
y = xy(:,2);
# note: the Tast parameter is the Bartlett window size
h = coher(x, y, 8);
gretl_exportCh, "h.mat");
end foreign

h = mread("h.mat", 1)
colnames(h, "coherence")

gnuplot 1 --time-series --with-lines --matrix=h --output=display

0.4

0.3 -

0.2

0.1 |-

-0.1

coherence

-0.2 +

0.4 -

-0.5 | | | |

0 10 20 30 40

Figure 41.3: Spectral coherence estimated via Octave
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Chapter 42

Gretl and Stata

Stata (www.stata.com) is closed-source, proprietary (and expensive) software and as such is not a
natural companion to gretl. Nonetheless, given Stata’s popularity it is desirable to have a convenient
way of comparing results across the two programs, and to that end we provide some support for
Stata code under the foreign command.

= To enable support for Stata, go to the Tools/Preferences/General menu item and look under the Programs
tab. Find the entry for the path to the Stata executable. Adjust the path if it’s not already right for your
system and you should be ready to go.

The following example illustrates what’s available. You can send the current gretl dataset to Stata
using the --send-data flag. And having defined a matrix within Stata you can export it for use with
gretl via the gret1_export command: this takes two arguments, the name of the matrix to export
and the filename to use; the file is written to the user’s “dotdir”, from where it can be retrieved
using the mread () function.! To suppress printed output from Stata you can add the --quiet flag
to the foreign block.

Listing 42.1: Comparison of clustered standard errors with Stata

function matrix stata_reorder (matrix se)
# stata puts the intercept last, but gretl puts it first
scalar n = rows(se)
return se[n] | se[l:n-1]

end function

open data4-1
ols 1 0 2 3 --cluster=bedrms
matrix se = $stderr

foreign language=stata --send-data
regress price sqft bedrms, vce(cluster bedrms)
matrix vecv = e(V)
gretl_export vcv "vcv.mat"

end foreign

matrix stata_vcv = mread("vcv.mat", 1)

stata_se = stata_reorder(sqrt(diag(stata_vcv)))
matrix check = se - stata_se

print check

In addition you can edit “pure” Stata scripts in the gretl GUI and send them for execution as with
native gretl scripts.

Note that Stata coerces all variable names to lower-case on data input, so even if series names in

IWe do not currently offer the complementary functionality of gret1_loadmat, which enables reading of matrices
written by gretl’s mwrite() function in Ox and Octave. This is not at all easy to implement in Stata code.
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gretl are upper-case, or of mixed case, it's necessary to use all lower-case in Stata. Also note that
when opening a data file within Stata via the use command it will be necessary to provide the full
path to the file.
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Gretl and Python

43.1 Introduction

According to www. python.org, Python is “an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach to object-oriented program-
ming. Python’s elegant syntax and dynamic typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application development in many areas on most platforms.”

Indeed, Python is widely used in a great variety of contexts. Numerous add-on modules are avail-
able; the ones likely to be of greatest interest to econometricians include NumPy (“the fundamen-
tal package for scientific computing with Python” —see www.numpy.org); SciPy (which builds on
NumPy—see www.scipy.org); and Statsmodels (http://statsmodels.sourceforge.net/).

43.2 Python support in gretl

The support offered for Python in gretl is similar to that offered for Octave (chapter 41). You can
open and edit Python scripts in the gretl GUI. Clicking the “execute” icon in the editor window will
send your code to Python for execution. In addition you can embed Python code within a gretl
script using a foreign block, as described in connection with R.

When you launch Python from within gretl one variable and two convenience functions are pre-
defined, as follows.

gretl_dotdir
gretl_loadmat(filename, autodot=1)
gretl_export(M, filename, autodot=1)

The variable gret1_dotdir holds the path to the user’s “dot directory.” The first function loads a
matrix of the given filename as written by gretl’s mwrite function, and the second writes matrix
M, under the given filename, in the format wanted by gretl.

By default the traffic in matrices goes via the dot directory on the Python side; that is, the name of
this directory is prepended to fiTlename for both reading and writing. (This is complementary to
use of the export and import parameters with gretl’s mwrite and mread functions, respectively.)
However, if you wish to take control over the reading and writing locations you can supply a zero
value for autodot when calling gret1_loadmat and gretl_export: in that case the filename
argument is used as is.

Note that gret1_Tloadmat and gretl_export depend on NumPy; they make use of the functions
Toadtxt and savetxt respectively. Nonetheless, the presence of NumPy is not an absolute require-
ment if you don’t need to use these two functions.

43.3 lllustration: linear regression with multicollinearity

Listing 43.1 compares the numerical accuracy of gretl’s o1s command with that of NumPy’s Tinalg.1stsq,
using the notorious Longley test data which exhibit extreme multicollinearity. Unlike some econo-
metrics packages, NumPy does a good job on these data. The script computes and prints the
log-relative error in estimation of the regression coefficients, using the NIST-certified values as a
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benchmark;! the error values correspond to the number of correct digits (with a maximum of 15).
The results will differ somewhat by computer architecture; the output shown was obtained on a
32-bit Linux Intel i5 system.

