
Gretl + MPI

Allin Cottrell
Department of Economics

Wake Forest University

Riccardo (Jack) Lucchetti
Dipartimento di Scienze Economiche e Sociali

Università Politecnica delle Marche

May, 2019

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see http://www.gnu.org/licenses/fdl.html).

http://www.gnu.org/licenses/fdl.html

CONTENTS i

Contents

1 Readership 1

2 What is MPI? 1

3 Modes of parallelization 1

4 How do I set this up? 1

5 How do I actually use this? 2

6 Performance hints 7

7 Random number generation 8

8 Printing output 8

9 Platform specifics 9

10 MPI dependency questions 10

11 Illustration: bootstrap 12

12 Illustration: ML estimation 15

1 READERSHIP 1

1 Readership

You may be interested in this document if you have some large, time-consuming computational
tasks that could benefit from parallelization, and you’re willing to learn about a paradigm that
allows you to take control over the division of labor by cores on a given machine, or by machines
on a network, using gretl.

2 What is MPI?

To get the full story, see open-mpi.org or mpich.org; here we just describe the basics as they
apply to gretl. MPI (Message Passing Interface) is a de facto standard that supports running a given
(C or Fortran) program simultaneously on several cores in a given computer and/or on several
networked computers. MPI provides means for dividing labor among the multiple nodes and for
communicating data between them. It thereby supports a very flexible sort of parallelism.

It is important to understand that (in the simplest variant, at any rate) each MPI process or node
(a) is running exactly the same program, but (b) has its own local copy of all data. This is known as
SPMD (Single Program, Multiple Data). Since you’re unlikely to want to generate n identical copies of
a given set of results, doing something interesting with MPI requires that you implement a division
of labor, which will also generally involve sending data between processes. We explain how this is
done via gretl in section 5 below.

3 Modes of parallelization

Support for parallelization via OpenMP has for several years been an option when building gretl,
and it is present in the gretl packages for MS Windows. But although MPI and OpenMP are both in
the business of parallelization, they operate at different levels and have different characteristics.
For one thing, OpenMP is limited to multi-threading on a given (multi-core) machine whereas MPI
is capable of operating across machines (e.g. in a “cluster”). Beyond that, there’s a fundamental
architectural difference. With OpenMP, all data is in common between the threads unless you
specifically mark certain variables as “private”, while with MPI all data is private to the given process
unless you specifically request that it be sent between processes somehow or other.

This means that OpenMP lends itself to what we might call “fine-grained” parallelization, where rela-
tively few variables have to be marked as private or local. A classic example is matrix multiplication,
where only the row and column indices have to be “thread-local”. Use of OpenMP tends to become
unwieldy for larger problems where many variables must be localized to prevent the threads from
over-writing each others’ calculations. Conversely, MPI lends itself to relatively “coarse-grained”
parallelization, where each process can get on with its share of a complex job using its own copy
of the relevant data.1

In practical terms, while it would be very difficult to allow the gretl user to control the details of
OpenMP threading via hansl scripting it is not too hard to enable user-level control over MPI. A fur-
ther practical point regarding the relationship between MPI and OpenMP is discussed in section 6.1.

4 How do I set this up?

As of this writing you can make use of MPI in gretl only by building gretl from the git sources
yourself (on Linux), by using a recent release or snapshot (on MS Windows), or by using a current
snapshot (on Mac OS X). You will also need to have a suitable MPI package installed. See also
section 9 below.

Running an MPI-enabled program—such as the new gretlmpi, described below—requires a special
launcher, mpiexec. This is supplied by MPI packages, the best known of which are Open MPI, MPICH

1For anyone who wants to learn more about the various methods and forms of parallelization, a good reference is
https://computing.llnl.gov/tutorials/parallel_comp/.

open-mpi.org
mpich.org
https://computing.llnl.gov/tutorials/parallel_comp/

5 HOW DO I ACTUALLY USE THIS? 2

and Microsoft’s MS-MPI.2

At a general level, if you want to run MPI-enabled gretl on multiple hosts you will need to install
both gretl and MPI on all of them. You will also need to set up a suitable login infrastructure (e.g.
by putting your RSA public key in the right place on each host, for ssh connectivity). We won’t go
into that here; see the MPI documentation (available at the sites mentioned in section 2) for details.
Running MPI-enabled gretl on a single machine is more straightforward.

5 How do I actually use this?

5.1 Establishing a hosts file

If you plan to use MPI-enabled software across multiple machines, you will probably want to estab-
lish a plain text file that tells MPI what hosts and/or cores are available for use. The basic syntax
of this file is simple: it contains one or more hosts (specified by name or by IP number), each on
a separate line. The syntax for specifying the number of cores or threads available on each host
differs slightly between MPI variants: Open MPI wants slots=n (where n is the number of threads)
following the hostname, MPICH wants :n “stuck onto” the hostname, and MS-MPI wants plain n
separated from the hostname with a space. So the line for a machine myhost.mydomain with 4
cores would have the following variants:

Open MPI
myhost.mydomain slots=4
MPICH
myhost.mydomain:4
MS-MPI
myhost.mydomain 4

It doesn’t matter what the hosts file is called; you will supply its name when needed, as described
below. Note, however, that such a file is not required if you’re just running a program on multiple
cores on a single local machine; in fact it is recommended that you do not use one.

