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Preface
T h e  s e c o n d  e d i t i o n  o f  t h i s  b o o k  w a s  w r i t t e n  b y  t h e  f i r s t - n a m e d  a u t h o r 
t o  p r o v i d e  a  t h e n  ( 1 9 9 3 )  u p - t o - d a t e  i n t r o d u c t i o n  t o  n o n p a r a m e t r i c  a n d 
d i s t r i b u t i o n - f r e e  m e t h o d s .  I t  t o o k  a  m i d w a y  c o u r s e  b e t w e e n  a  b a r e 
d e s c r i p t i o n  o f  t e c h n i q u e s  a n d  a  d e t a i l e d  e x p o s i t i o n  o f  t h e  t h e o r y . 
I n d i v i d u a l  m e t h o d s  a n d  l i n k s  b e t w e e n  t h e m  w e r e  i l l u s t r a t e d  m a i n l y 
b y  e x a m p l e s ,  M a t h e m a t i c s  w a s  k e p t  t o  t h e  m i n i m u m  n e e d e d  f o r  a 
c l e a r  u n d e r s t a n d i n g  o f  s c o p e  a n d  l i m i t a t i o n s .  T h e  b o o k  w a s  d e s i g n e d 
t o  m e e t  t h e  n e e d s  b o t h  o f  s t a t i s t i c s  s t u d e n t s  m a k i n g  f i r s t  c o n t a c t  w i t h 
t h e s e  m e t h o d s  a n d  o f  r e s e a r c h  w o r k e r s ,  m a n a g e r s ,  r e s e a r c h  a n d 
d e v e l o p m e n t  s t a f f ,  c o n s u l t a n t s  a n d  o t h e r s  w o r k i n g  i n  v a r i o u s  f i e l d s 
w h o  h a d  a n  u n d e r s t a n d i n g  o f  b a s i c  s t a t i s t i c s  a n d  w h o ,  a l t h o u g h  t h e y 
h a d  l i t t l e  p r e v i o u s  k n o w l e d g e  o f  n o n p a r a m e t r i c  m e t h o d s ,  n o w  f o u n d 
o r  t h o u g h t  t h e y  m i g h t  f i n d  t h e m  u s e f u l  i n  t h e i r  w o r k . 

A  p o s i t i v e  r e s p o n s e  f r o m  r e a d e r s  a n d  r e v i e w e r s  h a s  e n c o u r a g e d  u s 
t o  r e t a i n  t h e  b a s i c  f o r m a t  w h i l e  t a k i n g  t h e  o p p o r t u n i t y  t o  i n t r o d u c e 
n e w  t o p i c s  a s  w e l l  a s  c h a n g i n g  t h e  e m p h a s i s  t o  r e f l e c t  b o t h 
d e v e l o p m e n t s  i n  c o m p u t i n g  a n d  n e w  a t t i t u d e s  t o w a r d s  d a t a  a n a l y s i s . 

N o n p a r a m e t r i c  m e t h o d s  a r e  b a s i c a l l y  a n a l y t i c  t o o l s ,  b u t  d a t a 
c o l l e c t i o n ,  a n a l y s e s  a n d  t h e i r  i n t e r p r e t a t i o n  a r e  i n t e r r e l a t e d .  T h i s  i s 
w h y  w e  h a v e  e x p a n d e d  t h e  c o v e r a g e  o f  t o p i c s  s u c h  a s  e t h i c a l 
c o n s i d e r a t i o n s  a n d  c a l c u l a t i o n  o f  p o w e r  a n d  o f  s a m p l e  s i z e s  n e e d e d 
t o  a c h i e v e  s t a t e d  a i m s .  T h e s e  m a k e  t h e i r  m a i n  i m p a c t  a t  t h e  p l a n n i n g 
s t a g e ,  b u t  a l s o  i n f l u e n c e  t h e  a n a l y t i c  a n d  i n f e r e n t i a l  p h a s e s . 

T h e r e  h a s  b e e n  w i d e s p r e a d  c r i t i c i s m  i n  r e c e n t  y e a r s  b y  m a n y 
s t a t i s t i c i a n s  o f  i n a p p r o p r i a t e  a n d  e v e n  i m p r o p e r  u s e  o f  s i g n i f i c a n c e 
t e s t s  a n d  t h e  r e l a t e d  c o n c e p t  o f  P - v a l u e s .  H o w e v e r ,  t h e s e  t o o l s  h a v e  a 
p o s i t i v e  r o l e  w h e n  p r o p e r l y  u s e d  a n d  u n d e r s t o o d .  T o  e n c o u r a g e  b e t t e r 
u s e  t h e  s e c t i o n  o n  h y p o t h e s i s  t e s t i n g  i n  C h a p t e r  I  h a s  b e e n  r e w r i t t e n , 
a n d  t h r o u g h o u t  t h e  b o o k  t h e r e  i s  m o r e  e m p h a s i s  o n  h o w  t h e s e 
c o n c e p t s  s h o u l d  b e  u s e d  a n d  w a r n i n g s  a b o u t  p o t e n t i a l  m i s u s e . 

T h e  l a y o u t  o f  C h a p t e r s  I  t o  1 0  f o l l o w s  t h e  b r o a d  p a t t e r n  o f  t h e 
c o r r e s p o n d i n g  c h a p t e r s  i n  t h e  s e c o n d  e d i t i o n  b u t  t h e r e  a r e  m a n y 
c h a n g e s  i n  o r d e r  a n d  o t h e r  a s p e c t s  o f  p r e s e n t a t i o n  i n c l u d i n g  n e w  a n d 
m o r e  d e t a i l e d  e x a m p l e s .  O n e  o r  t w o  t o p i c s  h a v e  b e e n  d r o p p e d  o r  a r e 
t r e a t e d  i n  l e s s  d e t a i l ,  a n d  n e w  m a t e r i a l  h a s  b e e n  i n s e r t e d  w h e r e 
a p p r o p r i a t e .  A s  w e l l  a s  c o m m e n t s  o n  e t h i c a l  c o n s i d e r a t i o n s  a n d 
d i s c u s s i o n s   o n   p o w e r   a n d  s a m p l e  s i z e ,  t h e r e  a r e  n e w  s e c t i o n s  o n  t h e 
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a n a l y s i s  o f  a n g u l a r  d a t a ,  t h e  u s e  o f  c a p t u r e - r e c a p t u r e  m e t h o d s ,  t h e 
m e a s u r e m e n t  o f  a g r e e m e n t  b e t w e e n  o b s e r v e r s  a n d  s e v e r a l  l e s s e r 
a d d i t i o n s .  E x a m p l e s  h a v e  b e e n  c h o s e n  f r o m  a  w i d e r  r a n g e  o f 
d i s c i p l i n e s .  F o r  a  f e w  m o r e  a d v a n c e d  t o p i c s  s u c h  a s  r e g r e s s i o n 
s m o o t h i n g  t e c h n i q u e s  a n d  M - e s t i m a t i o n  w e  h a v e  n o t  g i v e n  d e t a i l s  o f 
s p e c i f i c  m e t h o d s  b u t  o n l y  a  b r o a d  o v e r v i e w  o f  e a c h  t o p i c  t o  e n a b l e 
r e a d e r s  t o  j u d g e  w h e t h e r  i t  m a y  b e  r e l e v a n t  t o  t h e i r  p a r t i c u l a r  n e e d s . 
I n  s u c h  c a s e s  r e f e r e n c e s  a r e  g i v e n  t o  s o u r c e s  t h a t  c o n t a i n  t h e  d e t a i l 
n e e d e d  f o r  i m p l e m e n t a t i o n . 

C h a p t e r  1 1  h a s  b e e n  r e w r i t t e n  t o  g i v e  a n  e l e m e n t a r y  i n t r o d u c t i o n 
t o  i n f l u e n c e  f u n c t i o n s ,  t h e  n o n p a r a m e t r i c  b o o t s t r a p  a n d  r o b u s t 
e s t i m a t i o n  g e n e r a l l y ,  a g a i n  w i t h  r e f e r e n c e s  t o  s o u r c e  m a t e r i a l  f o r 
t h o s e  w h o  w a n t  t o  m a k e  f u l l  u s e  o f  t h e s e  i d e a s .  M a t e r i a l  t h a t 
a p p e a r e d  i n  C h a p t e r  1 2  o f  t h e  s e c o n d  e d i t i o n  h a s  b e e n  u p d a t e d  a n d 
i n c o r p o r a t e d  a t  r e l e v a n t  p o i n t s  i n  t h e  t e x t . 

W e  h a v e  n o t  i n c l u d e d  t a b l e s  f o r  b a s i c  n o n p a r a m e t r i c  p r o c e d u r e s , 
m a i n l y  b e c a u s e  m o r e  s a t i s f a c t o r y  i n f o r m a t i o n  i s  p r o v i d e d  b y  m o d e m 
s t a t i s t i c a l  s o f t w a r e ,  m a k i n g  m a n y  s t a n d a r d  t a b l e s  i n s u f f i c i e n t  o r 
s u p e r f l u o u s  f o r  s e r i o u s  u s e r s  o f  t h e  m e t h o d s .  T h o s e  w h o  n e e d  s u c h 
t a b l e s  b e c a u s e  t h e y  h a v e  n o  a c c e s s  t o  s p e c i a l i z e d  s o f t w a r e  a r e  w e l l 
c a t e r e d  f o r  b y  s t a n d a r d  c o l l e c t i o n s  o f  s t a t i s t i c a l  t a b l e s .  W e  g i v e 
r e f e r e n c e s  t o  t h e s e  t h r o u g h o u t  t h e  b o o k  a n d  a l s o  w h e n  r e l e v a n t  t o 
s o m e  s p e c i a l i z e d  t a b l e s .  W e  h a v e  r e t a i n e d  t h e  s e c t i o n  o u t l i n i n g 
s o l u t i o n s  t o  o d d - n u m b e r e d  e x e r c i s e s . 

W e  a r e  g r a t e f u l  t o  m a n y  r e a d e r s  o f  t h e  e a r l i e r  e d i t i o n s  w h o  m a d e 
c o n s t r u c t i v e  c o m m e n t s  a b o u t  t h e  c o n t e n t  a n d  t r e a t m e n t ,  o r  s o m e t i m e s 
a b o u t  t h e  l a c k  o f  t r e a t m e n t ,  o f  p a r t i c u l a r  t o p i c s .  T h i s  i n p u t  t r i g g e r e d 
m a n y  o f  t h e  c h a n g e s  m a d e  i n  t h i s  e d i t i o n .  O u r  s p e c i a l  t h a n k s  g o  t o 
J i m  M c G a n r i c k  f o r  h e l p f u l  d i s c u s s i o n s  o n  p h y s i o l o g i c a l 
m e a s u r e m e n t s  a n d  t o  P r o f e s s o r  R i c h a r d  H u g h e s  f o r  a d v i c e  o n  t h e 
G u i l l a i n - B a r r é  s y n d r o m e .  W e  h a p p i l y  r e n e w  t h e  t h a n k s  r e c o r d e d  i n 
t h e  s e c o n d  e d i t i o n  t o  T i m o t h y  P .  D a v i s  a n d  C h r i s  T h e o b a l d  w h o 
s u p p l i e d  u s  w i t h  d a t a  s e t s  u s e d  i n i t i a l l y  i n  t h a t  e d i t i o n  f o r  e x a m p l e s 
t h a t  w e  h a v e  r e t a i n e d . 

P. Sprent
N. C. Smeeton

July 2000
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1
Introducing nonparametric methods

1.1   BASIC STATISTICS

One need know only a little statistics to make sensible use of simple
nonparametric methods. While we assume that many readers will be
familiar with the basic statistical notions met in introductory or
service courses of some 20 hours instruction, nevertheless those
without formal statistical training should be able to use this book in
parallel with one of the many introductory general statistical texts
available in libraries or from most academic bookshops, or one
recommended by a statistician colleague or friend. The choice may
depend upon how familiar one is with mathematical terms and
notation. For example, Essential Statistics (Rees, 1995) adopts a
straightforward approach that should suffice for most purposes, but
some may prefer a more advanced treatment, or an introductory text
that emphasizes applications in particular areas such as medicine,
biology, agriculture, the social sciences and so on. Readers with
considerable experience in general statistics but who are new to
nonparametric methods will be familiar with some background
material we give, but we urge them at least to skim through this to
see whether we depart from conventional treatments. For example,
our approa ch to tes ting and estima tion in Se ctions 1. 3 and 1. 4 differs
in certain aspects from that in some general statistics courses.

In this chapter we survey some concepts relevant to nonpara-
metric methods. It is the methods and not the data that are
nonparametric.

1.1.1   Parametric and nonparametric methods

Statistics students meet families of probability distributions early in
their courses. One of the best known is the normal or Gaussian
family, where individual members are specified by assigning
constant values to two quantities called parameters. These are
usually denoted by µ and σ2 and represent the mean and variance.
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The notation N(µ, σ2) denotes a normal distribution with these
parameters. Normal distributions are often associated with con-
tinuous data such as measurements.