ISee http://www.it1.nist.gov/div898/strd/11s/data/Longley.shtml.
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Listing 43.1: Comparing regression results with Python

set echo off
set messages off

function matrix logrel_error (matrix est, matrix true)
return -loglO(abs(est - true) ./ abs(true))
end function

open Tongley.gdt -q

Tist LX = prdefl .. year
# gretl’s regular OLS
ols employ 0 LX -q
matrix b = $coeff

mwrite({employ}, "y.mat", 1)
mwrite({const} ~ {LX}, "X.mat", 1)

foreign language=python

import numpy as np

y = gretl_loadmat(’y.mat’, 1)

X = gretl_loadmat(’X.mat’, 1)

# NumPy’s OLS

b = np.linalg.lstsq(X, y)[0]

gretl_export(np.transpose(np.matrix(b)), ’'py_b.mat’, 1)
end foreign

# NIST’s certified coefficient values

matrix nist_b = {-3482258.63459582, 15.0618722713733,
-0.358191792925910E-01, -2.02022980381683,
-1.03322686717359, -0.511041056535807E-01,
1829.15146461355}’

matrix py_b = mread("py_b.mat", 1)

matrix errs = logrel_error(b, nist_b) ~ logrel_error(py_b, nist_b)
colnames(errs, "gretl python")

printf "Log-relative errors, Longley coefficients:\n\n%12.5g\n", errs
printf "Column means\n%12.5g\n", meanc(errs)

Output:

Log-relative errors, Longley coefficients:

gretl python
12.844 12.85
11.528 11.414
12.393 12.401
13.135 13.121
13.738 13.318
12.587 12.363
12.848 12.852

Column means
12.725 12.617
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Gretl and Julia

44.1 Introduction

According to julialang.org, Julia is “a high-level, high-performance dynamic programming lan-
guage for technical computing, with syntax that is familiar to users of other technical computing
environments. It provides a sophisticated compiler, distributed parallel execution, numerical ac-
curacy, and an extensive mathematical function library.” Julia is well known for being very fast;
however, you should be aware that by default starting Julia takes some time due to Just-in-Time
compilation of the input. This fixed cost is well worth bearing if you are asking Julia to perform a
big computation, but small jobs are likely to run faster if you use the (Julia-specific) --no-compile
option with the foreign command.

44.2 Julia support in gretl

The support offered for Julia in gretl is similar to that offered for Octave (chapter 41). You can
open and edit Julia scripts in the gretl GUI Clicking the “execute” icon in the editor window will
send your code to Julia for execution. In addition you can embed Julia code within a gretl script
using a foreign block, as described in connection with R.

When you launch Julia from within gretl one variable and two convenience functions are pre-defined,
as follows.

gretl_dotdir
gretl_loadmat(filename, autodot=true)
gretl_export(M, filename, autodot=true)

The variable gret1_dotdir holds the path to the user’s “dot directory.” The first function loads a
matrix of the given filename as written by gretl’s mwrite function, and the second writes matrix
M, under the given filename, in the format wanted by gretl.

By default the traffic in matrices goes via the dot directory on the Julia side; that is, the name of
this directory is prepended to filename for both reading and writing. (This is complementary to
use of the export and import parameters with gretl’s mwrite and mread functions, respectively.)
However, if you wish to take control over the reading and writing locations you can supply a zero
value for autodot when calling gret1_loadmat and gretl_export: in that case the filename
argument is used as is.

44.3 lllustration

The following is a minimal example on how to interact with Julia from a gretl script.

set verbose off

matrix A = mnormal(4,4) # generate a random matrix
mwrite(A, "A", 1) # and save it to a file
foreign language=julia # call Julia
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print("Hi from Julia!\n"); # output a string
A = gretl_Tloadmat("A™); # grab the matrix from gret]
gretl_export(inv(A), "iA.mat"); # and save its inverse
end foreign # go back to gretl
matrix iA = mread("iA.mat", 1) # read the inverse from Julia
matrix check = A * A # compute the product
print check # print out the check (should be I)

The script above should produce output similar to the following:
Hi from Julial!
check (4 x 4)

1.0000 6.9389e-18 1.6653e-16 1.6653e-16

0.0000 1.0000 0.0000 0.0000
-4.4409e-16 -8.3267e-17 1.0000 -6.6613e-16
-4.4409e-16 -1.3878e-17 -1.1102e-16 1.0000

Since this is a very small job JIT compilation is not worthwhile; in our testing the script runs almost
4 times faster if the Julia block is opened with

foreign language=julia --no-compile

This has the effect of passing the option --compile=no to the Julia executable.
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Troubleshooting gretl

45.1 Bug reports

Bug reports are welcome —well, if not exactly welcome then useful and appreciated. Hopefully, you
are unlikely to find bugs in the actual calculations done by gretl (although this statement does not
constitute any sort of warranty). You may, however, come across bugs or oddities in the behavior
of the graphical interface. Please remember that the usefulness of bug reports is greatly enhanced
if you can be as specific as possible: what exactly went wrong, under what conditions, and on what
operating system? If you saw an error message, what precisely did it say?

One way of making a bug report more useful is to run the program in such a way that you can see
(and copy) any additional information that gets printed to the stderr output stream. On Linux and
Mac OS X that’s just a matter of launching gretl from the command prompt in a terminal window.
On MS Windows it’s a bit more complicated since stderr is by default “invisble.” However, you can
quite easily set up a special gretl shortcut that does the job. On the Windows desktop, right-click
and select “New shortcut.” In the dialog box that appears, browse to find gretl.exe and append
the --debug flag, as shown in Figure 45.1. Note that there are two dashes before “debug”.

Figure 45.1: Creating a debugging shortcut

Details I Previous Versions
Shorteut | Compatibility

Target type: Application

Target location: gretl A

Target: "C:\Program Files"-gretl"-gretlw32.-3{" ~debug| ,

Start in: "C:\Program Files'gret]"

Shortcut key:  None

Bun: [Norrnal window hd ]

Comment:

Open File Location ] l Change lcon... l [ Advanced... l
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When you start gretl in this mode, a “console window” appears as well as the gretl window, and
stderr output goes to the console. To copy this output, click at the top left of the console window
for a menu (Figure 45.2): first do “Select all”, then “Copy.” You can paste the results into Notepad
or similar.