5.2 Running gretlmpi directly

As mentioned above, a special launcher is required to run an MPI-enabled program. Under Open
MPI a simple invocation of gretlmpi might look like this

mpiexec -n 4 gretlmpi myscript.inp

Following the -n tag you specify the number of processes to be run; then comes the name of the
MPI program, gretlmpi (give a full path if necessary); then the name of the script to execute. Note
that gretlmpi runs in batch mode only (not interactively) and the -b flag that would be have to be
passed to gretlcli for batch-mode operation is not required.

One relevant command-line option for gretlmpi may be inserted before the name of the script file,
namely --single-rng (or -s).3 The effect of this is explained in section 7.

If you are using a hosts file the Open MPI command line might look like the following, where you
give the path to your file following the --hostfile tag:

mpiexec --hostfile mpi.hosts -n 16 gretlmpi myscript.inp

Command-line syntax differs slightly across mpiexec implementations. In place of Open MPI’s --
hostfile tag you would use -machinefile with MPICH, or /machinefile with MS-MPI. Also under
MS-MPI you should use /np for the number of processes option.

2MPI-enabled programs are compiled with a special compiler-wrapper, mpicc, which is supplied by both Open MPI and
MPICH. You will need mpicc only if you are building MPI-enabled gretl from the C sources yourself.

3For a complete listing of program options, do gretlmpi --help.

5 HOW DO I ACTUALLY USE THIS? 3

The mpiexec program supports several additional options not discussed here; see the documenta-
tion for your MPI implementation for details. We do, however, discuss a further question concerning
the mpiexec command line in section 6.1.

5.3 Running gretlmpi indirectly

Rather than invoking gretlmpi directly from the command line you can have gretl invoke it for
you. To signal this you need to construct an MPI command block of the form mpi . . . end mpi, as
elaborated in section 5.7. (Note that this is not required if you invoke gretlmpi directly; in that
case the entire script is automatically an “MPI block”.)

Certain aspects of the MPI setup on your system can be specified in a new tab labeled MPI in the
gretl preferences dialog (under Tools, Preferences, General in the GUI program), as follows:

• The path to your MPI hosts file, if applicable (see section 5.1). This can also be set via the
environment variable GRETL_MPI_HOSTS.

• The full path to the mpiexec binary. It should be necessary to set this only if mpiexec is not
in your PATH.

• The type of your MPI installation, Open MPI or MPICH.4

These settings are recorded in the per-user gretl configuration file, and they are picked up if you
execute a script containing an mpi block in either the GUI program or gretlcli.

5.4 Why do we need a new program?

That is, why can’t we just produce MPI-enabled versions of the “traditional” gretl command-line
and GUI programs?

Well, given the design of MPI this is not so easy. For one thing, as we’ve noted, running an MPI-
enabled program requires a special launcher which might not be available on all systems. For
another, an MPI-enabled program must initialize the MPI system right away, on pain of invoking
undefined behavior. Most of the time most users of gretl will have no need for MPI parallelization.
The easiest approach is to limit the use of MPI to the loci where we know it’s really wanted by
running a distinct program—and it’s best for you that we don’t occupy all your cores or network
hosts with running multiple copies of what’s really single-threaded code.

5.5 A few MPI concepts

Before getting into the relevant hansl commands and functions it may be worth outlining some of
the basic ideas that they implement.

Suppose you launch an MPI program with n processes (meaning that n instances of the program
are run). Each process has an ID number, or “rank” in MPI parlance. This is zero-based, so the ranks
range from 0 to n− 1. To get a useful division of labor going you can

• explicitly condition on rank, and/or

• arrange to give the processes different data to work on.

Many tasks that are suitable for parallelization via MPI involve a preparation phase and/or a final
phase which are conceptually single-threaded. In that case you would condition on rank such that
these phases are carried out by a single process. It is a common convention (though not required)
that the process with rank 0 does this sort of work. The overall structure of such a program might
then look like this:

4On MS Windows, only MS-MPI is currently supported by gretl.

5 HOW DO I ACTUALLY USE THIS? 4

1. Process 0 does some preliminary work.

2. Process 0 sends data to all processes.

3. All processes do some work in parallel.

4. Process 0 collects the results.

5. Process 0 does some final work, if required.

Consider step 2 above: depending on the nature of the task, we may want process 0 to send the
same data to all processes (broadcast the data) and/or send a share of the data to each process
(scatter the data). There may be several data items to be transmitted, some of which should be
broadcast (e.g. each process gets a copy of an initial parameter vector) and others scattered (e.g.
each process gets a chunk of the observations on some variables of interest). Broadcast and scatter
are basic MPI ideas, implemented in hansl via the mpibcast and mpiscatter functions.

Now consider step 4 above. Again depending on the task in hand, we may want process 0 to reduce
information from all processes (e.g. form the sum of n values) and/or to concatenate or gather
results (e.g. form a big matrix by stacking rows from all processes). Reduce and gather are also
basic MPI ideas; they are implemented jointly in hansl’s mpireduce.