Given a set of independent observations (a concept explained
more fully in Sec tion 1. 2) from a norma l dis tribution, we often want
to infer something about the unknown parameters. The sample mean
provides a point (i.e. single value) estimate of the parameter µ
(sometimes called, in statistical jargon, the population mean). Here
the well-known t-test is used to measure the strength of the evidence
pr ov id e d by  a sa mp le  to  su pp or t a n a pri or i hy po th e s i z e d va l ue  µ0 

fo r the population mean. More usefully, we may determine what is
called a confidence interval for the ‘true’ population mean. This is
an interval for which we have, in a sense we describe in Section
1.4.1, reasonable confidence that it contains the true but unknown
mean µ. These are examples of parametric inferences.   

The normal distribution is strictly relevant only to some types of
continuous scale data such as measurements, but it often works quite
well if the measurement scale is coarse (e.g. for examination marks
recorded to the nearest integer). More importantly, it is useful for
approximations in a wide range of circumstances when applied to
other types of data.

The binomial distribution is relevant to some types of counts.
The  family also has  tw o paramete rs  n,  p,  whe re  n is  the  tota l number
of  obs e rv a t ion s  an d p is  th e  pro ba b il it y tha t a  pa r tic ul a r on e  fro m
tw o possible events occurs at any observation. Subject to certain
conditions, the number of occurrences, r, where 0 ≤ r ≤ n, of that
event in the n observations has a binomial distribution, which we
refer to as a B(n, p) distribution.

With a binomial distribution if we observe r occurrences of an
event in a set of n observations, then p^ = r/n is a point estimate of p,
the probability of success at each independent observation. We may
want to assess how strongly sample evidence supports an a priori
hypothesized value p0, say, for p or obtain a confidence interval for
the value of p for the population.

The binomial distribution is often relevant to counts in dichot-
om ou s  out c o me  si tu a ti on s .  Fo r exa mp le ,  the  nu mb e r of  ma le 
c h il dr e n in a family of size n is often assumed to have a binomial
distribution with p = 1/2, but we see in Section 1.1.3 that this is only
a pproximate.  The numbe r of ‘s ixe s’ re corded in 10 cas ts  of a fa ir die
has a B(10, 1/6) distribution. The outcome of interest is sometimes
called a ‘favourable’ event, but this is hardly appropriate if, for
example, the event is a positive diagnosis of illness.
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 Other well-known families include the uniform (or rectangular),
multinomial, Poisson, exponential, double exponential, gamma, beta
and Weibull distributions. This list is not exhaustive and you may
not be, and need not be, familiar with all of them.

It may be reasonable on theoretical grounds or on the basis of past
experience to assume that observations come from a particular
family of distributions. Also experience, backed by theory, suggests
that for many measurements inferences based on the assumption that
observations form a random sample from some normal distribution
may not be misleading even if the normality assumption is incorrect.
A theorem called the central limit theorem justifies these and other
uses of the normal distribution, particularly in what are called
asymptotic approximations. We often refer to these in this book.

Parametric inference is sometimes inappropriate or even
impossible. To assume that samples come from any specified family
of distributions ma y be unrea sonable .  For example , we  ma y not have
examination marks on, say, a percentage scale for each candidate but
know only the numbers of candidates in banded and ordered grades
des igna ted Grade A,  Grade  B, Gra de  C,  etc . Given thes e numbe rs for
two different schools, we may want to know if they indicate a
difference in performance between schools that might be due to
unequal standards of teaching or the ability of one school to attract
more able pupils. The method of inference is then usually
nonparametric. Even when we have precise measurements it may
be irrational to assume a normal distribution because normality
implies certain properties of symmetry and spread. We may be able
to see that a sample is not from a normal distribution simply by
looking at a few characteristics like the sample mean, median,
standard deviation and range of values. For example, if all
observations are either zero or positive and the standard deviation is
appreciably greater than the mean then, unless the sample is very
small, it is unreasonable to assume it comes from a normal
distribution (see Exercise 1.9). There are well-known distributions
that are flatter than the normal (e.g. the continuous uniform, or
rectangular, distribution) or skew (e.g. the exponential and gamma
distributions). In practice we are often able to say little more than
that our sample appears to come from a distribution that is skew, or
very peaked, or very flat, etc. Here nonparametric inference may
again be appropriate. In this latter situation some writers prefer the
term distribution-free to nonparametric.

The terms ‘distribution-free’ and ‘nonparametric’ are sometimes
regarded as synonymous. Indeed, in defining a distribution-free
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method Marriott (1990) states that ‘Distribution-free inference or
distribution-free tests are sometimes known as nonparametric but
this usage is confusing and should be avoided’. We believe that view
ignores subtle distinctions, though these usually need not worry us
unduly.  Indeed, the nature of these distinctions depends to some
extent on how one defines terms like parameter and distribution.
Statisticians agree that the constants like µ, σ2 that define family
members in the normal distribution are parameters; many also argue
that the mean, say, of any distribution that has a mean (precisely to
what family the distribution belongs need not be specified) is a
parameter even if it does not appear as a constant in the distribution
function. This concept accords with the broader mathematical
definition of a parameter as an unknown quantity that may take one
of a se t of pos sible  values . Those  who ta ke  this  view  argue tha t if we
ma ke  infe re nc e s  ab out  the  me a n  of  a  di s t ri but io n w it ho ut ma kin g
a n y assumption about its nature or its belonging to a particular
family it is still an inference about a parameter and so the name
nonparametric is unjustified. However, it would be appropriate in
these circumstances to say the inference is distribution-free when no
assumption is made about the nature of the distribution.
 In practice this is usually an over-simplification; in nearly all
inferences we make some distributional assumptions. For example,
w e ma y ass ume  a sample  is  from a symmetric dis tribution.  This  does
not restrict us to a particular family such as the normal but it does
mean we exclude all asymmetric distributions.

That there is room for argument about precisely what we mean by
the terms nonparametric or distribution-free is reinforced by the
grow th in compromise  te rms  for me thods  tha t do not fall cle arly into
areas covered by these names. Two examples are the descriptors
semiparametric and asymptotically distribution-free.
  Paradoxically, many tests that are generally regarded as non-
parametric or distribution-free involve parameters and distributions
(often the normal or binomial distributions). This is because the tags
‘nonpa ra metric ’ or ‘dis tribution-free ’ relate  not to the  distribution of
the test statistics, but to the fact that the methods can be applied to
samples from populations having distributions which need only be
specified in broad terms, e.g. as being continuous, symmetric,
identical, differing only in median or mean, etc. They need not
belong to a specified family. There is a grey area between what is
clearly distribution-free and what is parametric inference. Some of
the association tests described in Chapters 9 and 10 fall in this area.
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1.1.2   When we might use nonparametric methods

Eve n if a pa rametric  tes t doe s not de pe nd critic a lly on an assumption
tha t sa mples  come  from a distribution in a partic ular fa mily,  whe n in
doubt we may prefer a nonparametric test needing weaker assump-
tions. More importantly, nonparametric methods are often the only
ones available for data that simply specify order (ranks) or counts of
numbers of events or of individuals in various categories.
  Nonparametric methods are not assumption-free. In most statist-
ical problems what we can deduce, by either parametric or
nonparametric methods, depends upon what assumptions can validly
be made. An example illustrates this.

Example 1.1

A contract for making metal rods specifies, among other requirements, that
not more than 2.5 per cent should have a cross-sectional diameter exceeding 30
mm. Some quality control methods that are used to see if this condition is met
are based on counting the proportion of defectives (i.e. rods exceeding 30 mm
diameter) in samples. Such tests can be extended to assess whether it is
reasonable to assume that two machines each produce the same proportion of
defectives. Even if we conclude that they do, it does not follow that the
distribution of diameters is the same for each.

For example, suppose that diameters of items produced by the first machine
have a normal distribution with mean 27 mm and standard deviation 1.53 mm;
normal distribution theory then tells us that 2.5 per cent of all items produced
will have a diameter exceeding 30 mm. This is because, for any normal
distribution, 2.5 per cent of all items have a diameter at least 1.96 standard
deviations above the mean; in this case, 2.5 per cent exceed 27 + 1.96 × 1.53 ≈
30. If the second machine produces items with diameters that are uniformly
distributed between 20.25 and 30.25 mm (i.e. with mean diameter 25.25 mm) it
i s  eas y t o see  t ha t  onc e aga i n  2. 5 per  cen t  wou l d ha ve  di am et e r s  exce ed i ng  30
m m  (since any interval of 0.25 mm between 20.25 and 30.25 mm contains a
proportion 1/40, i.e. 2.5 per cent, of all production). This uniform distribution
situation is unlikely to be met in practice but this example shows that we may
have the same proportion of defectives in two populations, yet each has a
di ff e r e nt  me an  an d th ei r  di st r i bu t i o ns  do  not  ev en  be l o ng  to  t he sa m e  fa m i l y. 
We  consider a more realistic situation involving different means in Exercise 1.1.

Clearly then the numbers of defectives alone cannot tell us whether the mean
diameters of items produced by each machine are the same. However, if we also
assume that the distributions of diameters for items from each machine differ, if
at all, only in their means, then if we know the proportion of defectives in
samples of, say, 200 from each machine, we could test whether the means can
reasonably be supposed to be identical. The test would not be efficient. It would
be bett er to measur e the di am et er of  each it em  in small er sam pl es, and dependent
upon the distr ibuti onal assum pt ions one makes,  use an appr opri at e par ametr ic or
nonparametric test. We say more about hypothesis tests in Section 1.3.
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Means and medians are widely used to indicate where distrib-
utions are centred. Both are often referred to broadly as ‘averages’.
Because many people think of an average as the arithmetic mean we
shall often be more formal and call them measures of centrality.
Another name is measures of location but we use this only in a
special context relating to what are called location and scale
parameters. Tests and estimation procedures for measurement data
are often about averages or centrality measures, e.g.:

• Is  it re a s o na b le  to s up pos e  th a t a sa m pl e  com e  fro m a  po pu la t io n
with a pre-specified mean or median?

• D o  tw o  s a m p l e s  c o m e  fr o m  pop u l a t io n s  w ho s e  me a n s  diff e r by 
a t  least 10?

• G i ve n  a  sa m p l e ,  w h a t  is  a n  a p p r o pr i a t e  e s t i m a t e  of  th e 
p o pu l a t i on  mean or median? How good is that estimate?

Increasingly, for example, in industrial quality control, interest is
turning also to spread or dispersion, often measured by variance or
standard deviation. Buyers of a new car or computer want not only a
good average performance but also consistency. They expect their
product to perform as well as those of other purchasers of that
model. Success of a product often depends upon personal recom-
mendations, so mixed endorsements – some glowing, others warning
of niggling faults – are not good publicity. There are parametric and
nonparametric methods for assessing spread or variability.   

Some nonparametric techniques require little information. We
may test if it is reasonable to assume that weights of items have a
prespecified median 2 mg, say, if all we know is how many items in
a sample of n weigh more than 2 mg. If it were difficult, expensive,
or impossible to get exact weights, but easy to determine numbers
above (or below) 2 mg this nonparametric approach may be cost
e ffe c t iv e .  Si mpl e  no np a r a me tr ic  me th ods  a re  al s o  us e f ul if  da ta  a re 
in  some way incomplete, like those in Example 1.2.

Example 1.2

In medical studies the progress of patients is often monitored for a limited time
after treatment; often anything from a few months to 5 or 6 years. Dinse (1982)
gives data for survi val tim es in weeks for 10 pat ient s wit h sym pt om ati c lympho-
cytic non-Hodgkin’s lymphoma. The precise survival time is not known for one
pat ient  who was ali ve af t er  362 weeks. The obser vat ion for  that  pat i ent is said to
be censored. Survival times in weeks were

49, 58, 75, 110, 112, 132, 151, 276, 281, 362*

The asterisk denotes a censored observation.
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Is it reasonable to suppose that these data are consistent with a median
survival time of 200 weeks? Censored observations cause problems in many
parametric tests but in Section 1.3.2 we use a simple nonparametric test to show
there is no strong evidence against the hypothesis that the median is 200. For
that interpretation to be meaningful and useful we have to assume the data are a
random sample from some population of patients with the disease.

To confirm that the median might well be 200 is not in itself very
helpful. It would be more useful if we could say that the data imply
th a t  it is  re a s o na ble  to a s s e r t tha t the  me di a n  su rv iv a l ti me  is 
be tw e e n 80 and 275 weeks or something of that sort. This is what
confidence intervals (Section 1.4.1) are about. Dinse was interested,
among other things, in whether the median survival times differed
between symptomatic and asymptomatic cases; he used this sample
and another for 28 asymptomatic cases to compare the survival time
distributions in more detail. In this other sample 12 of the 28
observations were censored at values of 300 or more. We show in
Example 5.9 that, on the basis of his data, we would conclude that
there is strong evidence that the medians for symptomatic and for
a s ym pt oma ti c  c a s e s  ar e  diffe re nt .  The s e  da ta  w e re  a ls o  c ons id e r e d
by  Kimber (1990).