Figure 45.2: The program with console window

EPP = ‘gretldivr’ —> 7
[ A, ‘dbproxy’ —> *°
[ A, 'Gp_colors® —>» '
after gretl_set_paths:
gretldir = ‘C:nProgram Files“gretl:'
workdi D:slUserdatasDocumentssgret 1N
dotdir 'DaslsersSWEFUZ2811~AppDatasRoaming gret 1%'
gnuplot = ‘C:n\Program Files“gretl ugnuplot.exe’
=S e fread_win32_config: returning @

gret]l win32_init: done

datad-7.gdt

-4 : Read datafile C:“Program Files“gretlsdatasdata?-7.gdt
VRN ENEL L B - 1 i odicity: 4, maxobs: 64
const ohservations range: 1975:1-1998:4
QnNC get_png_bounds_info¢>: OK
PRICE -
INCOME
PRIME
UMEMP
STOCK L
POP Population in millicns
WINTER 1 for winter quarter, 0 otherwise
SPRING

W 00 = O bn B W ka2 O

45.2 Auxiliary programs

As mentioned above, gretl calls some other programs to accomplish certain tasks (gnuplot for
graphing, IKIgX for high-quality typesetting of regression output, GNU R). If something goes wrong
with such external links, it is not always easy for gretl to produce an informative error message.
If such a link fails when accessed from the gretl graphical interface, you may be able to get more
information by starting gretl from the command prompt rather than via a desktop menu entry or
icon. On the X window system, start gretl from the shell prompt in an xterm; on MS Windows, start
the program gret1.exe from a console window or “DOS box” using the -g or --debug option flag.
Additional error messages may be displayed on the terminal window.

Also please note that for most external calls, gretl assumes that the programs in question are
available in your “path” —that is, that they can be invoked simply via the name of the program,
without supplying the program’s full location.! Thus if a given program fails, try the experiment of
typing the program name at the command prompt, as shown below.

Graphing Typesetting GNU R
X window system  gnuplot pdflatex R
MS Windows wgnuplot.exe pdflatex RGui.exe

If the program fails to start from the prompt, it’s not a gretl issue but rather that the program’s
home directory is not in your path, or the program is not installed (properly). For details on
modifying your path please see the documentation or online help for your operating system or
shell.

LThe exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is given.
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The command line interface

The gretl package includes the command-line program gretlcli. On Linux it can be run from a
terminal window (xterm, rxvt, or similar), or at the text console. Under MS Windows it can be run in
a console window (sometimes inaccurately called a “DOS box”). gretlcli has its own help file, which
may be accessed by typing “help” at the prompt. It can be run in batch mode, sending output
directly to a file (see also the Gretl Command Reference).

If gretlicli is linked to the readline library (this is automatically the case in the MS Windows version;
also see Appendix C), the command line is recallable and editable, and offers command completion.
You can use the Up and Down arrow keys to cycle through previously typed commands. On a given
command line, you can use the arrow keys to move around, in conjunction with Emacs editing
keystrokes.! The most common of these are:

Keystroke Effect
Ctrl-a  go to start of line
Ctrl-e  go to end of line
Ctrl-d  delete character to right

where “Ctr1-a” means press the “a” key while the “Ctr1” key is also depressed. Thus if you want
to change something at the beginning of a command, you don’t have to backspace over the whole
line, erasing as you go. Just hop to the start and add or delete characters. If you type the first
letters of a command name then press the Tab key, readline will attempt to complete the command
name for you. If there’s a unique completion it will be put in place automatically. If there’s more
than one completion, pressing Tab a second time brings up a list.

Probably the most useful mode for heavy-duty work with gretlcli is batch (non-interactive) mode,
in which the program reads and processes a script, and sends the output to file. For example

gretlcli -b scriptfile > outputfile

Note that scriptfile is treated as a program argument; only the output file requires redirection (>).
Don’t forget the -b (batch) switch, otherwise the program will wait for user input after executing
the script (and if output is redirected, the program will appear to “hang”).

L Actually, the key bindings shown below are only the defaults; they can be customized. See the readline manual.
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Appendix A

Data file details

A.1 Basic native format

In gretl’s basic native data format-for which we use the suffix gdt—a data set is stored in XML
(extensible mark-up language). Data files correspond to the simple DTD (document type defini-
tion) given in gretldata.dtd, which is supplied with the gretl distribution and is installed in the
system data directory (e.g. /usr/share/gretl/data on Linux.) Such files may be plain text (un-
compressed) or gzipped. They contain the actual data values plus additional information such as
the names and descriptions of variables, the frequency of the data, and so on.

In a gdt file the actual data values are written to 17 significant figures (for generated data such as
logs or pseudo-random numbers) or to a maximum of 15 figures for primary data. The C printf
format “%.*g” is used (for * = 17 or 15) so that trailing zeros are not printed.

Most users will probably not have need to read or write such files other than via gretl itself, but
if you want to manipulate them using other software tools you should examine the DTD and also
take a look at a few of the supplied practice data files: data4-1.gdt gives a simple example;
data4-10.gdt is an example where observation labels are included.