The procedures just mentioned—broadcast, scatter, reduce and gather—are all multilateral. The
functions that implement them must be called by all processes (that is, calls to these functions
must occur in a common block of the MPI program, outside of any conditioning on rank). In each
of them, one process plays a special role and is known as “root”: the root process is the source
of the original data in broadcast and scatter, and the recipient of consolidated data in reduce and
gather. There’s no requirement that root be process 0, and moreover there’s no requirement that
the root process be the same in each call to such procedures; nonetheless, a common simple case
is that root is always process 0, and that is the default assumption in hansl.

Besides multilateral data transfer, MPI also supports the bilateral procedures send and receive: in
the former a given process supplies some data and specifies a process to which it should be sent;
in the latter a given process requests data from another specified process. These procedures must
be suitably paired: e.g. process k issues a send to process j while process j calls for a receive from
process k. Such calls must occur in a block of the program that is conditional on process rank.

5.6 What goes in an MPI-type hansl script?

In a hansl script to be executed via gretlmpi—as also in the context of an MPI command block in
a “regular” hansl script—you have access to all the standard gretl commands and functions, plus
some extra ones.

First, you have these two new accessors:

$mpirank gives the MPI rank of “this” process

$mpisize gives the number of processes or size of the MPI “world”

Note that when gretl is not in MPI mode $mpirank returns −1 and $mpisize returns 0.

To shunt data around between the processes you have the following functions:

scalar mpisend(object x, int dest) send object x to node dest

object mpirecv(int src) receive an object from node src

scalar mpibcast(object *x [,int root]) broadcast object x

scalar mpireduce(object *x, string op [,int root]) reduce object x via op

scalar mpiallred(object *x, string op) reduce object x via op, all nodes

scalar mpiscatter(matrix *m, string op [,int root]) scatter matrix m using op

5 HOW DO I ACTUALLY USE THIS? 5

By “object” above we mean (at present) a matrix, scalar or bundle (however, for bundles only mp-
isend, mpirevc and mpibcast are supported). The scalar return value from these functions (apart
from mpirecv, which returns a matrix, bundle or scalar depending on the context) is merely nom-
inal: they return 0 if they succeed. The root argument to mpibcast, mpireduce and mpiscatter
is optional, and defaults to 0; the use of this argument is discussed below.

As you might expect, mpisend and mpirecv have to be paired suitably, as in the following fragment
which sends a matrix from the process with rank 2 to the one with rank 3.

if $mpirank == 2
matrix C = cholesky(A)
mpisend(C, 3)

elif $mpirank == 3
matrix C = mpirecv(2)

endif

The functions mpibcast, mpireduce, mpiallred and mpiscatter must be executed by all pro-
cesses. It follows that the object whose address is passed to these functions must be previously
declared in all processes. Calls to these multilateral functions don’t have to be paired with anything
since they inherently handle both transmission and reception of data.

The mpibcast function sends data from the root process to all processes. Here’s a simple example:

matrix X
if $mpirank == 0
X = mnormal(T, k)

endif
mpibcast(&X)

After successful completion of the above fragment, each process will have a copy of the matrix X
as defined in the process with rank 0.

The mpireduce function gathers objects of a given name from all processes and “reduces” them
to a single object at the root node. The op argument specifies the reduction operation or method.
The methods currently supported for scalars are sum, prod (product), max and min. For matrices
the methods are sum, prod (Hadamard product), hcat (horizontal concatenation) and vcat (vertical
concatenation). Reduction is not supported for bundles at present. For example:

matrix X
X = mnormal(T, k)
mpireduce(&X, sum)

After successful completion of the above, the root process will have a matrix X which is the sum
of the matrices X at all processes. Note that the matrices at all processes other than root remain
unchanged. If you want the “reduced” variable to replace the original at all ranks you can use
mpiallred: this is equivalent to, but more efficient than, following mpireduce with a call to mpib-
cast.

The mpiscatter function is used to distribute chunks of a specified matrix in the root process to
all processes. The op argument must be either byrows or bycols. Let q denote the quotient of
the number of rows in the matrix to be scattered and the number of processes. In the byrows case
root sends the first q rows to process 0, the next q to process 1, and so on. If there is a remainder
from the division of rows it is added to the last allotment. The bycols case is exactly analogous
but splitting of the matrix is by columns. For example:

matrix X
if $mpirank == 0
X = mnormal(10000, 10)

endif
mpiscatter(&X, byrows)

5 HOW DO I ACTUALLY USE THIS? 6

If there are 4 processes, each one (including root) will each get a 2500× 10 share of the original X
as it existed in the root process. If you want to preserve the full matrix in the root process, it is
necessary to make a copy of it before calling mpiscatter.

The optional trailing root argument to the functions mpibcast, mpireduce and mpiscatter can
be used to depart from the default assumption that root is always process 0. For example, if you
want process 8 to broadcast a random matrix to all processes:

matrix X
if $mpirank == 8
X = mnormal(T, k)

endif
mpibcast(&X, 8)

Readers who are familiar with MPI will see that what we’re offering via hansl is a simplified version
of (a subset of) the MPI interface. The main simplification is that the MPI “communicator” is hard-
wired as MPI_COMM_WORLD and so all processes are members of a single group.

5.7 Use of an MPI block

As mentioned earlier, an MPI block (mpi . . . end mpi) is a means of embedding commands to be
executed by gretlmpi in a larger script to be executed in the usual way by gretlcli or the GUI
program.5 In this context gretl takes charge of invoking mpiexec with appropriate parameters.