1.1.3   Historical note

The first chapter of the Book of Daniel records that on the orders of
Nebuchadnezzar certain favoured children of Israel were to be
specially fed on the king’s meat and wine for 3 years. Reluctant to
defile himse lf with such luxurie s,  Da niel plea de d tha t he and three  of
his brethren be fed instead on pulse for 10 days. After that time the
four were declared ‘fairer and fatter in flesh than all of the children
which did eat the portion of the king’s meat’. This evidence was
taken on commonsense grounds to prove the superiority of a diet of
pulse. In Example 1.4 and throughout the book we illustrate how we
test evidence like this more formally to justify the commonsense
conclusion arrived at in the Old Testament. Although the biblical
analysis is informal it contains the germ of a nonparametric, as
opposed to a parametric, test.

John Arbuthnot (1710) observed that in each year from 1629 to
1710 the number of males christened in London exceeded the
number of females. He regarded this as strong evidence against the
pr ob a b ili ty  of  a  ma le  birt h be ing    .  The  s itu a t ion  is  som e w ha t  a ki n
to  observing 82 heads in 82 consecutive tosses of a coin.
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Francis Galton (1892) developed a measure – which he termed a
‘centisimal scale’ – to assess agreement between patterns (categ-
orical data) on corresponding fingertips on left and right hands.

Karl Pearson (1900) proposed the well-known, and sometimes
misused, chi-squared goodness-of-fit test applicable to any discrete
distribution, and C. Spearman (1904) defined a rank correlation
coefficient (see Section 7.1.3) that bears his name.

Systematic study of nonparametric inference dates from the 1930s
when attempts were made to show that even if an assumption of
normality stretched credulity, then at least in some cases making it
would not greatly alter conclusions. This stimulated work by R.A.
Fisher, E.J.G. Pitman and B.L. Welch on randomization or per-
mutation tests which were then too time consuming for general use,
a problem now overcome with appropriate statistical software.

About the same time it was realised that observations consisting
simply of preferences or ranks could be used to make some
inferences without too much computational effort. A few years later
F. Wilcoxon and others showed that even if we have precise
measurements, we sometimes lose little useful information by
ranking them in increasing order of magnitude and basing analyses
on these ranks. Indeed, when assumptions of normality are not
justified, analyses based on ranks or on some transformation of them
may be the most efficient available.

Nonparametric methods then became practical tools either when
data were by nature ordinal (ranks or preferences) or as reasonably
efficient methods that reduced computation even when measure-
ments were available providing those measurements could be
replaced by ranks. While hypothesis testing was usually easy,
unfortunately the more important interval estimation (Section 1.4)
was not, a difficulty that has now been largely overcome

In parallel with the above advances, techniques relevant to counts
were developed. Counts often represent the numbers of items in
categories which may be either ordered, e.g. examination grades, or
nominal (i.e. unordered), e.g. in psychiatry characteristics like
depression, anxiety, psychosis, etc.

Many advanced and flexible nonparametric methods are tedious
only because they require repeated performance of simple but
monotonous calculations, something computers do well.

The dramatic post-war development of feasible, but until recently
often tedious to carry out, nonparametric procedures is described by
Noether (1984). Kendall and Gibbons (1990) give more than 350
references for the one topic of rank correlation.
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Computers have revolutionized our approach to data analysis and
statistical inference. Hope, often ill-founded, that data would fit a
restricted mathematical model with few parameters and emphasis on
simplifying concepts such as linearity has been replaced by the use
of robust methods (Chapter 11) and by exploratory data analyses to
investigate different potential models. These are areas where non-
parametric methods sometimes have a central role. Generalized
linear models described by McCullagh and Nelder (1989) at the
theoretical level and by Dobson (1990) at the practical level often
blend parametric and nonparametric approaches.

Nonparametric methods are in no sense preferred methods of
a n a l ys is  fo r a ll  s itu a t ion s .  A s tr e n gth  is  the ir  ap pl ic a bi li ty wh e re 
th e r e  is  in s uffi c i e n t the ory  or da t a  to ju s t ify ,  or to  te s t  c omp a t ib ili ty 
w i th ,  specific distributional models. At a more sophisticated level
they are also useful, for example, in finding or estimating trends in
large data sets that are otherwise difficult to detect due to the
presence of disturbances usually referred to as ‘noise’.

Recent important practical developments have been in computer
software (Section 1.6) to carry out permutation and other
nonparametric tests. Results for these may be compared with those
given by asymptotic  theory,  whic h,  in the  pa st, was  ofte n us e d where
its validity was dubious.

Modern computing power has also led to increasing use of the
bootstrap stemming from work by Efron and others since the early
1980s. Bootstrapping is a computer-intensive technique with both
parametric and nonparametric versions. We give an introduction to
this and related topics in Section 11.3.

1.2   SAMPLES AND POPULATIONS

When making statistical inferences we often assume that obser-
vations are a random sample from some population. Specification of
that population may or may not be precise. If we select 20 books at
random (i.e. so that each book in the population has the same
probability of inclusion in the sample) from 100 000 volumes in a
library, and record the number of pages in each book in the sample,
then inferences made from the sample about the mean or median
number of pages per book apply strictly only to the population of
books in that library. If the library covers a wide range of fiction,
non-fiction and reference works it is reasonable to assume that any
inferences apply, at least approximately, to a wider population of
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books, perhaps to all books published in the United Kingdom or the
United States or wherever the library is situated. If the books in the
library are all English language books, inferences may not apply to
books in Chinese or in Russian.
 We seldom deal with strictly random samples from a so clearly
specified population. More commonly, data form samples that may
be  e xp e c t e d  to  ha v e  the  es s e nt ia l  prop e r ti e s  of  a ra nd om sa mpl e 
fr om  a vaguely-specified population. For example, if a new diet is
tested on pigs and we measure weight gains for 20 pigs at one
agricultural experimental station we might assume that these are
something like a random sample from all pigs of that or similar
breeds raised under such conditions. This qualification is important.
Inferences might apply widely only if the experimental station
adopted common farming practices and if responses were fairly
uniform for many breeds of pig. This may not be so if the
experimental station chose an unusual breed, adopted different
husbandry practices from those used on most pig farms, or if the 20
pigs used in the experiment were treated more favourably than is
us ua l in ot he r  re s pe c ts ,  e . g .  if th e y we re  ke pt  in  s pe c ia ll y he a te d
un it s  during the experiment.

The abstract notion of random sampling from an infinite
population (implicit in most inference based upon normal
distribution theory) often works well in practice, but is never
completely true! At the other extreme there are situations where the
sample is essentially the whole population. For example, at the early
stages of testing a new drug for treating a rare disease there may be
just, say, nine patients available for test and only four doses of the
drug. One might choose at random the four patients from nine to
receive the new drug, the remaining five are untreated or may be
treated with a drug already in use. Because of the random selection,
if  the  dr ug  ha s  no  effe c t ,  or is  no  be t te r  tha n  one  cu rr e nt ly  in us e ,  it
is  unlikely that a later examination would show that the four patients
receiving the new drug had responded better than any of the others.
This is possible, but it has a low probability, which we can calculate
on  the  as s u mpt io n tha t the  ne w  dr ug  is  ine ffe c t iv e  or is  no  be tt e r 
th a n  the old one. Clearly, if the drug is beneficial or better than that
currently in use the probability of better responses among those
treated with it is increased (see Example 1.4, Section 1.3.3).

B e c a us e  of the  ma n y w a y s  da t a  ma y  be  obt a i ne d  w e  mus t
c o ns id e r carefully the validity and scope of inferences. For example,
the ten patients for whom survival times were measured in Example
1.2 came from a study conducted by the Eastern Co-operative
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Oncology Group in the USA and represented all patients afflicted
with symptomatic lymphocytic non-Hodgkin’s lymphoma available
for that study. In making inferences about the median or other
characteristics of the survival time distribution, it is reasonable to
assume these inferences are valid for all patients receiving similar
treatment and alike in other relevant characteristics, e.g. with a
similar age distribution. The patients in this study were all male, so
c le arly it would be  unwis e to infe r,  without furthe r evide nc e , that the
survival times for females would have the same distribution.

Fortunately the same nonparametric procedures are often valid
whether samples are from an infinite population, a finite population
or when the sample is the entire relevant population. What is
different is how far the inferences can be generalized. The
implications of generalizing inferences is described for several
specific tests by Lehmann (1975, Chapters 1–4) and is discussed in
more detail than in this book in Sprent (1998, Chapter 4).

In Se ction 1. 1. 1 we  re fe rre d to a se t of n inde pe nde nt observations
from a normal distribution. Independence implies that knowing one
value tells us nothing about other values. For any distribution a
sequence of n  independent observations all having the same
distribution is a random sample  from that distribution.
Independence is an important, and by no means trivial, requirement
for the validity of many statistical inferences.

1.3   HYPOTHESIS TESTS

1.3.1   Basic concepts

Es ti ma tio n (Se c t io n 1. 4 ) is  of te n  a  ke y ai m of sta ti s t ic a l ana ly s i s .  It 
is  easy to explain in terms of testing a range of hypotheses, so we
need to understand testing even though it is a technique that tends to
be both overused and misused.

We assume familiarity with simple parametric hypothesis tests
such as the t-test and chi-squared test, but we review here some
fu nd a m e nt a l s  a nd  c ha n ge s  in in te r pr e ta ti on  ma de  po s s ib le  by 
mo de rn  computer software. Until such software became widely
available hypothesis testing was often based on tables.

The familiar t-test is often used to test hypotheses about the
unknown mean µ  of a normal distribution. We specify a null
hypothesis, H0, that µ takes a specific value µ0 and an alternative
hypothesis, H1, is that it takes some other value. Formally this is
stated as:
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   Test H0: µ = µ0 against H1: µ ≠ µ0         (1.1)

The test is based on a statistic, t, that is a function of the sample
va lu e s  ca lc ula te d by a for mu la  gi ve n in mo s t st a ti s t ic s  te x tbo ok s . 
Th e  classic procedure using tables was to compare the magnitude,
without regard to sign, of the calculated t, often written |t|, with a
value tα given in tables, the latter chosen so that when H0 was true

Pr(|t| ≥ tα) = α.         (1.2)

In practice α nearly always took one of the values 0.05, 0.01 or
0.001. These probabilities are often expressed as equivalent percent-
ages, i.e. 5, 1 or 0.1 and are widely known as significance levels.
Use of these particular levels was dictated at least in part by
available tables. In this traditional approach if one obtained a value
of  | t|  ≥  tα the  re s u lt  wa s  sa id to  be  s i gn if ic a nt  a t pr oba bi lit y le ve l  α 
or  at the corresponding 100α per cent level, and these levels were
of te n re f e r re d  to re s pe c ti ve ly  as  ‘s ig ni fi c a n t’ ,  ‘hi gh ly si gni fi c a nt’ 
a n d ‘very highly significant’. If significance at a particular level was
attained one spoke of rejecting the hypothesis H0 at that level. If
significance was not attained the result was described as not
significant and H0 was said to be accepted. This is unfortunate
terminology giving – especially to nonstatisticians – the misleading
impression that nonsignificance implies that H0 is true, while
significance implies it is false.

The rationale behind the test (1.1) is that if H0 is true then values
of t near zero are more likely than large values of t, either positive or
negative. Large values of |t| are more likely to occur under H1 than
under H0. It follows from (1.2) that if we perform a large number of
such tests on different independent random samples when H0 is true
we shall in the long run incorrectly reject H0 in a proportion α of
these; e.g. if α = 0.05 we would reject the null hypothesis when it
were true in the long run in 1 in 20 tests, i.e. in 5 per cent of all tests.

The traditional approach is still common, especially in certain
areas of law, medicine and commerce, or to conform with misguided
policy requirements of some scientific and professional journals.   

Modern statistical software lets us do something more sensible
though by itself still far from satisfactory. The output from any good
modern software for a t-test relevant to (1.1) gives the exact
probability of obtaining, when H0 is true, a value of |t| equal to or
greater than that observed. In statistical jargon this probability is
usually called a P-value and it is a measure of the strength of
evidence against H0 provided by the data – the smaller P is, the
stronger is that evidence.
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Using such evidence one formal possibility when it is strong is to
decide H0 is implausible. When we decide what P-values are
sufficiently small for H0 to be implausible we may speak formally of
rejecting H0 at the exact 100P per cent significance level. This
avoids the difficulty that rigid application of the 5 per cent
significance level leads to the unsatisfactory situation of H0 being
re je c t e d fo r a  P-v a l ue  of  0. 04 9 bu t a c c e pt e d  for th e  s li gh tly  la rg e r 
P-value of 0.051. It does not, however, overcome a more serious
objection to this approach, namely, that with small experiments one
may never observe small P-values even when H0 is not true.
Su pp os e  a  c oin  is  tos s e d 5 tim e s  to  te s t  the  hy pot he s i s  H 0  : th e  co in
is  fair (equally likely to fall heads or tails) against H1: the coin is
biased (either more likely to fall heads or more likely to fall tails).
Clearly in 5 tosses the strongest evidence against H0 is associated
with the outcomes 5 heads or 5 tails. Under H0 the probability (P) of
ge tt in g one  of  the s e  ou tc o me s  is  gi ve n  by the  s um of  the 
pr ob a b ili ti e s  of r =  0 or r = 5 ‘heads’ for a binomial B(5, 1/2)
distribution, so P = 2 × (1/2)

5 = 0.0625. This is the smallest attainable
P-value when n  = 5 and p  = 1/2 and so we never reject H0 at a
conventional P = 0.05 level whatever the outcome of the 5 tosses –
even if the coin is a double-header! That the experiment is too small
is the only useful information given by the P-value in this example.
The situation is very different if we increase the experiment to 20
tosses and get 20 heads or 20 tails. This weakness of hypothesis
testing together with the perpetration of myths such as equating
accepting a hypothesis to proof it is true has led to justified criticism
of what is sometimes called the P-value culture. Krantz (1999) and
Nelder (1999) both highlight dangers arising from inappropriate use
of and misunderstandings about what a P-value implies. We draw
attention also to an ethical danger near the end of Section 1.5.