A.2 Binary data file format

As of gretl 1.9.15, an alternative, binary format is available for data storage. Files of this sort have
suffix gdtb, and they take the form of a PKZIP archive containing two files, data.xml and data.bin,
with the following characteristics.

e data.xml is an XML file conforming to the gretldata DTD mentioned above, holding all the
metadata.

e data.bin starts with a header composed of one of the strings

gretl-bin:1little-endian or
gretl-bin:big-endian

padded to 24 bytes with nul characters. This is followed by a binary dump of the data series,
by variable, as double-precision floating-point values.

Binary values are saved in the endianness of the machine on which they’re written; the header
information enables gretl to convert to the endianness of the host on which the data are read if
need be.

The rationale for introducing the binary gdtb format is that for very large datasets it is a lot faster
to write and read data in this form rather than as text. For small to moderately sized datasets
(say, up to 10 megabytes or so) there is no appreciable advantage in the binary format and we
recommend use of plain gdt.

Some illustrative timings are shown in Table A.1; these were obtained on a Lenovo ThinkPad X1 Car-
bon running gretl 1.9.15. The datasets contained a mixture of random normal series and random
binary (dummy) series. The largest comprised 50000 observations on 1000 series and the smallest
5000 observations on 250 series. As can be seen, there is a big time saving from the binary for-
mat when writing (and to a lesser extent, when reading) a dataset in the hundreds of megabytes
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range. At a size of around 10 megabytes, however, gdt files can be both written and read in under
a second, surely fast enough for most purposes.

381 MB 38 MB 19MB 10 MB
format write read write read write read write read
gdt 21.76 491 2.20 0.48 1.19 0.32 0.59 0.16
gdtb 3.82 1.10 0.39 0.11 0.25 0.06 0.13 0.03

Table A.1: Data write and read timings in seconds for datasets of various sizes in megabytes. The MB
numbers represent the size of the datasets in memory; files of both formats are substantially smaller when
compression is applied.

A.3 Native database format

A gretl database consists of two parts: an ASCII index file (with filename suffix .1idx) containing
information on the series, and a binary file (suffix .bin) containing the actual data. Two examples
of the format for an entry in the idx file are shown below:

GOM910 Composite index of 11 leading indicators (1987=100)
M 1948.01 - 1995.11 n = 575

currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128 charac-
ters). On the second line the first field is a frequency code: M for monthly, Q for quarterly, A for
annual, B for business-daily (daily with five days per week), D for 7-day daily, S for 6-day daily, U
for undated.

No other frequencies are accepted at present. Then comes the starting date (N.B. with two digits
following the point for monthly data, one for quarterly data, none for annual), a space, a hyphen,
another space, the ending date, the string “n = ” and the integer number of observations. In the
case of daily data the starting and ending dates should be given in the form YYYY-MM-DD. This
format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (up to 64 characters) on the
source and nature of the data, following a hash mark. For example:

# Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that is, single-
precision floating-point numbers, typically taking four bytes apiece. The numbers are packed “by
variable”, so that the first n numbers are the observations of variable 1, the next m the observations
on variable 2, and so on.
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Data import via ODBC

Since version 1.7.5, gretl provides a method for retrieving data from databases which support the
Open Database Connectivity (ODBC) standard. Most users won'’t be interested in this, but there may
be some for whom this feature matters a lot — typically, those who work in an environment where
huge data collections are accessible via a Data Base Management System (DBMS).

In the following section we explain what is needed for ODBC support in gretl. We provide some
background information on how ODBC works in section B.2, and explain the details of getting gretl
to retrieve data from a database in section B.3.

B.1 ODBC support

The piece of software that bridges between gretl and the ODBC system is a dynamically loaded
“plugin”. This is included in the gretl packages for MS Windows and Mac OS X (on OS X support
was added in gretl 1.9.0). On other unix-type platforms (notably Linux) you will have to build gretl
from source to get ODBC support. This is because the gretl plugin depends on having unixODBC
installed, which we cannot assume to be the case on typical Linux systems. To enable the ODBC
plugin when building gretl, you must pass the option --with-odbc to gretl’s configure script. In
addition, if unixODBC is installed in a non-standard location you will have to specify its installation
prefix using --with-0DBC-prefix, as in (for example)

./configure --with-odbc --with-ODBC-prefix=/opt/0DBC

B.2 ODBC base concepts

ODBC is short for Open DataBase Connectivity, a group of software methods that enable a client to
interact with a database server. The most common operation is when the client fetches some data
from the server. ODBC acts as an intermediate layer between client and server, so the client “talks”
to ODBC rather than accessing the server directly (see Figure B.1).

Figure B.1: Retrieving data via ODBC

For the above mechanism to work, it is necessary that the relevant ODBC software is installed
and working on the client machine (contact your DB administrator for details). At this point, the
database (or databases) that the server provides will be accessible to the client as a data source
with a specific identifier (a Data Source Name or DSN); in most cases, a username and a password
are required to connect to the data source.

Once the connection is established, the user sends a query to ODBC, which contacts the database
manager, collects the results and sends them back to the user. The query is almost invariably

393



Appendix B. Data import via ODBC 394

formulated in a special language used for the purpose, namely SQL.! We will not provide here an
SQL tutorial: there are many such tutorials on the Net; besides, each database manager tends to
support its own SQL dialect so the precise form of an SQL query may vary slightly if the DBMS on
the other end is Oracle, MySQL, PostgreSQL or something else.