The structure here is very similar to that of gretl’s foreign command-block: gretl takes the state-
ments from within the block in question, sends them for execution by another program, and then
displays the results. As with foreign, variables defined within the calling gretl process are not
immediately available in the called program, and vice versa. To send data to, or retrieve results
from, gretlmpi you need to use suitable input/output, for instance via the functions mwrite and
mread or bwrite and bread. In the context of an MPI block you can also use the store and open
commands to communicate a dataset.

The gretl mpi command supports five options, as follows.

--np=n specify the number of MPI processes

--omp-threads=m specify the number of OpenMP threads per process

--send-functions share function definitions with gretlmpi

--local ignore MPI hosts file, if present

--single-rng use a single pseudo-random number generator

The --np option plays the same role as the -n tag in use of mpiexec (section 5.2); it governs the
number of processes to be launched. If this option is not given, the default is to use all available
processors on the local machine, or all entries in the MPI hosts file if that has been specified.

The --omp-threads option is applicable only if gretl is built with support for OpenMP: it governs
the maximum number of OpenMP threads that will be permitted per MPI process. See section 6.1
for an account of why and when you might want to use this option.

The effect of the --send-functions option is to send to gretlmpi the definitions of any hansl
functions present in the workspace of the calling gretl process. (It’s OK to define functions within
an mpi block, but in some cases it may be more convenient to define functions at the “main” script
level and pass them on.)

The --local option can be used if you have specified a hosts file (see sections 5.1 and 5.3) but in
the current context you want the MPI processes to be run on the local machine only.

5Note that an error is flagged if the mpi command is encountered in a script being executed directly via gretlmpi,
since this would amount to an attempt at a duplicate initialization of MPI.

6 PERFORMANCE HINTS 7

The --single-rng option is explained in section 7.

See section 11 for a complete example of a gretl script that uses an mpi block.

6 Performance hints

To get best performance from an MPI-enabled hansl script you need to pay careful attention to
certain points. We give a brief account of three relevant issues below. Some of the points mentioned
here are taken up in relation to specific examples in sections 11 and 12.

6.1 Contention between MPI and OpenMP

As we mentioned in section 3, MPI and OpenMP work at different levels. They are in principle
complementary. For example, one might effect a “macro” division of labor across chunks of a
dataset via MPI, while at the same time allowing each MPI process to spawn a number of OpenMP
threads for more “micro” parallelization in tasks such as multiplying matrices. However, given
finite computational resources the two modes of parallelization become substitutes at the margin.

Let ni denote the number of MPI processes running on a given host, and mi the maximum number
of OpenMP threads permitted per process on the host. If the product nimi exceeds the total
number of threads supported by the machine you are liable to get a drastic slowdown, possibly a
collapse below the speed of simple single-threaded execution.

It is therefore necessary to budget the use of MPI processes and OpenMP threads. Suppose, for
example, you’re running a gretl/MPI script on a single machine that supports a maximum of 8
threads. To avoid excessive contention you will want to ensure that nimi ≤ 8. Exactly how you do
this depends on whether you are running gretlmpi yourself (section 5.2) or having gretl run it for
you via an mpi block (section 5.7).

When launching gretlmpi yourself you can use the environment variable OMP_NUM_THREADS to
limit the number of OpenMP threads that can be used by each process. Here are two examples
which limit the total usage of threads to 8 in different ways:

give all threads to MPI
OMP_NUM_THREADS=1 mpiexec -n 8 gretlmpi myscript.inp
divide the resources between MPI and OpenMP
OMP_NUM_THREADS=2 mpiexec -n 4 gretlmpi myscript.inp

In the context of an mpi block you can use the --omp-threads option at the close of the block to
set the maximum number of OpenMP threads—the effect is that gretl sets OMP_NUM_THREADS to
your specification when calling gretlmpi. Note, however, that when executing an mpi block gretl
sets OMP_NUM_THREADS to 1 by default. It should be necessary to use this option, therefore, only if
you want to permit more than one thread per MPI process.

Some experimentation may be necessary to arrive at the optimal budget. See section 11 for an
illustration.

6.2 Hyper-threading: help or hindrance?

Current Intel consumer CPUs typically have a certain number of actual cores but support twice that
number of threads via so-called hyper-threading. This raises the question: when you are figuring
the resources available to support MPI processes and/or OpenMP should you think in terms of
cores or threads, when you have more of the latter than the former?

It depends on the nature of the task in question. Roughly speaking, if a script invokes a lot of
“tightly written” C code, capable of driving a machine’s cores to their limit, then hyper-threading
may actually slow things down. On the other hand, if the invoked code is “looser”, hyper-threading
can help.

7 RANDOM NUMBER GENERATION 8

How can you know what sort of C code a given script invokes? Well, if the script does a lot of
matrix multiplication it’s probably in the “tight” category but other than that it’s not so easy to say.
It may be necessary to experiment to find the optimum—that is, to determine if you should limit
yourself to the number of available cores or run the maximum number of threads.