In the real world policy decisions are often based on the findings
of statistical analyses; if the evidence against H0 is strong a formal
rejection of H 0 on the ground that it is implausible may be
appropriate. To appreciate the implications of either a formal
rejection of H0 or of a decision not to reject it at a given significance
level we need some additional concepts. If we decide to reject H0

whenever our P-value is less than some fixed value P0, say, then, if
in all cases where we do so H0 is true, we would in the long run
reject it in a proportion P0 of those cases. Rejection of H0 when it is
true is an error of the first kind, or Type I error. What a P-value
therefore tells us is the probability that we are making an error of the
first kind by rejecting H0. In a t-test if we make a decision to reject
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H0 whenever we observe a P ≤ P0 we do so when |t| ≥ k where k is
such that when H0 holds Pr(|t| ≥ k) = P0 and these values of t define a
critical or rejection region of size P0. Using a critical region of size
P0 implies we continue to regard H0 as plausible if |t| < k . If we
follow this rule we shall sometimes (or as we saw above for the 5
coin tosses, in extreme cases, always) continue to regard H0 as
plausible when, in fact, H1 is true. Continuing to accept H0 when H1

is true is an error of the second kind, or Type II error. Let β denote
the probability of a Type II error. The probability of a Type II error
depends in part on the true value of µ if indeed it is not equal to µ0.
Intuition correctly suggests that the more µ differs from µ0, the more
likely we are to get large values of |t|, i.e. values in the critical
region, so that β decreases as |µ – µ0| increases. If we decrease P0

(say from 0.03 to 0.008) our critical region becomes smaller, so that
for a given µ we increase β because the set of values of t for which
we accept H0 is larger. The other factor affecting β is the sample size,
n. If we increase n we decrease β for a given µ  and P0. Thus β
depends on the true value of µ (over which we have no control) and
the value of n and of P0 determining the size of the critical region
(for both of which we often have some choice).
  Despite obvious limitations P-values used properly and construct-
ively have a basic role in statistical inference. In Section 1.4 we shall
see that a null hypothesis that specifies one single value of a
parameter is usually just one of many possible hypotheses that are
not contradicted by the sample evidence. Donahue (1999) and
Sackrowitz and Samuel-Cahn (1999) discuss various distributional
pr op e r tie s  of th e  P-v a l ue  th a t  re la te  in di re c tl y to us e s  we  dis c us s 
he re  and in Section 1.4.

Fixing the probability of an error of the first kind, whether we
denote it by the conventional symbol a or the alternative P0 does not
determine β. We want β  to be small because, in the t-test for
example, we want the calculated t-value to be in the critical region
whe n H0 is  not true. Clearly 1 – β is  the probability of getting a t-value
in the critical region when H0 is not true. The quantity 1 – β is called
the power of the test; we want this to be large. For samples from a
normal distribution and all choices of n, P and for any µ, the t-test is
more powerful than any other test of the form (1.1).

The historical choice of significance levels 5, 1 and  0.1 per cent
as the basis for tables was made on the pragmatic grounds that one
does not want to make too many errors of the first kind. It clearly
would be silly to choose a significance level of 50 per cent, for then
we would be equally likely to accept or to reject H0 when it were
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true. Even with conventional significance levels or other small P-
values we may often make errors of the second kind in a t-test (or
any other test) if it has low power for one or more of these reasons:

•  µ is close to the value specified in H0, or
• the sample size is small, or
• we specify a very small P-value for significance, or
• assumptions required for the test to be valid are violated.

How we proceed when a test gives a nonsignificant result depends
on our aims and objectives. In later chapters we consider for some
tests the often non-trivial problem of determining how big an
experiment is needed to ensure reasonable power to achieve given
objectives.

Using small P-values in place of traditional 5, 1 and 0.1 per cent
significance levels gives more freedom in weighing evidence for or
against a null hypothesis. Remembering that P = 0.05 corresponds to
the traditional 5 per cent significance level long used as a reasonable
watershed, one should not feel there is strong evidence against a null
hypothesis if P is much greater than 0.05, but values of P not greatly
exceeding 0.05 often point at least to a case for further studies –
often to a need for larger experiments. In this book we shall usually
discuss the evidence for or against hypotheses in terms of observed
P-values but in some situations where it is appropriate to consider a
hypothetical fixed P-value we use for this the notation α with an
implication that we regard any P-value less than that α as sufficient
evidence to prefer H1 to H 0. This complies with certain long-
established conventions.

The test in (1.1) is called a two-tail test because the critical region
consists both of large positive and large negative values of the
statistic t. More specifically, large positive values of t usually imply
µ > µ0 and large negative values of t imply  µ < µ0.

Specification of H0 and H1 is determined by the logic of a
problem. Two other common choices are

(i) Test H0: µ = µ0 against H1: µ > µ0           (1.3)
(ii) Test H0: µ ≤ µ0 against H1: µ > µ0       (1.4)

bo th  le a d in g to a on e - ta il (he re  r i gh t or up per -ta il ) te s t ,  s in c e  in 
e a c h  case when the t-test is relevant large positive values of t favour
H1, whereas a small positive value or any negative value indicates
that H0 is more likely to hold. The modifications to a one-tail test if
the inequalities in (1.3) or (1.4) are reversed are obvious. The critical
region then becomes the left, or lower, tail.

©2001 CRC Press LLC



Fo r ex a mp le ,  if th e  a mo unt  of a s pe c if ie d imp ur ity  in 100 0g 
in go ts  of zinc produced by a standard process is normally distributed
with a mean of 1.75g and it is hoped that a steam treatment will
remove some of this impurity we might steam-treat a sample of 15
ingots and determine the amount of impurity left in each ingot. If the
steam is free from the impurity the treatment cannot increase the
level and either it is ineffective or it reduces the impurity. It is
therefore appropriate to test

H0: µ = 1.75 against H1: µ < 1.75.

If ingots have an unknown mean impurity level, but a batch is
acceptable only if    ≤ 1.75, the appropriate test is

H0: µ ≤ 1.75 against H1: µ > 1.75.

For the t-test some computer packages give a P-value appropriate
for a one-tail test, e.g. Pr(t ≥ tP) = P. Because the distribution of t is
symmetric one doubles this probability to obtain P for a two-tail test.
The doubling of one-tail probabilities to give the corresponding two-
tail test probability or significance level applies in other parametric
tests such as the F-test for equality of variance based on samples
from two normal populations, but in these cases the two subregions
are not symmetric about the mean. However, in many applications
where relevant statistics have a chi-squared or F-distribution a one-
tail (upper-tail) test is appropriate.

A common misconception is that a low P-value indicates a
departure from the null hypothesis that is of practical importance.
We show why this is not necessarily true in Section 1.4.2. Knowing
exact tail probabilities is, however, useful when comparing the
performance of different tests.

1.3.2   Some nonparametric test statistics

Some statistics used for nonparametric tests have, at least approx-
imately, familiar continuous distributions such as the normal, t, F or
chi-squared distribution. However, we shall use many statistics that
have discontinuous distributions and this raises a further problem
that has a practical impact mainly with small samples.

Example 1.2 (continued)

In this example we want to test the hypothesis that the median θ of survival
times for the population is 200 against the alternative of some other value,

                        i.e. to test H0: θ = 200 against H1: θ  ≠ 200         (1.5)

µ
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A simple test needs only a count of the number of sample values exceeding 200
(recording each as a ‘plus’). By the definition of a random sample and that of a
population median, if we have a random sample from any distribution with
median 200 each sample value is equally likely to be above or below 200. This
means that under H0 the number of plus signs has a binomial B(10, 1/2)
di st r i but i o n.  Th e pr o ba bi l i t y of  ob ser vi ng  r pl u s si g ns  in  10 obs er vat i o ns  wh en 
p = 1/2 is given by the binomial formula

            pr = Pr  ( ) ( )( )X r r= = 10 1
2

10

where the binomial coefficient (1
r
0) = 10!/[r!(10–r)!] and r! is the product of all

integers between 1 and r (called factorial r) and 0! = 1.
The values of these probabilities, pr, for each value of r between 0 and 10,

correct to 4 decimal places, are

R     0        1      2    3    4    5    6     7    8    9 10

P 0.0 010   0.0098 0.0 439 0.1 172 0.2 051 0.2 461 0.2 051 0.1 172 0.0 439 0.0 098 0.0 010

In the data 3 observations exceed 200 so there are 3 plus signs and from the table
above we see that the probability of 3 or less plus signs in a sample of 10 is
0.1172 + 0.0439 + 0.0098 + 0.0010 = 0.1719 when H0 is true. There is clearly no
strong evidence against H0, since the probability of getting 3 or less plus signs or
7 or more plus signs (the two relevant ‘tail’ probabilities for our observed
statistic, the number of plus signs) is 2 × 0.1719 = 0.3438, implying that
departures from the expected number of plus signs, 5, as large or larger than that
observed will occur in slightly more than one-third of all samples when H0 is
t rue.   Thi s sim pl e test,  call ed the sign test,  is discussed m or e ful ly in S ect ion 2.3.

In t-tests all values of P between 0 and 1 are possible, but for the sign test
only certain discrete P-values occur. In this example for a two-tail test the three
smallest are P  = 2 ×  (0.0010) = 0.0020 (rounded to 4 decimal places)
corresponding to 0 or 10 plus; and P = 2 × (0.0010 + 0.0098) = 0.0216
corresponding to 1 or 9 plus; then P = 2 × (0.0010 + 0.0098 + 0.0439) = 0.1094
corresponding to 2 or 8 plus; next comes the observed P = 0.3438. For a one-tail
test these P–values are all halved. Our statistic – the number of plus signs – has
a discrete distribution. This means there is no direct way of obtaining a critical
region of exact size 0.05 for a two-tail test; we must choose between regions of
size 0.0216 or 0.1094.

A device called a randomization procedure has been proposed
with the property that in the long run an error of the first kind occurs
in repeated testing with a probability at some prechosen nominal
level, e.g. at 5 per cent, rather than at an exact level in each case.  In
practice our prime interest is what happens in our one test, so it is
better, when we know them, to use exact levels, rather than worry
about nominal arbitrary levels. There is, however, when there are
discontinuities, a case for forming a tail probability by allocating
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only one half of the probability that the statistic equals the observed
value to the ‘tail’ when determining the size of the ‘critical’ region.
Th is  a ppr oa c h ha s  ma n y adv oc a t e s .  W e  do no t us e  it  in thi s  boo k, 
bu t if it is used this should be done consistently.

Most modern computer programs calculate exact P-values for
many parametric and for some nonparametric tests, but pragmatism
me a n s  we  ma y de p lo re ,  but ca nn ot co mpl e t e l y ign ore ,  th e 
e s ta bl is h e d  concept of nominal levels like 5 or 1 per cent entirely,
for if we have no program that gives an exact P-value we must use
tables where information for many tests (e.g. the Wilcoxon–Mann–
Whitney test described in Section 5.2) is sometimes only given for
such nominal levels, thus forcing users to quote these nominal levels
rather than the exact P-value.

Care is needed in interpreting P-values especially in one-tail tests,
because most computer programs for nonparametric tests quote the
probability that a value greater than or equal to the test statistic will
be attained if this probability is less than 1/2, otherwise they give the
probability that a value less than or equal to the test statistic is
obtained. This is the probability of errors of the first kind in a one-
tail test if we decide to reject at a significance level equal to that
probability. In practice the evidence against H0 is only rated strong
if this ‘tail’ probability is sufficiently small and is in the
appropriate tail! In general, we recommend doubling a one-tail
probability to obtain the actual significance level for a two-tail test,
but see Example 1.3 and the remarks following it. If the test statistic
has a symmetric distribution doubling is equivalent to considering
equal deviations from the mean value of the statistic. If the statistic
does not have a symmetric distribution, taking tails equidistant from
the mean is not equivalent to doubling a one-tail probability.

Example 1.3 shows another difficulty that sometimes arises due to
discontinuities in P-values; namely, that if we only regard the
evidence against H0 as strong enough to reject it if P  ≤ 0.05 (or at
any rate a value not very much greater than this), we may never get
that evidence because no outcome provides it, a problem we have
already alluded to with small experiments.