Suffice it to say that the main statement for retrieving data is the SELECT statement. Within a DBMS,
data are organized in tables, which are roughly equivalent to spreadsheets. The SELECT statement
returns a subset of a table, which is itself a table. For example, imagine that the database holds a
table called “NatAccounts”, containing the data shown in Table B.1.

year qftr gdp consump tradebal
1970 1 584763 344746.9 -5891.01
1970 2 597746 350176.9 -7068.71
1970 3 604270 355249.7 -8379.27
1970 4 609706 361794.7 -7917.61
1971 1 609597 362490 -6274.3
1971 2 617002 368313.6 -6658.76
1971 3 625536 372605 —4795.89
1971 4 630047 377033.9 —6498.13

Table B.1: The “NatAccounts” table
The SQL statement

SELECT qgtr, tradebal, gdp FROM NatAccounts WHERE year=1970;

produces the subset of the original data shown in Table B.2.

qtr tradebal gdp
1 -5891.01 584763
2 -—7068.71 597746
3 —8379.27 604270
4 -7917.61 609706

Table B.2: Result of a SELECT statement

Gretl provides a mechanism for forwarding your query to the DBMS via ODBC and including the
results in your currently open dataset.

B.3 Syntax

At present gretl does not offer a graphical interface for ODBC import; this must be done via the
command line interface. The two commands used for fetching data via an ODBC connection are
open and data.

The open command is used for connecting to a DBMS: its syntax is
open dsn=database [user=username] [password=password] --odbc

The user and password items are optional; the effect of this command is to initiate an ODBC
connection. It is assumed that the machine gretl runs on has a working ODBC client installed.

In order to actually retrieve the data, the data command is used. Its syntax is:

ISee http://en.wikipedia.org/wiki/SQL.
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data series [obs-format=format-string] query=query-string --odbc
where:

series is a list of names of gretl series to contain the incoming data, separated by spaces. Note that
these series need not exist pior to the ODBC import.

format-string is an optional parameter, used to handle cases when a “rectangular” organisation of
the database cannot be assumed (more on this later);

query-string is a string containing the SQL statement used to extract the data.’

There should be no spaces around the equals signs in the obs-format and query fields in the data
command.

The query-string can, in principle, contain any valid SQL statement which results in a table. This
string may be specified directly within the command, as in

data x query="SELECT foo FROM bar" --odbc

which will store into the gretl variable x the content of the column foo from the table bar. However,
since in a real-life situation the string containing the SQL statement may be rather long, it may be
best to store it in a string variable. For example:

string Sq1Qry = "SELECT fool, foo2 FROM bar"
data x y query=SqlQry --odbc

The observation format specifier

If the optional parameter obs-format is absent, as in the above example, the SQL query should
return k columns of data, where k is the number of series names listed in the data command.
It may be necessary to include a smp1 command before the data command to set up the right
“window” for the incoming data. In addition, if one cannot assume that the data will be delivered
in the correct order (typically, chronological order), the SQL query should contain an appropriate
ORDER BY clause.

The optional format string is used for those cases when there is no certainty that the data from the
query will arrive in the same order as the gretl dataset. This may happen when missing values are
interspersed within a column, or with data that do not have a natural ordering, e.g. cross-sectional
data. In this case, the SQL statement should return a table with m + k columns, where the first m
columns are used to identify the observation or row in the gretl dataset into which the actual data
values in the final k columns should be placed. The obs-format string is used to translate the first
m fields into a string which matches the string gretl uses to identify observations in the currently
open dataset. Up to three columns can be used for this purpose (m < 3).

Note that the strings gretl uses to identify observations can be seen by printing any variable “by
observation”, as in

print index --byobs

(The series named 1index is automatically added to a dataset created via the nulldata command.)

The format specifiers available for use with obs-format are as follows:

%d print an integer value
%s print an string value
%g print a floating-point value

2Prior to gretl 1.8.8, the tag “query=" was not required (or accepted) before the query string, and only one series
could be imported at a time. This variant is still accepted for the sake of backward compatibility.
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In addition the format can include literal characters to be passed through, such as slashes or colons,
to make the resulting string compatible with gretl’s observation identifiers.

For example, consider the following fictitious case: we have a 5-days-per-week dataset, to which we
want to add the stock index for the Verdurian market;? it so happens that in Verduria Saturdays
are working days but Wednesdays are not. We want a column which does not contain data on
Saturdays, because we wouldn’t know where to put them, but at the same time we want to place
missing values on all the Wednesdays.

In this case, the following syntax could be used

string QRY="SELECT year,month,day,VerdSE FROM Almealndexes"
data y obs-format="%d/%d/%d" query=QRY --odbc

The column VerdSE holds the data to be fetched, which will go into the gretl series y. The first
three columns are used to construct a string which identifies the day. Daily dates take the form
YYYY/MM/DD in gretl. If a row from the DBMS produces the observation string 2008,/04 /01 this will
match OK (it’s a Tuesday), but 2008/04 /05 will not match since it is a Saturday; the corresponding
row will therefore be discarded. On the other hand, since no string 2008/04/23 will be found in
the data coming from the DBMS (it’'s a Wednesday), that entry is left blank in our series y.

B.4 Examples

Table Consump Table DATA
Field T

Field Type 1€ yp.e

- - year decimal(4,0)
time decimal(7,2) .