6.3 Data transfer in MPI

The transfer of data between processes is likely to be a relatively slow phase of an MPI program
(particularly if it’s taking place between hosts across a network rather than within a single ma-
chine). The data-transfer functions discussed in section 5.6 are “blocking” operations; that is, no
participating process can move on until the function has finished executing in all the participants.
It’s therefore important to think carefully about what information is really needed where and when,
and to keep transfers to the minimum consistent with the goal of the program.

7 Random number generation

One issue that arises in the MPI context is the distributed generation of pseudo-random sequences.
If each of several processes simply uses the same PRNG with a different seed, this can end up
producing sequences with arbitrary dependency. For this reason, in gretl/MPI we use by default the
DCMT mechanism (Dynamic Creation of Mersenne Twisters) so that each MPI process gets its own,
independent PRNG.6

However, there are some cases in which you may not wish to use DCMT. The task handed to MPI may
be such that the several processes are required to produce identical pseudo-random sequences (and
then, presumably, do something different with them). Or you may have an MPI-enabled script in
which all use of the PRNG occurs in a single process (so you don’t have to worry about independence
of generators): if you want to get the same results as you would from a single-threaded variant of
the script, for a given seed, you need to use gretl’s regular PRNG.

You can get gretl to use a single PRNG, of the type used in non-MPI scripts, in various ways depend-
ing on the context. If you’re running gretlmpi yourself, you can use the command-line option
--single-rng. This option flag can also be attached to the start or end of an mpi command block,
with the same effect. Alternatively, you can manipulate the state variable use_dcmt via the set
command, as in

set use_dcmt off

Using this method gives you more flexibility (you can switch back and forth between the types of
generator if need be). However, if you know in advance that you have no need for DCMT it is more
efficient to use the --single-rng option.

Script 1 illustrates. As written, it will print n identical matrices, but if you comment out the
command set use_dcmt off the matrices will all be different.

8 Printing output

Another point to note about MPI is that since each process does its own thing in parallel, the result
of a print command that is common to all processes is likely to be messy: lines of output may be
interleaved. To ensure a coherent print-out it’s necessary to send the results to a single process
first. This is illustrated in Script 1: instead of each rank printing its own random matrix, rank 0
collects them all and prints them in sequence.

The usual default behavior when gretl is executing a script is that the input commands are echoed
in the output, and various confirmatory messages are printed (e.g. “Generated matrix m”). To get
quieter behavior you can issue the commands set echo off and/or set messages off. When

6See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html

9 PLATFORM SPECIFICS 9

Listing 1: Generating identical sequences

set use_dcmt off
set seed 12337
matrix X = mnormal(3,3)
if $mpirank > 0
send matrix to node 0
mpisend(X, 0)

else
printf "root, my matrix\n%#13.7g\n", X
scalar n = $mpisize - 1
loop i=1..n -q
Xi = mpirecv(i)
printf "matrix from rank %d\n%#13.7g\n", i, Xi

endloop
endif

gretlmpi is executing a script the default is reversed: echo and messages are both turned off but
you can use the set command to turn them on.

9 Platform specifics

9.1 Linux

To enable MPI support on Linux at present you have to install an MPI package first, then build gretl
from the git sources. (Hopefully this will be handled by the Linux distributions before long.)

It’s straightforward to install one of the open-source MPI implementations on a Linux system using
your distribution’s package manager. We currently recommend Open MPI, since that is what we’ve
mostly used in testing, but MPICH should also work fine. Here are three variants of the required
command:

Debian-based systems
apt-get install libopenmpi-dev
Fedora
yum install openmpi
Arch
pacman -S openmpi

Once MPI is installed it should probably be found automatically by gretl’s configure script. If need
be you can give the process some help. For instance, if Open MPI is installed under /opt/openmpi
you might do

--with-mpi-lib=/opt/openmpi/lib
--with-mpi-include=/opt/openmpi/include

(see ./configure --help). You can also set the path to the MPI compiler-wrapper, mpicc, via the
environment variable MPICC if need be, as in

MPICC=/opt/openmpi/bin/mpicc ./configure ...

Note that if MPI is auto-detected but you don’t want to use it you can give the option

--without-mpi

10 MPI DEPENDENCY QUESTIONS 10

when configuring the build.

9.2 MS Windows

Microsoft has its own MPI implementation for Windows, MS-MPI, which is available as a free down-
load via

http://www.microsoft.com/en-us/download/details.aspx?id=41634

The current releases (and snapshots) for Windows (both 32- and 64-bit) provide support for this.7

When you run the MS-MPI installer this automatically adds the relevant directory to your path, and
you should be good to go. Note, however that if you’re running MPI on multiple machines (or even
if you’re just running on a single machine but are using a hosts file) you may have to start the
“daemon” program smpd.exe first. You can do that by going to the Windows Start menu, selecting
Run. . . and typing

smpd -d

(This opens a console window, which you can just minimize to get it out of the way.)

9.3 Mac OS X

At present gretl’s MPI support is enabled only in the quartz (Intel 64-bit) snapshot.