Example 1.3

In a dental practice, experience has shown that the proportion of adult patients
requiring treatment following a routine inspection is 3/4, so the number of
individuals requiring treatment, S, in a sample of 10 independent patients has a
binomial B(10, 3/4) distribution. Here the probabilities for the various values r of
the statistic S, where r takes integral values between 0 and 10 are given by
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  ( )p S rr r
r r= = = − Pr  ( ) ( ) ( )10 3

4
1

4
10

The relevant probabilities are
__________________________________________________________________
r         0            1             2        3       4      5            6     7    8    9  10 
p r    0.00 00    0 .0 00 0   0 .0 0 04    0 .00 31    0.01 6 2   0 .0 58 4   0 .1 4 60    0 .25 03    0.28 1 6   0 .1 87 7   0 .0 5 63 
__ __ __ ___ __ ___ __ __ ___ __ ___ __ __ ___ __ ___ __ __ ___ __ ___ __ __ ___ __ ___ _

T h us ,  if  we  ha d da t a fo r  ano t h er  pr act i c e and  want ed  f or  th at  pr ac t i c e to te st 
H0 :  p = 3/4 against H1: p > 3/4, the smallest P-value for testing is in the upper tail
and is associated with r = 10. i.e. P = 0.0563, so if we only regard P ≤ 0.05 as
sufficiently strong evidence to discredit H0 such values are never obtained.
There is no problem here for a one-tail test of H0: p = 3/4 against H1: p < 3/4 since
in the appropriate lower tail  P = Pr(S ≤ 4) = 0.0162 + 0.0031 + 0.0004 = 0.0197.
This example also shows a logical difficulty associated with the rule that the
appropr i at e level  f or a two-t ai l  t est  i s twi ce t hat  f or  a one-t ai l test,  for if  we get S =
4 the two-tail test level based on this rule is 2 × 0.0197 = 0.0394. This presents a
dilemma, for there is no observable upper tail area corresponding to that in the
l ower  tail . Thi s means that  if a two- tail  test  is appropri at e we shall  in fact onl y be
likely to detect departures from the null hypothesis if they are in one direction;
there may well be a departure in the other direction, but if so we are highly
unlikely to detect it at the conventional level P ≤ 0.05, and even if we did it
would be for the wrong reason (see Exercise 1.10). This is not surprising when,
as shown above, the appropriate one-tail test must fail to detect it, for generally a
one-tail test at a given significance level is more powerful for detecting
departures in the appropriate direction than is a two-tail test at the same level.
The implication is that we need a larger sample to detect departures of the form
H1: p > 3/4 in this example. Again the fairly large P-value associated with the
result most likely under this H1 only tells us our sample is too small.

The stipulation that the patients be independent is important. If the sample
included three members of the same family it is quite likely that if one of them
were more (or less) likely to require treatment than the norm, this may also be
the case for other members of that family.

Statisticians do not all agree that one should double a one-tail
probability to get the appropriate two-tail significance level [see for
example, Yates (1984) and the discussion thereon]. An alternative to
doubling the one-tail probability is that once the exact size of a one-
tail region has been determined, we should, for a two-tail test, add
the probabilities associated with an opposite tail situated equidistant
from the mean value of the test statistic to that associated with our
observed statistic value. In the symmetric case we have already
pointed out that this is equivalent to doubling the probability, but it
seems inappropriate with a non-symmetric distribution. In Example
1.3 the region r ≤ 4 is appropriate for a lower-tail test. The mean of
the test statistic (the binomial mean np) is 7.5. Since 7.5 – 4 = 3.5,
the corresponding deviation above the mean is 7.5 + 3.5 = 11.
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Because Pr(r ≥ 11) = 0, the two-tail test based on equidistance from
th e  me a n wo uld  ha v e  the  sa me  e xa c t sig ni fi c a n c e  le ve l as  th e  one -
ta il  test.

1.3.3   Permutation tests

Example 1.4

In Section 1.2 we envisaged a situation where four from nine patients are
selected at random to receive a new drug. After three weeks all nine patients are
examined by a skilled consultant who, on the basis of various tests and clinical
observations ‘ranks’ the patients’ conditions in order from least severe (rank 1)
to most severe (rank 9). If there is no beneficial effect of the new drug, what is
the probability that the patients who received the new drug are ranked 1, 2, 3, 4?

Selecting four patients ‘at random’ means that any four are equally likely to
be given the new drug. If there really is no effect one would expect some of
those chosen to end up with low ranks, some with moderate or high ranks, in the
post-treatment assessment. From a group of nine patients there are 126 ways of
selecting a set of four. This may be verified by using the well-known
mathematical result that the number of ways of selecting r objects from n is
n! /[ r! (n – r) !] . We gi ve al l 126 sel ect ions in Tabl e 1. 1. Ignor e for  the moment  the
numbers in brackets after each selection.

If the new drug were ineffective the set of ranks associated with the four
pa t i en t s re cei vi ng  it  ar e eq ua l l y  l i ke l y  t o be any  of  the  126 qu ad r up l e t s li st ed in 

Table 1.1  Possible selections of four individuals from nine labelled 1 to 9 with
the sum of the ranks in brackets.
  _______________________________________________________________

  1,2,3,4 (10)   1,2,3,5 (11)   1,2,3,6 (12)   1,2,3,7 (13)   1,2,3,8 (14)   1,2,3,9 (15)   1,2,4,5 (12)
  1,2,4,6 (13)   1,2,4,7 (14)   1,2,4,8 (15)    1,2,4,9 (16)   1,2,5,6 (14)   1,2,5,7 (15)   1,2,5,8 (16)
  1,2,5,9 (17)   1,2,6,7 (16)   1,2,6,8 (17)    1,2,6,9 (18)   1,2,7,8 (18)   1,2,7,9 (19)   1,2,8.9 (20)
  1,3,4,5 (13)   1,3,4,6 (14) 1,3,4,7 (15)    1,3,4,8 (16)   1,3,4,9 (17)   1,3,5,6 (15)   1,3,5,7 (16)
  1,3,5,8 (17)   1,3,5,9 (18) 1,3,6,7 (17)    1,3,6,8 (18)   1,3,6,9 (19)   1,3,7,8 (19)   1,3,7,9 (20)
  1,3,8,9 (21)   1,4,5,6 (16) 1,4,5,7 (17)    1,4,5,8 (18)   1,4,5,9 (19)   1,4,6,7 (18)   1,4,6,8 (19)
  1,4,6,9 (20)   1,4,7,8 (20) 1,4,7,9 (21)    1,4,8,9 (22)   1,5,6,7 (19)   1,5,6,8 (20)   1,5,6,9 (21)
  1,5,7,8 (21)   1,5,7,9 (22)   1,5,8,9 (23)    1,6,7,8 (22)   1,6,7,9 (23)   1,6,8,9 (24)   1,7,8,9 (25)
  2,3,4,5 (14)   2,3,4,6 (15) 2,3,4,7 (16)    2,3,4,8 (17)   2,3,4,9 (18)   2,3,5,6 (16)   2,3,5,7 (17)
  2,3,5,8 (18)   2,3,5,9 (19) 2,3,6,7 (18)    2,3,6,8 (19)   2,3,6,9 (20)   2,3,7,8 (20)   2,3,7,9 (21)
  2,3,8,9 (22)   2,4,5,6 (17)   2,4,5,7 (18)    2,4,5,8 (19)   2,4,5,9 (20)   2,4,6,7 (19)   2,4,6,8 (20)
  2,4,6,9 (21)   2,4,7,8 (21) 2,4,7,9 (22)    2,4,8,9 (23)   2,5,6,7 (20)   2,5,6,8 (21)   2,5,6,9 (22)
  2,5,7,8 (22)   2,5,7,9 (23) 2,5,8,9 (24)    2,6,7,8 (23)   2,6,7,9 (24)   2,6,8,9 (25)   2,7,8,9 (26)
  3,4,5,6 (18)   3,4,5,7 (19) 3,4,5,8 (20)    3,4,5,9 (21)   3,4,6,7 (20)   3,4,6,8 (21)   3,4,6,9 (22)
  3,4,7,8 (22)   3,4,7,9 (23) 3,4,8,9 (24)    3,5,6,7 (21)   3,5,6,8 (22)   3,5,6,9 (23)   3,5,7,8 (23)
  3,5,7,9 (24)   3,5,8,9 (25)   3,6,7,8 (24)    3,6,7,9 (25)   3,6,8,9 (26)   3,7,8,9 (27)   4,5,6,7 (22)
  4,5,6,8 (23)   4,5,6,9 (24) 4,5,7,8 (24)    4,5,7,9 (25)   4,5,8,9 (26)   4,6,7,8 (25)   4,6,7,9 (26)
  4,6,8,9 (27)   4,7,8,9 (28)   5,6,7,8 (26)    5,6,7,9 (27)   5,6,8,9 (28)   5,7,8,9 (29)   6,7,8,9 (30)
  ___________________________________________________________________________
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 Table 1.2  Sums of ranks of four items from nine.
_______________________________________________________

Sum of ranks                  10  11  12  13  14  15  16  17  18  19  20
Number of occurrences      1    1    2    3    5    6    8    9  11  11  12

Sum of ranks      21  22  23  24  25  26  27  28  29 30
Number of occurrences    11  11    9    8    6    5    3    2    1     1

_______________________________________________________

Table 1.1. Thus, if there is no treatment effect there is only 1 chance in 126 that
t h e f o u r  sh o w i ng  gr e at e s t  im p r o v em e n t  (r a n k e d 1,  2,  3,  4 i n  or de r  of  co n - 
d i t i o n  after treatment) are the four patients allocated to the new drug. It is more
plausible that such an outcome may reflect a beneficial effect of the drug.

In a hypothesis testing framework we have a group of 4 treated with the new
drug and a group of 5 (the remainder) given nothing or a standard treatment in
what is called a two independent sample experiment. We discuss such experi-
ments in detail in Chapter 5. The most favourable evidence for the new drug
would be that those receiving it are ranked 1, 2, 3, 4; the least favourable that
they are ranked 6, 7, 8, 9. Each of these extremes has a probability of 1/126 of
occurring when there is no real effect.   

If we consider a test of

H0: new drug has no effect

against the two-sided alternative

H1: new drug has an effect (beneficial or deleterious)

the outcome 1, 2, 3, 4 and 6, 7, 8, 9 are extremes with a total associated prob-
ability P = 2/126 ≈ 0.0159 if H0 is true. In classic testing terms we might speak
of rejecting H0 at an exact 1.59 per cent significance level if we observed either
of these outcomes. This small P-value provides strong evidence that the new
drug has an effect. What if the patients receiving the new drug were ranked 1, 2,
3, 5? Intuitively this evidence looks to favour the new drug, but how do we test
this?

We seek a st ati st ic,  i.e.  som e funct i on of the four  ranks,  that  has a low val ue if
all ranks are low, a high value if all ranks are high and an intermediate value if
there is a mix of ranks for those receiving the new drug. An intuitively
reasonable choice is the sum of the four ranks. If we sum the ranks for every
quadruplet in Table 1.1, and count how many times each sum occurs we easily
work out the probability of getting any particular sum, and hence the distribution
of our test statistic when H0 is true.

In Table 1.1 the number in brackets after each quadruplet is the sum of the
ranks for that quadruplet, e.g. for 1, 2, 7, 9 the sum is 1 + 2 + 7 + 9 = 19. The
lowest sum is 10 for 1, 2, 3, 4 and the highest is 30 for 6, 7, 8, 9. Table 1.2 gives
the numbers of quadruplets having each given sum.

Because there are 126 different but equally likely sets of ranks the probability
that the rank sum statistic, which we denote by S, takes a particular value is
obtained by dividing the number of times that value occurs by 126. Thus, for
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example, Pr(S = 17) = 9/126 ≈ 0.0714. To find what outcomes are consistent
with a P-value not exceeding 0.05 we select a region in each tail (since H1

implies a two-tail test) with a total associated probability not exceeding 0.025.
Clearly, if we select in the lower tail S = 10 and 11, the associated probability is
2/126 and if we add S = 12 the associated total probability, i.e. Pr(S ≤  12) =
4/ 12 6 ≈ 0. 0 31 7.  Th i s ex ce eds  0. 02 5,  so our  lo we r - t ai l  cr i t i ca l  r eg i on  sho ul d  be
S ≤ 11 with P = 2/126 ≈ 0.0159. By symmetry, the upper-tail region is S ≥ 29
also with P = 0.0159. Thus, for a two-tail test the largest symmetric critical
region with P ≤ 0.05 is S = 10, 11, 29, 30 and the exact P = 4/126 ≈ 0.0317.

Some statisticians suggest choosing a critical region with probability as close
as possible to a target level such as P = 0.05 rather than the more conservative
choice of one no larger. In this example adding S = 12 and the symmetric S = 28
to our critical region gives a two-tail P = 8/126 ≈ 0.0635. This is closer to 0.05
than the size (0.0317) of the region chosen above. We reaffirm that ideally it is
best to quote the exact P-value obtained and point out again that the practical
argument (though there are further theoretical ones) for quoting nominal sizes
such as 0.05 is that many tables give only these, although a few, e.g. Hollander
and Wolfe (1999, Table A6) give relevant exact P-values for many sample size
c o m b i n a t i o n s  a n d  d i f f e r e n t  v a l u e s  o f  S .  C o m p u t e r  p r o g r a m s  g i v i n g  e x a c t 
P - values over com e any diff icul ty if  t he latt er type of  t abl e is not readi l y avai l able. 

Unless there were firm evidence before the experiment started that an effect,
if any, of the new drug could only be beneficial, a two-tail test is appropriate.
We consider a one-tail test scenario in Exercise 1.5.