. ] qtr decimal(1,0)
income decimal(16,6)
consum decimal(16.6) varname varchar(16)

L ’ xval decimal(20,10)

Table B.3: Example AWM database - structure

Table Consump Table DATA

1970 1 CAN —517.9085000000
1970.00 424278.975500 344746.944000 13;8 ; gj:fl 1?232?2?888888
1970.25 433218.709400 350176.890400 1970 4 CAN 467 2508000000
1970.50 440954.219100 355249.672300 1970 1 COMPR 18.4000000000
1970.75 446278.664700 361794.719900 1970 2 COMPR 18.6341000000
1971.00 447752.681800 362489.970500 1970 3 COMPR 18.3000000000
1971.25 453553.860100 368313.558500 1970 4 COMPR 18.2663000000
1971.50 460115.133100 372605.015300 1970 1 DI 1.0000000000

1970 2 D1 0.0000000000

Table B.4: Example AWM database — data

In the following examples, we will assume that access is available to a database known to ODBC
with the data source name “AWM”, with username “Otto” and password “Bingo”. The database
“AWM” contains quarterly data in two tables (see B.3 and B.4):

3See http://www.almeopedia.com/index.php/Verduria.
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The table Consump is the classic “rectangular” dataset; that is, its internal organization is the same
as in a spreadsheet or econometrics package: each row is a data point and each column is a variable.
The structure of the DATA table is different: each record is one figure, stored in the column xval,
and the other fields keep track of which variable it belongs to, for which date.

Listing B.1: Simple query from a rectangular table

nulldata 160
setobs 4 1970:1 --time
open dsn=AWM user=0tto password=Bingo --odbc

string Qry = "SELECT consump, income FROM Consump"
data cons inc query=Qry --odbc

Listing B.1 shows a query for two series: first we set up an empty quarterly dataset. Then we
connect to the database using the open statement. Once the connection is established we retrieve
two columns from the Consump table. No observation string is required because the data already
have a suitable structure; we need only import the relevant columns.

Listing B.2: Simple query from a non-rectangular table

string S = "select year, qtr, xval from DATA \
where varname=’WLN’ ORDER BY year, qtr"
data wln obs-format="%d:%d" query=S --odbc

In example B.2, by contrast, we make use of the observation string since we are drawing from the
DATA table, which is not rectangular. The SQL statement stored in the string S produces a table with
three columns. The ORDER BY clause ensures that the rows will be in chronological order, although
this is not strictly necessary in this case.
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Listing B.3: Handling of missing values for a non-rectangular table

string foo = "select year, qtr, xval from DATA \
where varname=’STN’ AND qtr>1"

data bar obs-format="%d:%d" query=foo --odbc

print bar --byobs

Listing B.3 shows what happens if the rows in the outcome from the SELECT statement do not
match the observations in the currently open gretl dataset. The query includes a condition which
filters out all the data from the first quarter. The query result (invisible to the user) would be
something like

+---——- +-—-——- Fommm e +
| year | gtr | xval |
e e o +
| 1970 | 2 | 7.8705000000 |
| 1970 | 3 ] 7.5600000000 |
| 1970 | 4 | 7.1892000000 |
| 1971 | 2 | 5.8679000000 |
| 1971 | 3 | 6.2442000000 |
| 1971 | 4 | 5.9811000000 |
| 1972 | 2 | 4.6883000000 |
| 1972 | 3 ] 4.6302000000 |

Internally, gretl fills the variable bar with the corresponding value if it finds a match; otherwise, NA
is used. Printing out the variable bar thus produces

Obs bar
1970:1
1970:2 7.8705
1970:3 7.5600
1970:4 7.1892
1971:1
1971:2 5.8679
1971:3 6.2442
1971:4 5.9811
1972:1
1972:2 4.6883
1972:3 4.6302
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Building gretl

Here we give instructions detailed enough to allow a user with only a basic knowledge of a Unix-
type system to build gretl. These steps were tested on a fresh installation of Debian Etch. For other
Linux distributions (especially Debian-based ones, like Ubuntu and its derivatives) little should
change. Other Unix-like operating systems such as Mac OS X and BSD would probably require more
substantial adjustments.

In this guided example, we will build gretl complete with documentation. This introduces a few
more requirements, but gives you the ability to modify the documentation files as well, like the
help files or the manuals.

C.1 Installing the prerequisites
We assume that the basic GNU utilities are already installed on the system, together with these
other programs:

o some TpX/KTEXsystem (tex11ive will do beautifully)
e Gnuplot

e ImageMagick

We also assume that the user has administrative privileges and knows how to install packages. The
examples below are carried out using the apt-get shell command, but they can be performed with
menu-based utilities like aptitude, dselect or the GUI-based program synaptic. Users of Linux
distributions which employ rpm packages (e.g. Red Hat/Fedora, Mandriva, SuSE) may want to refer
to the dependencies page on the gretl website.

The first step is installing the C compiler and related basic utilities, if these are not already in place.
On a Debian (or derivative) system, these are contained in a bunch of packages that can be installed
via the command

apt-get install gcc autoconf automakel.9 1ibtool flex bison gcc-doc \
Tibc6-dev Tibc-dev gfortran gettext pkgconfig

Then it is necessary to install the “development” (dev) packages for the libraries that gretl uses:
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Library command

GLIB apt-get install Tibglib2.0-dev
GTK 3.0 apt-get install 1libgtk3.0-dev
PNG apt-get install Tibpngl2-dev
XSLT apt-get install Tibxsltl-dev
LAPACK apt-get install liblapack-dev
FFTW apt-get install Tibfftw3-dev
READLINE apt-get install libreadline-dev
ZLIB apt-get install zliblg-dev

XML apt-get install Tibxml2-dev
GMP apt-get install 1ibgmp-dev
CURL apt-get install libcurl4-gnutls-dev
MPFR apt-get install Tibmpfr-dev

It is possible to substitute GTK 2.0 for GTK 3.0. The dev packages for these libraries are necessary
to compile gretl—you’ll also need the plain, non-dev library packages to run gretl, but most of
these should already be part of a standard installation. In order to enable other optional features,
like audio support, you may need to install more libraries.