There’s some history here: up to version 10.6 of OS X (Snow Leopard), Apple provided an MPI
implementation as a standard component of the OS. But Snow Leopard is, of course, quite old by
now and this policy was discontinued with OS X 10.7. So as of July 2, 2019 gretl does not attempt to
use Apple’s MPI. The current quartz snapshot includes gretlmpi, but this is linked against version
1.6.5 of Open MPI, which is assumed to be installed under /opt/openmpi. This assumption will not
be correct in general, but you can make it so by installing the package

openmpi-1.6.5-mac64.tar.xz

which can be found at

http://sourceforge.net/projects/gretl/files/osx-testing/

To unpack the package you would do

cd /
sudo tar xvf /where/you/put/openmpi-1.6.5-mac64.tar.xz

This will install the files under /opt/openmpi, which is where gretl will expect to find them; plus,
it’s a location where they are unlikely to collide with any other MPI implementation you may have
installed.8

10 MPI dependency questions

From what we’ve said above it should be clear that gretlmpi will not run (and therefore mpi script-
blocks cannot be executed) unless you have MPI installed. And installing MPI is not something that
gretl can do; it’s up to you. This raises some questions.

7In principle you could install Open MPI or MPICH on Windows—though you’d have to build them yourself—but at
present gretl on Windows only supports MS-MPI.

8Earlier draft versions of this document referred to a package containing Open MPI 1.2.9, to be installed under the
/usr tree on OS X. That package is obsolete, in part because Apple’s policy is now that users are not allowed to install
custom software under /usr.

http://www.microsoft.com/en-us/download/details.aspx?id=41634
http://sourceforge.net/projects/gretl/files/osx-testing/

10 MPI DEPENDENCY QUESTIONS 11

10.1 Can I run MPI-enabled gretl without MPI?

Well, gretl will do everything it has done up till now. The only thing you can’t do is use the new
MPI functionality: it’s there in potentia but the potential is not realized until you install MPI.

The new accessors $mpirank and $mpisize will “work” but will always return −1 and 0, respec-
tively.

If you try to use MPI-specific functions such as mpisend you will get an error, with the message
“The MPI library is not loaded”.

10.2 How do I test for MPI support in gretl?

To test for MPI support you can use the $sysinfo accessor. This is a gretl bundle with several
members,9 one of which is the scalar mpi: this has value 0 if gretl has not been built with MPI
support enabled (which is, for example, the case for the old-style OS X snapshots that depend on
X11). It is also 0 if the gretl build has MPI support but mpiexec is not installed. Conversely, if you
get a value of 1 from $sysinfo.mpi, that tells you that MPI is both supported by gretl and installed
(as best gretl can tell).

Note that $sysinfo was undefined on versions of gretl prior to 1.9.90 (released in May 2014), in
which case attempting to test its members will produce an error. So if you need a real run-time
check (for example, if you’re distributing a hansl script to others) you’ll first need to check the gretl
version using the $version accessor: this should give at least 10990 (indicating gretl 1.9.90).

10.3 For geeks: so is libgretl linked against libmpi?

No. We deliberately avoided doing this, so that an MPI-enabled build of gretl will be usable by
people who don’t have MPI installed (not even libmpi). When the gretlmpi binary is running we
need access to various MPI symbols in libgretl, but in that case we get them via dlopen.

9For a full listing of the members of the bundle see the current Gretl Command Reference.

11 ILLUSTRATION: BOOTSTRAP 12

11 Illustration: bootstrap

This example uses an mpi block to compute bootstrap standard errors following OLS estimation.
Not terribly interesting in itself but it’s a suitable (and big enough) job to demonstrate benefit from
MPI. The overall structure is that process 0 creates an artificial dataset and runs OLS to obtain initial
parameter estimates; the data and initial estimates are then broadcast; the bootstrap iterations are
divided between all the processes; and finally the results are assembled via mpireduce. Script 2
shows the hansl functions that are used and Script 3 shows the main program.

Listing 2: hansl functions for OLS bootstrap example

olsboot-funcs.inp: function definitions

function matrix master_task (int T, int k, const matrix b0,
matrix *X)

construct artificial dataset and run OLS
X = mnormal(T, k)
X[,1] = 1
matrix y = X*b0 + mnormal(T, 1)
return mols(y, X)

end function

function matrix worker_task (const matrix X, const matrix b,
int iters)

semi-parametric bootstrap
matrix Bj = zeros(iters, cols(X))
matrix U = mnormal(rows(X), iters)
matrix y0 = X*b
loop i=1..iters -q
yi = y0 + U[,i]
Bj[i,] = mols(yi, X)’

endloop
return Bj

end function

function void B_stats (const matrix B)
matrix means = meanc(B)
matrix sds = sdc(B)
printf "Bootstrap coeff means and std errors:\n\n"
loop i=1..cols(B) -q
printf "%2d % f (%f)\n", i-1, means[i], sds[i]

endloop
end function

You might wonder, why the funny number of total bootstrap iterations (6720)? That’s because it’s
a common multiple of 2, 3, 5 and 7, so we’re able to divide the work evenly across various numbers
of processes for testing purposes.

To give an indication of the benefit that can be gained by running in MPI mode even without access
to a high-performance cluster we timed the execution of the above script on three different multi-
core machines (to be clear, in each test just using a single machine).