In Section 1.2 we suggested that in preliminary testing of drugs for treating a
rare disease our population may be in a strict sense only the cases we have.
However, if these patients are fairly typical of all who might have the disease, it
is not unreasonable to assume that findings from our small experiment may hold
for any patients with a similar condition providing other factors (nursing
attention, supplementary treatments, consistency of diagnosis, etc.) are
comparable. When our experiment involves what is effectively the whole
population and the only data are ranks, a permutation test is the best test
available. Random allocation of treatments is essential for the test to be valid;
this may not always be possible in the light of some ethical considerations that
we discuss in Section 1.5.

Tests based on permutation of ranks or on permutation of certain
functions of ranks (including as a special case the original
measurements) are central to nonparametric methods and are called
permutation or randomization tests. Not only do many of these
te s t s  ha v e  a c o mm on s e n s e  in tu it ive  a ppe a l  but th e y co mp ly wi th
w e ll  established theoretical criteria for sound inference. This
theoretical basis is discussed in the literature and is summarized by
Hettmansperger and McKean (1998) for many different procedures.

Sm a l l sc a le  te s t s  of a dru g li ke  th a t in  Ex a m pl e  1. 4  ar e  of te n 
c a ll e d  pi lo t stu di e s .  Effi c a c y  of  a  dr ug  in w id e r us e  ma y  de pe nd  on
fa c t or s  like severity of disease, treatment being administered
sufficiently early, the age and sex of patients, etc., all or none of
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which may be reflected in a small group of ‘available patients’. An
encouraging result with the small group may suggest further
experiments are desirable; a not very small P-value associated with
w h a t  look s  to be  a n int uit iv e l y e nc our a g in g re s ult  ma y  in di c a t e  th a t
a  larger experiment is needed to tell us anything useful.

1.3.4   Pitman efficiency

We pointed out in Section 1.3.1 that the power of a test depends
upon the sample size, n, the choice of the largest P-value to indicate
significance in the classical sense (usually denoted in power studies
by α), the magnitude of any departure from H 0 and whether
assumptions needed for validity hold. Most intuitively reasonable
tests have good power to detect a true alternative that is far removed
from the null hypothesis providing the data set is large enough. We
sometimes want tests to have as much power as possible for
detecting alternatives close to H0 even when these are of no practical
importance because such tests are usually also good at detecting
la rg e r  de pa rtu re s ,  a de s ir a b le  st a t e  of affa ir s .   I f α  is  th e  pro ba b il it y
of  a  Typ e  I e rro r an d β  is  th e  pro ba b il it y of a Typ e  II er ror  (th e 
po w e r is 1 – β), then the efficiency of a test T2 relative to a test T1 is
the ratio n1/n2 of the sample sizes needed to obtain the same power
for the two tests with these values of α, β. In practice, we usually fix
α  a t so me  P-v a l ue  ap pr opr ia te  to  the  pr ob le m  a t ha n d;  th e n  β 
de pe nd s  on the particular alternative as well as the sample sizes.
Fresh calculations of relative efficiency are required for each
particular value of the parameter or parameters of interest in H1 and
for each choice of α, β.

Pitman (1948), in a series of unpublished lecture notes, introduced
the concept of asymptotic relative efficiency for comparing two
tests. He considered sequences of tests T1, T2 in which we fix α but
allow the alternative in H1 to vary in such a way that β  remains
constant as the sample size n1 increases. For each n1 we determine n2

such that T2 has the same β for the particular alternative considered.
Increasing sample size usually increases the power for alternatives
closer to H0, so that for large samples Pitman studied the behaviour
of the efficiency, n1/n2, for steadily improving tests for detecting
small departures from H0. He showed under very general conditions
that in these sequences of tests n1/n2 tended to a limit as n1 → ∞, and
more importantly, that this limit which he called the asymptotic
relative efficiency (ARE) was the same for all choices of α , β .
Bahadur (1967) proposed an alternative definition that is less widely
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used, so for clarity and brevity we refer to Pitman’s concept simply
as the Pitman efficiency. The concept is useful because when
comparing two tests the small sample relative efficiency is often
close to, or even higher, than the Pitman efficiency

The Pitman efficiency of the sign test relative to the t-test when
the latter is appropriate is 2/π ≈ 0.64. Lehmann (1975, p.173) shows
that for samples of size 10 and a wide range of values of the median
θ relative to the value θ0 specified in H0 with α fixed, the relative
efficiency exceeds 0.7, while for samples of 20 it is nearer to, but
still above, 0.64. Here Pitman efficiency gives a pessimistic picture
of the performance of the sign test at realistic sample sizes.

We have already mentioned that when it is relevant and valid the
t-test for a mean is the most powerful test for any mean specified in
H0 against any alternative. When the t-test is not appropriate, other
tests may have higher efficiency.  Indeed, if our sample comes from
th e  do ubl e  exp on e n tia l dis tr ib uti on ,  w hi c h  ha s  muc h lo nge r ta i ls 
th a n  the normal, the Pitman efficiency of the sign test relative to the
t-test is 2. That is, a sign test using a sample of n is (at least for large
samples) as efficient as a t-test applied to a sample of size 2n.

1.4   ESTIMATION

1.4.1   Confidence intervals

The sample mean is widely used as a point estimate of a population
mean. The sample mean varies between samples so we need a
measure of the precision of this estimate. A confidence interval is
one such measure. One way to specify a 100(1 – α) per cent
confidence interval for a parameter θ is to define it as the set of all
values θ for which, if any such θ were specified in H0, for the given
data the test would lead to a P  > α. Thus, if a confidence interval
includes the value of a parameter that is specified in H0 there is no
strong evidence against H0, whereas a value specified in H0 that lies
well outside that confidence interval indicates strong evidence
against H0. If a P-value notation is preferred, setting P = P0 as the
critical value for determining significance, one may use the notation
P0 in place of α.

Example 1.5

We saw in Section 1.3.2, Example 1.2 that for a sign test for a median using a
sample of 10 and a two-tail test at the 2.16 per cent level we accept H0 if we get
between 2 and 8 plus signs.
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Consider the data in Example 1.2, i.e.

     49,   58,   75,   110,   112,   132,   151,   276,   281,   362*

where the asterisk represents a censored observation.  Clearly we have between
2 and 8 plus signs if the median specified in H0 has any value greater than 58 but
less than 281, so the interval (58, 281) is a 100(1 – 0.0216) = 97.84 per cent
confidence interval for θ, the population median survival time. Since we would
retain an H0 that specified any value for the median greater than 58 but less than
281 there is considerable doubt about the population median value. It is almost
an understatement to say our estimate lacks precision.

Another common interpretation of a 100(1 – α ) per cent
confidence interval is in terms of the property that if we form such
intervals for repeated samples, then in the long run 100(1 – α) per
c e nt  of the s e  in te rva ls  wo ul d con ta in (o r cov e r ) the  true  but
un kn ow n θ. Confidence intervals are useful because:

• Th e y  te ll  us  s om e t hin g abo ut  the  pr e c i s i on  wi th  wh ic h we 
e s ti ma te  a parameter.

• They help us decide (a) whether a significant result is likely to
be of practical importance or (b) whether we need more data
before we decide if it is.

We elaborate on these points in Section 1.4.2.
A useful way of looking at the relationship between hypothesis

testing and estimation is to regard testing as answering the question:

• Given a hypothesis H0: θ = θ0 about, say, a parameter θ, what is
the probability (P-value) of getting a sample as or less likely
than that obtained if  θ0 is indeed the true value of θ?

whereas estimation using a confidence interval answers the question:

• Gi ve n a  s a m ple ,  wha t va lue s  of θ a re  c ons is te n t wi th th e 
s a mp le  data in the sense that they lie in the confidence interval?

1.4.2   Precision and significance and practical importance

Example 1.6

Doctors treating hypertension are often interested in the decrease in systolic
blood pressure after administering a drug. When testing an expensive new drug
they might want to know whether it reduces systolic blood pressure by at least
20 mm Hg. Such a minimum difference could be of practical importance. Two
clinical trials (I and II) were carried out to test the efficacy of a new drug (A) for
reducing blood pressure. A third trial (III) was carried out with a second new
drug (B). Trial I involved only a small number of patients, but trials II and III

©2001 CRC Press LLC



 

involved larger numbers. The 95 per cent confidence intervals for mean blood
pressure reduction (mm Hg) after treatment at each trial were:

Drug A Trial I (3, 35)
Drug A Trial II (9, 12)
Drug B Trial III (21, 25)

In each trial a hypothesis H0: drug does not reduce blood pressure would be
rejected at a 5 per cent significance level (because the confidence intervals do
not include zero), implying strong evidence against H0. Trial I is imprecise; we
would accept in a significance test at the 5 per cent level any mean reduction
bet ween 3 and 35 uni ts. The for m er  is not  of  practi cal impor t ance to a doct or ; the
latter is. This small trial only answers questions about the ‘significant’ mean
reduction with low precision. The larger Trial II, using the same drug, indicates
an average reduction between 9 and 12 units, a result of statistical significance
but not of practical importance in this context. Compared to Trial I, it has high
precision. Other relevant factors being unchanged, increasing the size of a trial
increases the precision, this being reflected in shorter confidence intervals.  Trial
III using drug B also has high precision and tells us the mean reduction is likely
to be between 21 and 25 units, a difference of practical importance. Drug B
appears to be superior to Drug A.

For a given test, increasing sample size increases the probability
that small departures from H0 may provide strong evidence against
H0. The art of designing experiments is to take enough observations
to ensure a good chance of detecting with reasonable precision
departures from H0 of practical importance, but to avoid wasting
re s o ur c e s  by ta k in g s o ma n y ob s e r va tio ns  tha t  triv ia l de p a r tur e s 
fr om  H0 provide strong evidence against it. An introduction to
sample size calculation is given by Kraemer and Thiemann (1987)
and it is also discussed with examples by Hollander and Wolfe
(1999). Practical design of experiments is best done with guidance
from a trained statistician although many statistical software
packages include programs giving recommendations in specific
circumstances. In later chapters we show for some tests how to find
sample sizes needed to meet specified aims.

Our discussion of hypothesis testing and estimation has used the
frequentialist approach to inference. The Bayesian school adopt a
different philosophy, introducing subjective probabilities to reflect
prior beliefs about parameters. Some statisticians are firm adherents
of one or other of these schools, but a widely accepted view is that
each has strengths and weaknesses and that one or the other may be
preferred in certain contexts. However, for the procedures we
describe sensible use of either approach will usually lead to similar
conclusions despite the different logical foundations, so for consis-
tency we use the frequentialist approach throughout.
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1.5   ETHICAL ISSUES

Ethical considerations are important both in general working
practices (Gillon, 1986) and in the planning and conduct of
investigations (Hutton, 1995). The main principles are respect for
autonomy, nonmaleficence, beneficence and justice. Many research
proposals need to be assessed by ethical committees before being
approved. This applies particularly in the field of medicine but
increasing attention is being given to ethical issues in environ-
mentally sensitive fields like biotechnology and also in the social
sciences where questions of legal rights or civil liberties may arise.
The role of statistics and statisticians in what are known as research
ethics committees has recently been discussed by Williamson et al.
(2000). The related issue of the development of guidelines for the
design, execution and reporting of clinical trials is described by Day
and Talbot (2000).

It would be unacceptable to study some issues by allocating
individuals to one of the possible groups at random as we did in
Example 1.4. For instance, in a study of the effects of smoking on
he a l th ,  one  co ul d not  ins t ru c t  in di vid ua ls  to  s mok e  or  to  a bs t a i n
fr om  smoking as this disregards the autonomy of the study
pa rt ic ipa nt s .  In  s uc h  a  si tu a t ion ,  the  ind ivi du a l’ s  ch oic e  of wh e t he r 
to  smoke cigarettes or not must be respected, and an alternative type
of study which makes this possible must be chosen.

Many ethical issues are less clear and in practice until recently
some have often been ignored. At the early stages of development, a
new treatment for an illness may be associated with harmful side-
effects and may clash with the principle of nonmaleficence. When
the benefits of a new treatment are fairly clear, many doctors reason
from the principle of beneficence that it is wrong to deny patients
care by giving them the previously standard treatment. If early
results from a trial indicate that one treatment is clearly superior, it is
unethical to allow the trial to continue.

All new studies should be based on information gleaned from a
comprehensive search of findings from related work by using, for
instance, MEDLINE, a continually updated source of information on
articles from medical and biological journals. It is unethical to
conduct research that ignores previous work that may be relevant
because it is then likely that any or all of time, money and scarce
resources will not be used to best effect. The results of literature
searches nevertheless need to be interpreted with caution. Studies
w i th  inte re s ti ng  find in gs  ar e  mor e  lik e l y to ap pe a r in  pr in t,  le a d ing 
to  publication bias (see Easterbrook et al., 1991).
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When there is little relevant prior knowledge it may be prudent to
conduct an initial pilot study to highlight potential problems that
might arise. Results from a pilot study can also be useful in choosing
an appropriate number of participants for the main study. A
sufficiently large number should be involved even at the pilot stage
to have a reasonable chance of finding the expected difference
between the two groups if it really exists. The intended method of
s t a t is tic a l  an a l ys is  al s o in fl ue n c e s  the  s a mp le  si z e  re qu ir e me nt . 
Sm a l l studies often fail to yield useful findings and are thus a poor
use of resources. On the other hand, resources can be wasted by
recruiting more participants than needed. In medical research, in
either situation more patients than necessary are at risk of receiving
an inferior treatment. Careful planning should consider the
composition of the sample with respect to age, sex, ethnic group, etc.
a s  thi s  w il l e na bl e  pro ble ms  unde r inv e s ti ga t io n to be  an s w e re d
mo re  effectively.