= The above steps can be much simplified on Linux systems that provide deb-based package managers,
such as Debian and its derivatives (Ubuntu, Knoppix and other distributions). The command

apt-get build-dep gretl

will download and install all the necessary packages for building the version of gretl that is currently present
in your APT sources. Techincally, this does not guarantee that all the software necessary to build the git
version is included, because the version of gretl on your repository may be quite old and build requirements
may have changed in the meantime. However, the chances of a mismatch are rather remote for a reasonably
up-to-date system, so in most cases the above command should take care of everything correctly.

C.2 Getting the source: release or git

At this point, it is possible to build from the source. You have two options here: obtain the
latest released source package, or retrieve the current git version of gretl (git = the version control
software currently in use for gretl). The usual caveat applies to the git version, namely, that it may
not build correctly and may contain “experimental” code; on the other hand, git often contains
bug-fixes relative to the released version. If you want to help with testing and to contribute bug
reports, we recommend using git gretl.

To work with the released source:

1. Download the gretl source package from gretl.sourceforge.net.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar xvf] gretl-N.tar.xz (replace N with the specific version number of the file
you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gret1-1.10.2).

4. Proceed to the next section, “Configure and make”.

To work with git you’ll first need to install the git client program if it’s not already on your sys-
tem. Relevant resources you may wish to consult include the main git website at git-scm.com and
instructions specific to gretl: gretl git basics.
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When grabbing the git sources for the first time, you should first decide where you want to store
the code. For example, you might create a directory called git under your home directory. Open a
terminal window, cd into this directory, and type the following commands:

git clone git://git.code.sf.net/p/gretl/git gretl-git

At this point git should create a subdirectory named gretl1-git and fill it with the current sources.

When you want to update the source, this is very simple: just move into the gretl1-git directory
and type

git pull

Assuming you’re now in the gretl1-git directory, you can proceed in the same manner as with the
released source package.

C.3 Configure the source

The next command you need is . /configure; this is a complex script that detects which tools you
have on your system and sets things up. The configure command accepts many options; you may
want to run

./configure --help

first to see what options are available. One option you way wish to tweak is --prefix. By default
the installation goes under /usr/Tocal but you can change this. For example

./configure --prefix=/usr

will put everything under the /usr tree.

If you have a multi-core machine you may want to activate support for OpenMP, which permits the
parallelization of matrix multiplication and some other tasks. This requires adding the configure
flag

--enable-openmp

By default the gretl GUI is built using version 3.0 of the GTK library, if available, otherwise version
2.0. If you have both versions installed and prefer to use GTK 2.0, use the flag

--enable-gtk?2

In order to have the documentation built, we need to pass the relevant option to configure, as in

--enable-build-doc

But please note that this option will work only if you are using the git source.

=¥ |n order to build the documentation, there is the possibility that you will have to install some extra software
on top of the packages mentioned in the previous section. For example, you may need some extra BTgX
packages to compile the manuals. Two of the required packages, that not every standard BTgX installation
include, are typically pifont.sty and appendix.sty. You could install the corresponding packages from your
distribution or you could simply download them from CTAN and install them by hand.

This, for example, if you want to install under /usr, with OpenMP support, and also build the
documentation, you would do
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./configure --prefix=/usr \
--enable-openmp \
--enabTle-build-doc

You will see a number of checks being run, and if everything goes according to plan, you should
see a summary similar to that displayed in Listing C.1.

Listing C.1: Sample output from ./configure

Configuration:

Installation path: /usr
Use readline library: yes
Use gnuplot for graphs: yes
Use LaTeX for typesetting output: yes
Use 1ibgsf for zip/unzip: no
sse2 support for RNG: yes
OpenMP support: yes
MPI support: no
AVX support for arithmetic: no
Build with GTK version: 2.0
Build gretl documentation: yes
Use Lucida fonts: no
Build message catalogs: yes
X-12-ARIMA support: yes
TRAMO/SEATS support: yes
TibR support: yes
ODBC support: no
Experimental audio support: no
Use xdg-utils in installation: if DESTDIR not set

LAPACK Tibraries:
-Tlapack -Tblas -Tgfortran

Now type ’'make’ to build gretl.
You can also do ’make pdfdocs’ to build the PDF documentation.

== |f you're using git, it’s a good idea to re-run the configure script after doing an update. This is not always
necessary, but sometimes it is, and it never does any harm. For this purpose, you may want to write a little
shell script that calls configure with any options you want to use.

C.4 Build and install

We are now ready to undertake the compilation proper: this is done by running the make command,
which takes care of compiling all the necessary source files in the correct order. All you need to do
is type

make

This step will likely take several minutes to complete; a lot of output will be produced on screen.
Once this is done, you can install your freshly baked copy of gretl on your system via

make install
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On most systems, the make install command requires you to have administrative privileges.
Hence, either you log in as root before launching make install or you may want to use the sudo
utility, as in:

sudo make install

Now try if everything works: go back to your home directory and run gretl

cd ~
gretl &

If all is well, you ought to see gretl start, at which point just exit the program in the usual way. On
the other hand, there is the possibility that gretl doesn’t start and instead you see a message like

/usr/local/bin/gret1_x11: error while loading shared Tibraries:
Tibgret1-1.0.s0.0: cannot open shared object file: No such file or directory

In this case, just run
sudo ldconfig

The problem should be fixed once and for all.
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Numerical accuracy

Gretl uses double-precision arithmetic throughout—except for the multiple-precision plugin in-
voked by the menu item “Model, Other linear models, High precision OLS” which represents floating-
point values using a number of bits given by the environment variable GRETL_MP_BITS (default
value 256).