Machine 1 is a Dell XPS 8300 desktop box of early 2012 vintage running 64-bit Fedora 20 (Intel Core
i7-2600, 3.40GHz, with 4 cores and 8 threads). Machine 2 is a Lenovo ThinkPad X1 Carbon running
current 64-bit Arch Linux (Core i7-3667U, 2.00GHz, with 2 cores and 4 threads). Machine 3 is a
Macbook Air of 2010 vintage running OS X 10.6.8 (Core 2 Duo, 1.86GHz, with 2 cores and just 2

11 ILLUSTRATION: BOOTSTRAP 13

Listing 3: Main code for OLS bootstrap example

set echo off
set messages off
include olsboot-funcs.inp

start MPI block
mpi --send-functions

matrix X b B
scalar T = 10000
scalar k = 16
scalar iters = 6720

if $mpirank == 0
matrix b0 = zeros(k, 1)
b0[1] = 1
b0[2] = 5
set stopwatch
set seed 123445
b = master_task(T, k, b0, &X)

else
scalar my_seed = $mpirank * 1471
set seed my_seed

endif

broadcast the data and the initial parameter estimates
mpibcast(&X)
mpibcast(&b)

divide the iterations among the processes
iters /= $mpisize

B = worker_task(X, b, iters)
mpireduce(&B, vcat)

if $mpirank == 0
printf "elapsed: %g secs\n", $stopwatch
mwrite(B, "B_mpi.mat", 1)

endif

end mpi --np=4 --omp-threads=1
exit MPI block

retrieve the results from MPI
matrix B = mread("B_mpi.mat", 1)
B_stats(B)

11 ILLUSTRATION: BOOTSTRAP 14

threads).

In all tests we compared MPI performance with a single-process baseline. The baseline script was
obtained by deleting all the MPI directives from the script shown above and having one process
carry out the full number of bootstrap iterations. On machines 1 and 2 we also experimented in
search of the fastest combination of number of MPI processes (n) and number of OpenMP threads
(m).

In Table 1 the time values headed “Calculation” are those printed from the script, using gretl’s
stopwatch apparatus, and those headed “Total” were obtained using the system time command
(the “real” value). The calculation time is of some interest in its own right but it is net of the MPI
overhead and the total time is what really matters to the user.

Calculation Total

Machine 1

baseline, m = 1 12.695 12.786

baseline, m = 8 8.928 9.036

n = 4,m = 1 4.631 6.226

n = 6,m = 1 3.300 4.751

n = 8,m = 1 2.749 4.835

n = 4,m = 2* 3.265 4.214

Machine 2

baseline, m = 1 15.300 15.310

baseline, m = 4 13.219 13.231

n = 2,m = 1 7.400 9.101

n = 4,m = 1* 5.548 7.924

n = 2,m = 2 7.381 9.061

Machine 3

baseline, m = 1 25.395 25.451

baseline, m = 2 22.569 22.627

n = 2,m = 1* 12.475 15.084

Table 1: Bootstrap script, timings in seconds, n = number of MPI processes and m = number of OpenMP
threads

What can we conclude from Table 1? For one thing, it appears that (for this problem, on these ma-
chines) it is worth running the maximum numbers of threads (that is, hyper-threading is beneficial).
We can also clearly see that devoting all threads to parallelization via OpenMP (internal to the gretl
library) is not nearly as effective as using some (if not all) threads to support MPI. On machine 1
we get best peformance (in the “Total” column) by running 4 MPI processes with 2 threads each; on
machines 2 and 3 we do best by devoting all resources to MPI processes. Even on the least capable
machine 3, which supports only two MPI processes, we see a substantial gain in speed.

Moreover, the fast Calculation time when all threads are given to MPI on machine 1 (n = 8,m = 1)
suggests that this might be the winner on a larger problem, where the MPI overhead counts for less.
Sure enough, if we multiply the number of bootstrap iterations by 4 (26880), the all-MPI variant is
faster than the share-out (n = 4,m = 2); we get “Total” times of 14.538 and 18.305 seconds,
respectively.

12 ILLUSTRATION: ML ESTIMATION 15

12 Illustration: ML estimation

Our second example illustrates the use of parallelization in computing Maximum Likelihood esti-
mates. We have a large number of drawings (one million) from a gamma distribution and we wish
to estimate the parameters of the distribution.

Since the observations are assumed to be independent, the strategy is to divide the data into n
chunks and have each MPI process calculate the log-likelihood for its own chunk, given the current
vector of parameter estimates; these values can then be summed (a case of reduce) to get the
overall log-likelihood.

The functions we use are shown in Script 4 and the main program in Script 5.

Listing 4: hansl functions for MLE example

gamma-funcs.inp: function definitions

function scalar gamma_llik(const matrix x, matrix param)
scalar n = rows(x)
scalar a = param[1]
scalar p = param[2]
matrix l = (p-1) .* ln(x) - a*x
scalar ret = n*(p * ln(a) - lngamma(p)) + sumc(l)
return ret

end function

function scalar mpi_gamma_llik(const matrix x, matrix param)
set warnings off
scalar llik = gamma_llik(x, param)
mpiallred(&llik, sum)
return llik

end function

Let’s look at the functions first. There’s nothing MPI-specific about gamma_llik, it just calculates
the log-likelihood for a gamma sample in the vector x given the parameter values in param. The
interesting work is done by mpi_gamma_llik. In the context of the main program this function
is called by all n processes and the input vector x is a one-nth share of the full data (the result
of a scatter operation). Thus the llik value produced on the second line of this function is the
log-likelihood for a fraction of the data. Recall that mpiallred effects a reduction followed by a
broadcast. So after the line

mpiallred(&llik, sum)

each process is ready to return the total log-likelihood, despite the fact that it only saw its own
subset of the data. (Is MPI cool or what?)