In medical investigations each potential participant should receive
a written information sheet that outlines the main points about the
study. Ideally, complete information about the possible efficacy and
s i de -e ffe c t s  of th e  tre a t me n ts  in vo lv e d in  th e  st udy  s hou ld  be  giv e n
to  the patient. In practice, not all patients will understand or even
wish to receive details beyond those given in the information sheet,
particularly in a sophisticated trial. In this situation, the patient
should be given a choice about what information is supplied. Once a
tr ia l ha s  be e n  c om ple te d,  pa ti e nt s  who  fe e l tha t the y ha v e  re c e i ve d
a n  effective treatment for their health problem may wish to continue
with it. Financial constraints and/or the concerns of the patient’s
general practitioner may prevent long-term use of the treatment; this
should be discussed in advance as part of the patient information.

The autonomy of the patient should be respected and the patient
should only make a decision on whether or not to enter the trial
following careful consideration of the information provided. This is
particularly important with tests for inherited diseases that only
become evident in later life. A positive finding may distress the
patient, have serious implications for any children and prejudice life
assurance proposals. Patients should give informed written consent
to the investigator(s) prior to being entered into a trial and they
should be allowed to withdraw from the trial at any time.

It has been suggested, for instance, that in a comparison of two
treatments patients who do not wish to be entered into a randomized
controlled trial should be allowed instead to choose which of the
treatments they wish to receive. Doing this would produce three
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groups: the patients who request Treatment A, the patients who
request Treatment B and those who are randomized. This must be
taken into account in any statistical analysis.

D a ta  c oll e c te d  in stu di e s  sh ou ld be  ke p t co nfi de nti a l .  In th e 
U n it e d  Kingdom, for example, computer records should adhere to
the principles laid down in the Data Protection Act. Data used for
statistical purposes should not contain patients’ names or addresses.

Suppose that in the situation described in Example 1.4, there were
hi gh  hope s  tha t th e  ne w  dr ug  migh t gre a t ly  re li e ve  s uffe ri ng  in 
s e ve re  cases but only enough doses were available to treat four
patients. The principles of beneficence and justice may suggest that
the four patients to receive the drug should be those with the most
severe symptoms. In a situation like this, the drug may reduce
suffering, but such patients may still, after treatment, be ranked 6, 7,
8, 9 because, although their condition may have improved, their
symptoms may still be more severe than those of patients not given
the drug. The consequent statistical difficulties might be overcome
by basing ranks not on relative condition after treatment but on
‘degree of improvement’ shown by each patient.

At the other extreme, an experimenter might allocate the new drug
to the patients with the least severe symptoms. From a research point
of view this is misleading as even if it were ineffective or no better
than an existing treatment, these patients may still be ranked 1, 2, 3,
4 after treatment. However, if it is likely that only patients in the
early stages of the disease will benefit it will be more appropriate
from an ethical viewpoint to give the new drug to these patients.

Even when patients are allocated to treatments at random and we
find strong evidence to suggest we should abandon a hypothesis of
‘no treatment effect’, the statistically significant outcome may be of
no practical importance, or there may be ethical reasons for ignoring
it. A doctor would be unlikely to feel justified in prescribing the new
treatment if it merely prolonged by three days the life expectation of
terminally-ill patients suffering considerable distress, but may from
the principle of beneficence feel bound to prescribe it if it
substantially improved survival prospects and quality of life.

An example of unethical statistical behaviour is that where a
statistician performs a number of competing tests – parametric or
nonparametric – each producing a different P-value, but only
publishes the P-value that is most favourable to the conclusion he or
she wants to establish, regardless of whether it is obtained by using
an appropriate test.  This is unethical suppression of evidence.
 Et hi c a l c on s id e r a t ion s  are  re l e va nt  no  ma t te r  w he t he r pa r a m e tr ic 
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or nonparametric methods of data analysis are used and they may
influence not only how an experiment is carried out (the
experimental design) but also what inferences are possible and how
these should be made.

1.6   COMPUTERS AND NONPARAMETRIC METHODS

Software that rapidly computes exact P-values for permutation tests
for small to medium-sized samples and that provides accurate
estimates of tail probabilities by simulation for larger samples has
revolutionized application of nonparametric methods. The software
and hardware situation is changing rapidly. At the time of writing
StatXact 4.0 distributed by Cytel Software Corporation, Cambridge,
MA gives exact P-values or Monte Carlo estimates of these for a
range of tests. Large sample or asymptotic results are also given and
there are facilities for computing confidence intervals and also the
power of some of the tests for assigned sample sizes and specified
alternative hypotheses. Some of the exact tests in StatXact are now
available as options in the general statistical packages SAS and
SPSS.

Testimate, distributed by IDV Daten-analyse und Versuchs-
planung, Munich, Germany has considerable overlap with StatXact
but some methods are included in one but not both these packages.

There are specialized programs dealing with particular aspects of
the broad fields of nonparametric and semiparametric inference.
These include LogXact and EGRET which are especially relevant to
logistic regression, a topic not covered in this book. Popular general
statistical packages such as Stata, Minitab and the standard versions
of  SPS S,  SA S,  et c . ,  inc lud e  so me  no np a r a me tr ic  pr oc e du re s .  In  a 
fe w  of these exact tests are given but many rely heavily on
asymptotic results sometimes with insufficient warning about when,
particularly with small or unbalanced sample sizes, these may be
misleading.

S-PLUS is particularly useful for the bootstrap described in
Chapter 11. Monte Carlo approximations to exact P-values or for
bootstrap estimation can often be obtained from standard packages
by creating macros that make use of inbuilt facilities for generating
many random samples with or without replacement.

Developments in statistical computer software are rapid and much
of what we say about this may be out of date by the time you read it.
Readers should check advertisements for statistical software in
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relevant journals and look for reviews of software in publications
such as The American Statistician to trace new products.

The efficiency of StatXact programs stems from the use of
algorithms based on the work of Mehta and his co-authors in a series
of papers including Mehta and Patel (1983; 1986), Mehta, Patel and
Tsiatis (1984), Mehta, Patel and Gray (1985), Mehta, Patel and
Senchaudhuri (1988, 1998). Similar and other efficient algorithms
a r e  us e d in  Te s t im a te ,  but  und e rs ta ndi ng  the  al gor it hm s  is  not 
ne e d e d  to use these packages.

Users should test all programs using examples from this book and
other sources to ensure that they can interpret the output. In some
c a s e s  the  outp ut  w ill  ine v it a b ly be  di ffe re nt ,  be i ng ei th e r mo re  or 
le s s  extensive than that given in the source of the examples. For
instance, output may give nominal (usually 5 or 1 per cent)
significance levels rather than exact P-values.

Appropriate software is virtually essential for implementation of
all but the simplest methods. This book is mainly about long-
established methods, but only modern computing facilities allow us
to use them in the way we describe

1.7   FURTHER READING

Hollander and Wolfe (1999), Conover (1999) and Gibbons and
Chakraborti (1992) give more background for many of the
procedures described here. Each book covers a slightly different
ra ng e  of to pic s ,  but al l a re  re c o mm e nd e d  for th os e  w ho  wa nt  to 
ma ke  a more detailed study of nonparametrics. Daniel (1990) is a
general book on applied nonparametric methods. A moderately
advanced mathematical treatment of the theory behind basic
nonparametric methods is given by Hettmansperger and McKean
(1998). Randles and Wolfe (1979) and Maritz (1995) are other
recommended books covering the theory at a more advanced
mathematical level than that used here. Two classics are the
pioneering Bradley (1968) and Lehmann (1975). The latter repays
careful reading for those who want to pursue the logic of the subject
in more depth without too much mathematical detail. Books on
applications in the social sciences include Marascuilo and
McSweeney (1977), Leach (1979) and more recently Siegel and
Castellan (1988), an update of a book written by Siegel some 30
years earlier. Noether (1991) uses a nonparametric approach to
introduce basic general statistical concepts. Although dealing
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ba s i c a lly  w ith  ra n k c or re l a t io n me t hod s ,  K e nd a l l a nd  G ibb on s 
(1 99 0)  give an insight into the relationship between many
nonparametric methods. Agresti (1984; 1990; 1996) and Everitt
(1992) give detailed accounts of various models, parametric and
nonparametric, used in categorical data analysis. A sophisticated
treatment of randomization tests with emphasis on biological
applications is given by Manly (1997). Good (1994) and Edgington
(1995) cover randomization and permutation tests. Sprent (1998)
extends the treatment of some of the topics in this book and shows
how they interconnect with other aspects of statistical analysis.
Books dealing with the bootstrap are Efron and Tibshirani (1993),
Davison and Hinkley (1997) and Chernick (1999). Many
no np a r a me tr ic  pr oc e du re s  us e  ra nk s ,  an d th e  the ory  be h ind  ra nk 
te s t s  is given by Hájek, Sidak and Sen (1999). There are a number of
advanced texts and reports of conference proceedings that are mainly
for specialists.

EXERCISES

1.1 As in Example 1.1, suppose that one machine produces rods with
diameters normally distributed with mean 27 mm and standard deviation
1.53 mm, so that 2.5 per cent of the rods have diameter 30 mm or more. A
second machine is known to produce rods with diameters normally
distributed with mean 25 mm and 2.5 per cent of rods it produces have
diameter 30 mm or more. What is the standard deviation of rods produced
by the second machine?

1.2 A library has on its shelves 114 books on statistics. I take a random sample
of 12 and want to test the hypothesis that the median number of pages, θ,
in all 114 books is 225. In the sample of 12, I note that 3 have less than
225 pages. Does this justify retention of the hypothesis that θ = 225? What
should I take as the appropriate alternative hypothesis? What is the largest
critical region for a test with P ≤ 0.05 and what is the corresponding exact
P-level?

1.3 The numbers of pages in the sample of 12 books in Exercise 1.2 were:

126  142  156  228  245  246  370  419  433  454  478  503

Find a confidence interval at a level not less than 95 per cent for the
median θ.

1.4 Use the sum of ranks given in brackets after each group in Table 1.1 to
verify the correctness of the entries in Table 1.2.

1.5 Suppose that the new drug under test in Example 1.4 has all the ingredients
of a standard drug at present in use and an additional ingredient which has
proved to be of use for a related disease, so that it is reasonable to assume
that the new drug will do at least as well as the standard one, but may do
better.  Formulate the hypotheses leading to an appropriate one-tail test. If
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the post-treatment ranking of the patients receiving the new drug is 1, 2, 4,
6 assess the strength of the evidence against the relevant H0.

1.6 An archaeologist numbers some articles 1 to 11 in the order he discovers
them.  He selects at random a sample of 3 of them. What is the probability
that the sum of the numbers on the items he selects is less than or equal to
8?  (You do not need to list all combinations of 3 items from 11 to answer
this question.) If the archaeologist believed that items belonging to the
more recent of two civilizations were more likely to be found earlier in his
dig and of his 11 items 3 are identified as belonging to that more recent
civilization (but the remaining 8 come from an earlier civilization) does a
rank sum of 8 for the 3 matching the more recent civilization provide
reasonable support for his theory?

1.7 In Section 1.4.1 we associated a confidence interval with a two-tail test.
As well as such two-sided confidence intervals, one may define a one-
sided confidence interval composed of all parameter values that would not
be rejected in a one-tail test. Follow through such an argument to obtain a
confidence interval at level not less than 95 per cent based on the sign test
criteria for the 12 book sample values given in Exercise 1.3 relevant to a
test of H0: θ = θ0 against a one-sided alternative H1: θ > θ0.

1.8 We wish to compare a new treatment with a standard treatment and only 6
patients are available. We allocate 3 to each treatment at random and after
an appropriate interval rank the patients in order of their condition. What is
the situation (i) for testing H0: treatments do not differ  against H1: the new
treatment is better and (ii) for testing the same H0 against H1: the two
treatments differ in effect?

1.9  In Section 1.1.1 we stated that if all observations in a not-too-small sample
are zero or positive and the standard deviation is appreciably greater than
the mean, then the sample is almost certainly not one from a normal
distribution. Explain why this is so. (Hint: consider the probability that a
normally distributed variable takes a value that differs from the mean by
more than one standard deviation.)

1.10 In Example 1.3 we remarked that a situation could arise where we might
reject a null hypothesis for the wrong reason. Explain how this is possible
in that example.

1.11 State the appropriate null hypothesis for the example from the book of
Daniel about diet (p.7). How could you use ranks to calculate the
probability that those receiving the diet of pulses were ranked 1, 2, 3, 4?
Obtain this probability assuming that there were 20 young men involved
altogether.