The normal equations of Least Squares are by default solved via Cholesky decomposition, which
is highly accurate provided the matrix of cross-products of the regressors, X'X, is not very ill
conditioned. If this problem is detected, gretl automatically switches to use QR decomposition.

The program has been tested rather thoroughly on the statistical reference datasets provided by
NIST (the U.S. National Institute of Standards and Technology) and a full account of the results may
be found on the gretl website (follow the link “Numerical accuracy”).

To date, two published reviews have discussed gretl’s accuracy: Giovanni Baiocchi and Walter Dis-
taso (2003), and Talha Yalta and Yasemin Yalta (2007). We are grateful to these authors for their
careful examination of the program. Their comments have prompted several modifications includ-
ing the use of Stephen Moshier’s cephes code for computing p-values and other quantities relating
to probability distributions (see netlib.org), changes to the formatting of regression output to en-
sure that the program displays a consistent number of significant digits, and attention to compiler
issues in producing the MS Windows version of gretl (which at one time was slighly less accurate
than the Linux version).

Gretl now includes a “plugin” that runs the NIST linear regression test suite. You can find this
under the “Tools” menu in the main window. When you run this test, the introductory text explains
the expected result. If you run this test and see anything other than the expected result, please
send a bug report to cottrell@wfu.edu.

All regression statistics are printed to 6 significant figures in the current version of gretl (except
when the multiple-precision plugin is used, in which case results are given to 12 figures). If you
want to examine a particular value more closely, first save it (for example, using the genr command)
then print it using printf, to as many digits as you like (see the Gretl Command Reference).
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Related free software

Gretl’s capabilities are substantial, and are expanding. Nonetheless you may find there are some
things you can’t do in gretl, or you may wish to compare results with other programs. If you are
looking for complementary functionality in the realm of free, open-source software we recommend
the following programs. The self-description of each program is taken from its website.

e GNU R r-project.org: “R is a system for statistical computation and graphics. It consists of
a language plus a run-time environment with graphics, a debugger, access to certain system
functions, and the ability to run programs stored in script files... It compiles and runs on a
wide variety of UNIX platforms, Windows and MacOS.” Comment: There are numerous add-on
packages for R covering most areas of statistical work.

¢ GNU Octave www.octave.org: “GNU Octave is a high-level language, primarily intended for
numerical computations. It provides a convenient command line interface for solving linear
and nonlinear problems numerically, and for performing other numerical experiments using
a language that is mostly compatible with Matlab. It may also be used as a batch-oriented
language.”

e Julia julialang.org: “Julia is a high-level, high-performance dynamic programming language
for technical computing, with syntax that is familiar to users of other technical computing
environments. It provides a sophisticated compiler, distributed parallel execution, numerical
accuracy, and an extensive mathematical function library.”

e JMulTi www.jmulti.de: “JMulTi was originally designed as a tool for certain econometric pro-
cedures in time series analysis that are especially difficult to use and that are not available
in other packages, like Impulse Response Analysis with bootstrapped confidence intervals for
VAR/VEC modelling. Now many other features have been integrated as well to make it possi-
ble to convey a comprehensive analysis.” Comment: JMulTi is a java GUI program: you need
a java run-time environment to make use of it.

As mentioned above, gretl offers the facility of exporting data in the formats of both Octave and
R. In the case of Octave, the gretl data set is saved as a single matrix, X. You can pull the X matrix
apart if you wish, once the data are loaded in Octave; see the Octave manual for details. As for R,
the exported data file preserves any time series structure that is apparent to gretl. The series are
saved as individual structures. The data should be brought into R using the source() command.

In addition, gretl has a convenience function for moving data quickly into R. Under gretl’s “Tools”
menu, you will find the entry “Start GNU R”. This writes out an R version of the current gretl
data set (in the user’s gretl directory), and sources it into a new R session. The particular way
R is invoked depends on the internal gretl variable Rcommand, whose value may be set under the
“Tools, Preferences” menu. The default command is RGui .exe under MS Windows. Under X it is
xterm -e R. Please note that at most three space-separated elements in this command string will
be processed; any extra elements are ignored.
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Appendix F

Listing of URLs

Below is a listing of the full URLs of websites mentioned in the text.

Estima (RATS) http://www.estima.com/

FFTW3 http://www.fftw.org/

Gnome desktop homepage http://www.gnome.org/

GNU Multiple Precision (GMP) library http://gmplib.org/

CURL library http://curl.haxx.se/Tibcurl/

GNU Octave homepage http://www.octave.org/

GNU R homepage http://www.r-project.org/

GNU R manual http://cran.r-project.org/doc/manuals/R-intro.pdf
Gnuplot homepage http://www.gnuplot.info/

Gnuplot manual http://ricardo.ecn.wfu.edu/gnuplot.html

Gretl data page http://gretl.sourceforge.net/greti_data.htm]l

Gretl homepage http://gretl.sourceforge.net/

GTK+ homepage http://www.gtk.org/

GTK+ port for win32 http://www.gimp.org/~tml/gimp/win32/

InfoZip homepage http://www.info-zip.org/pub/infozip/zlib/
JMulTi homepage http://www.jmulti.de/

JRSoftware http://www.jrsoftware.org/

Julia homepage http://julialang.org/

Mingw (gcc for win32) homepage http://www.mingw.org/

Minpack http://www.netlib.org/minpack/

Penn World Table http://pwt.econ.upenn.edu/

Readline homepage http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
Readline manual http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Xmlsoft homepage http://xmlsoft.org/
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