Now turn to the main script. Note that there’s no mpi block here: this script is intended to be
executed by gretlmpi directly—see section 5.2. One could wrap the entire script in an mpi block
and run it in the gretl GUI if desired.

After including the functions file we do set use_dcmt off. This is not essential, but makes it
possible to do a direct comparison of the results from MPI with those from a single-process vari-
ant of the script (given a common random seed). Then the rank 0 process prepares the gamma
dataset. Notice that while process 0 creates a dataset with a million observations, the other pro-
cesses create datasets with just 2 observations. This reflects the fact that gretl’s mle command
requires that a dataset be in place, but—since the log-likelihood function we’re using works with a

12 ILLUSTRATION: ML ESTIMATION 16

Listing 5: Main code for MLE example

include gamma-funcs.inp
set use_dcmt off

if $mpirank == 0
nulldata 1000000
scalar P = 5
generate gamma-distributed data
matrix mat_x = -sumr(ln(muniform($nobs, P)))
scalar mx = meanc(mat_x)
scalar vx = mcov(mat_x)
the known "correct" starting point is:
matrix param = {mx/vx, mx*mx/vx}
but we’ll start from a "wrong" point
matrix param = {mx/vx, 1}

else
nulldata 2
matrix mat_x param

endif

broadcast the initial parameter values
mpibcast(¶m)

divide the data up
mpiscatter(&mat_x, byrows)

if $mpirank == 0
string opt = "--verbose"

else
string opt = "--quiet"

endif

all processes do mle
set stopwatch
mle LL = mpi_gamma_llik(mat_x, param)
params param

end mle @opt

if $mpirank == 0
printf "elapsed: %g\n", $stopwatch

endif

12 ILLUSTRATION: ML ESTIMATION 17

data matrix rather than series—it doesn’t matter how big the dataset is. So ranks 1 and higher are
just minimally satisfying the requirement that a dataset exists.

Once the initial set-up is complete, process 0 broadcasts the initial parameter vector (which we
deliberately make “off” so that mle has some substantial work to do) and scatters the matrix version
of the gamma data, mat_x.

The final step is for all processes to run mle. But since we don’t want to see n copies of the model
results we append the --quiet option for all but process 0.

Timings for this example, for machines 1 and 2 as described in section 11, are shown in Table 2.
In this case it happens that gretl’s internal OpenMP threading is not invoked to any appreciable
extent, so there’s no point in experimenting with different values of OMP_NUM_THREADS and the
table is simpler than Table 1.

Compared with the first example, hyper-threading is apparently not very helpful. The quickest
run on the 4-core, 8-thread machine uses 4 MPI processes, and while the best time on the 2-core,
4-thread machine is obtained with 4 MPI processes, the gain over 2 processes is not large. Nonethe-
less, we see a substantial gain in speed via MPI compared to the single-process baseline.

Calculation Total

Machine 1

baseline 10.043 10.445

n = 2 5.464 6.416

n = 4* 3.201 4.493

n = 6 2.720 4.594

n = 8 2.405 5.001

Machine 2

baseline 11.680 12.114

n = 2 6.349 8.376

n = 3 6.222 8.472

n = 4* 4.934 7.868

Table 2: Gamma MLE script, timings in seconds, n = number of MPI processes

For this example we also have timings from experiments on a cluster comprising 10 “blades”, each
equipped with two Xeon 2.80GHz CPUs. The Xeons are of the Pentium 4 type, with a single core
but two threads. One set of timings was obtained using an MPI hosts file which specified 1 “slot”
on the first blade and 2 slots on each of the other 9, giving a maximum of np = 19 processes. By
stipulating that at most two processes should be run per blade we are restricting the parallelization
to distinct physical cores (and avoiding hyper-threading). Figure 1 shows the scatter of calculation
time against the number of processes used, along with an inverse fit.

A second set of timings was obtained with the hosts file revised to specify 4 slots per blade, thus
invoking hyper-threading. Figure 2 compares the results with and without hyper-threading, in the
form of a log–log plot. It is apparent that hyper-threading is not advantageous in this context. In
fact the calculation time with np = 19 and no hyper-threading (2.339 seconds) is much better than
the minimum time with hyper-threading (4.018 seconds at np = 33).

12 ILLUSTRATION: ML ESTIMATION 18

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18

ca
lc

u
la

ti
o
n
 t

im
e

np

Y = -0.399 + 41.2(1/X)

Figure 1: Gamma MLE script: calculation time versus number of processes with inverse fit

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.5 2 2.5 3 3.5

ln(mp)

ln(time), no hyper-threads
ln(time), with hyper-threads

Figure 2: Gamma MLE script: log of calculation time versus log of number of processes, with and without
hyper-threading

	Gretl + MPI
	License
	Table of contents
	1 Readership
	2 What is MPI?
	3 Modes of parallelization
	4 How do I set this up?
	5 How do I actually use this?
	6 Performance hints
	7 Random number generation
	8 Printing output
	9 Platform specifics
	10 MPI dependency questions
	11 Illustration: bootstrap
	12 Illustration: ML estimation