1.12 In Section 1.3.1 we pointed out that 5 tosses of a coin would never provide
evidence against the hypothesis that a coin was fair (equally likely to fall
heads or tails) at a conventional 5 per cent significance level. What is the
least number of tosses needed to provide such evidence using a two-tail
test, and what is the exact P-value? If in fact a coin that is tossed this least
number of times is such that Pr(heads) = 2/3 what is the probability of an
error of the second kind?  What is the power of the test?
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2
Centrality inference for single samples

2.1   USING MEASUREMENT DATA

In this book we illustrate the logic of many inference methods using
examples where, with a few exceptions, we discuss various aspects
under the headings:

The problem
Formulation and assumptions

Procedure
Conclusion
Comments

Computational aspects

The summary and exercises at the ends of chapters are preceded
by indicative but not exhaustive lists of fields of application.  

This chapter covers inferences about centrality measures for a
single sample. These provide simple examples for both parametric
and nonparametric methods, although in most real problems we
compare two or more samples. The methods then used are often
easily described as extensions of or developments from those for
single samples.    

2.1.1   Some general considerations

Choosing the right inference procedure depends both on the type of
data and the information we want. In this chapter the initial data are
usually measurements but some of the methods are directly
applicable to other kinds of data such as ranks, or various types of
counts.  

In Example 1.2 we wanted to make inferences about average
survival time, but there was the complication that the precise
survival time was not known for one patient. The sign test let us use
the partial information we had for that patient but the test used only
a small part of the total information available; namely, whether or
not each observation was above or below 200. We could have
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carried out the test if we had been given only this partial
information. Even when data sets are measurements occasionally we
do as well or better with nonparametric methods that do not use all
the available information. We develop several nonparametric tests in
this chapter and compare their performance using simple data sets.  

In Sections 2.1 — 2.4 we show how to compute and interpret some 
exact P-values and confidence intervals. In practice even the best
currently available software gives exact P-values only for small to
medium-sized samples. We present in Section 2.5 asymptotic results
that often provide good approximations for larger samples. If
programs for exact tests are not available a sensible compromise is
to use Monte Carlo sampling to get good estimates of exact P-
values.  StatXact provides this facility, but if this package is not
available one may still create the relevant samples for Monte Carlo
approximation using any software that allows one to generate
rapidly many random samples.

2.1.2   A raw-data randomization test for centrality  

Pitman (1937a) developed ideas put forward by Fisher (1935) for a
randomization test for hypotheses about the mean or median of a
symmetric distribution when we have a random sample of
observations from a population that has that distribution. For a
symmetric distribution if the mean and median both exist they
coincide at the point of symmetry. A few symmetric distributions
have no mean, but this complication is seldom relevant in real data
problems, so for the symmetric case we tend to use the terms
population mean or median almost as though they are inter-
changeable. For asymmetric (skew) distributions the mean and
median are no longer equal. Pitman s prime aim was to show that his
test, which only assumed symmetry and did not require the
distribution to belong to a specific family such as the normal family
would, at least for samples that were not very small, lead to similar
inferences to those based on a t-test which requires a normality
assumption for strict validity. In effect he verified an earlier
assertion by Fisher that using the t-test or other normal theory tests
gave a good approximation to an exact randomization test even
when the normality assumption was no longer valid. This justified
continued use of the then easier-to-compute t-test based inference.
Without modern computers the calculations for the Pitman test were
prohibitive except for trivially small samples. The test is seldom
used in practice (see Comment 5 on Example 2.3 for some reasons
why) but we describe it in some detail partly because of its historical
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interest but also because it highlights several principles that are taken
into account in more useful nonparametric methods.   

We call the test a Pitman test, but the names raw data test and
Fisher–Pitman test are also used. Modern computer packages such
as StatXact or Testimate make computation easy. However,
illustrating the test with a simple numerical example helps us
understand its main features and comparing it with other tests
highlights some weaknesses.

The basic idea behind the test is that if a random sample is from a
symmetric distribution with unknown mean or median θ then
symmetry implies it is equally likely that any sample value will
differ from θ by some positive amount d, say, or by the same
negative amount, –d, for all values of d. The test is valid even if the
observations x1, x2, . . . , xn are not each from the same distribution
providing they are independent of one another and all have
symmetric distributions with the same value for θ. This situation
might arise, for example, if n observatories each independently
measure the diameter of the same star. Because each observatory
uses different equipment, some of it more sophisticated than other
equipment, it is likely that the precision with which observations are
made will differ between observatories. If one assumes that these
measurements are all ‘centred’ symmetrically about the true
diameter, θ, but differ only in the (usually unknown) spread about θ
and makes no further assumptions, the Pitman test is still valid.

 Suppose n observations   

x1,  x2,  . . . ,  xn

satisfy the conditions above and we want to test the hypothesis that
the median θ has a fixed value θ0, i.e. H0: θ = θ0 against the two-
sided alternative H1: θ ≠ θ0; the test proceeds on the basis that under
H0 the sign of each of the n differences

di = xi –  θ0, i = 1, 2, . . . , n

is equally likely to be positive or negative. Clearly, when H0 does
not hold there is more likely to be a preponderance either of positive
or of negative signs associated with the di. The situation has
similarities to the sign test scenario in Example 1.2, but there we
considered only the numbers of positive or negative signs and not
the magnitudes of the associated di and this required no assumption
of symmetry for its validity.  
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Example 2.1
The problem. The heart rate (beats per minute) when standing was recorded

for seven members of a tutorial group. We assume that in the population of such
students the distribution of heart rates when standing is symmetric. Given
observations of 73, 82, 87, 68, 106, 60 and 97 test the hypothesis H0: θ = 70
against the alternative H1: θ  > 70  using the Pitman test.

Formulation and assumptions.  Symmetry implies that under H0 sample
values should have a near-symmetric scatter about θ = 70, so the magnitudes of
the sums of positive and of negative deviations from 70 (the di) should not differ
greatly. The one-sided alternative H1 implies that when it holds there are likely
to be more positive deviations from 70 than there would be under H0 and that
these positive deviations will tend to be larger than the negative deviations.  

Procedure.  For the given data deviations from 70 are  73 – 70 = 3,  82 – 70 =
12 and similarly those remaining are 17, –2, 36, –10, 27. Since, under H0 the
sum of the posit ive and negat ive devia tions shoul d be nearl y equal  where as
under  H1 we expect the sum of the positive deviations to be appreciably larger
than the sum of the negative deviations, it is clear that the sum of the positive
deviations (i.e. differences from 70) is an intuitively reasonable statistic to help
assess the strength of the evidence against H0 in support of the specified one-
sided alternative H1. If the alternative had been the two-sided H1: θ ≠ 70 small as
well as large sums of positive deviations would also have supported H1. For a
randomization test based on S+, the sum of the positive deviations, we form the
appropriate randomization distribution in a manner similar to that in Example 1.4
for the statistic S used there. The key to obtaining the randomization distribution
of S+ when H0 holds lies in the fact that under H0 the sign of each deviation di is
equally likely, on account of the symmetry assumption, to be positive or
negative. Thus any combination of plus and minus signs attached to a set of
deviations having the observed magnitudes is equally likely. Clearly in the
current example with 7 observations there are 27 = 128 possible allocations of
sign (2 to each of the 7 differences) each allocation being equally likely under
H0.  Recording and ordering all of them without a computer is tedious. We need
not do so if we only want to obtain the relevant P-value when that is small
because we then only need to know how many of the equally likely allocations
of signs give an S+ greater than or equal to that for our sample, i.e. S+ = 3 + 12 +
17 + 36 + 27 = 95. Obviously the greatest possible value of S+ occurs when all
the deviations have positive signs and then S+ = 3 + 12 + 17 +2 + 36 + 10 +27 =
107. Clearly the next highest sum (105) is attained when only the smallest
deviation, 2, has a negative sign. In order of decreasing magnitude it is easily
verified that other sums greater than the observed S+ = 95 occur only when
negative signs are attached to 3 only (sum 104), 2 and 3 (sum 102) and 10 only
(sum 97). If a negative sign is attached to 12 only or to both 10 and 2 (as above)
the sum is 95. Thus there are seven sums greater than or equal to the observed S+
= 95. Since  all are equal ly likel y the relev ant P-valu e for asses sing the stren gth
of evidence against H0 is P = 7/128 ≈ 0.055.

Conclusion.  The evidence against H0  when P = 0.055 is sufficiently strong to
perhaps warrant a similar study with a larger group of students.
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Comments.  1. These data show that, despite our warning in Section 1.3.1 that
small  exper iments may never  produ ce P-valu es indic ating stron g evide nce
again st H0, an interesting effect may sometimes be suggested even with very
small samples; this is encouraging given the current emphasis on small group
work in teaching, where data concerning individuals in the group are often used
for illustrative purposes. A teaching advantage of using such data from small
groups is that in working through the arithmetic one is not bogged down as
would be the case with larger data sets. However, this example draws attention
to a major limitation of a conventional hypothesis test. While it tells us that there
is some doubt about the wisdom of retaining H0 it tells us nothing about what
other hypotheses might be plausible. We need a confidence interval to give this
information. Unfortunately, while modern computer programs enable us to
perform a Pitman hypothesis test with relative ease it is harder to obtain a
confidence interval for the true θ, a matter discussed in more detail in Example
2.3.

2. Modifications for a two-tail test when that is appropriate are straight-
forward and were mentioned under Procedure.  

3.  We chose S+ as our test statistic but we could equally well have chosen S–,
the sum of the negative deviations. This is because the sum of the magnitudes
of the deviations remains constant for all possible allocation of signs (in this
example always having the value 107). Thus the statistic has a symmetric
distribution because for any of the 128 sign permutations we always have S+ + S–
= 107 or S– = 107 – S+. Computer software sometimes calculates the smaller of
S+, S– but each leads to the same relevant P-value. Another statistic that is often
used is Sd = |S+ – S–|. For this example Sd = |2S+ – 107| so there is a one-to-one
ordered relationship between Sd and S+. One may even use the one sample t-test
statistic instead of S+ or S– because it is not difficult to show (Exercise 2.2) that
again there is a one-to-one ordered relationship between the values of t and S+.
Remember though that the distribution of this statistic t is not that given by the
usual t-tables that assume normality, but is identical with that for S+.

4.  The approach has a strong intellectual appeal because it uses all the
information in the data but it lacks robustness against departures from symmetry.
This is explained in Section 2.6.

5.  Because the possible values of S+ depend upon values of di which in turn
depend upon the data values it follows that the S+ corresponding to a given P-
value varies between data sets even for samples of the same fixed size. The test
is called a conditional test because it is conditional upon the data values. A
practical implication of this is that the P-value associated with H0 must be
computed afresh for each data set.

6.  If we had followed the classic convention requiring P ≤ 0.05 before
asserting significance we would not have rejected H0 in a formal significance test
at the 5 per cent level. We see no merit in following such an arbitrary rule in this
example, preferring to argue that the case for retaining H0 is not strongly
supported even though 0.055 slightly exceeds 0.050. Remember also our
comment in Section 1.3.1 that a not very small P-value may sometimes only
indicate that our experiment is too small to yield valuable information.

Computational aspects.  1.  Using StatXact the P-value obtained above and the
complete distribution of S+ can be calculated for this example in less than one
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second. That program also gives an asymptotic approximation that is strictly
valid only for large samples. Such approximations are discussed in Section 2.5.
For these data the asymptotic P-value for the one-tail test is P = 0.051, which,
despite the small sample size, is close to the exact P-value, but such close
agreement is not always obtained for small samples. In passing we note that the
normal theory t-test for this example also gives P = 0.051. We comment further
on the relation between the Pitman test and the t-test in Example 2.2.

2.  To estimate P by Monte Carlo sampling one would randomly allocate,
each with probability p = 0.5, a plus or a minus sign to every di for, say, 10 000
samples and record the number, r, of these samples giving values of S+ greater
than or equal to 95. Then P* = r/10 000 is an estimate of the exact one-tail P.  

Students of literary style often want to compare characteristics of
the work of a particular author with those of other authors. The
distribution of the number of words per sentence (sentence length) is
one facet that is often studied. The mean or the median sentence
length and the spread in sentence length, for example, varies
between authors, especially in scientific or technical writing where
average sentence length may even differ between several works by
the same author, reflecting differing complexity of subject matter.
When writing about some subjects there may even be varying
patterns of sentence length in different positions in paragraphs or in
different chapters. For example, the first sentence in any paragraph
may tend to be longer than subsequent ones. This might happen in
technical writing if each paragraph introduces a new basic idea and
the first sentence may have to be long to expound that idea, while
later sentences are subsidiary in nature to point out exceptions,
limitations, fields of usage or other relevant matters. Both
hypothesis testing and estimation play a part in studies of this kind.
For example, suppose that an expert on writing skills asserts that for
clarity in technical writing the average length of sentences should
not exceed 30 words. A sample of sentences could be taken from the
work of some author. Looking at the median sentence length, θ, the
strength of evidence against the hypothesis H0: θ ≤ 30 would be of
interest; if the evidence is strong, the alternative H1: θ > 30 seems
more acceptable. If no prior assertion about ideal sentence length
had been made one might be more interested in the median or mean
sentence length of the work of a particular author and this leads
naturally to an estimation type problem where finding a confidence
interval is appropriate.   

Examples 2.2 and 2.3 bring out some difficulties that arise if the
Pitman test is used when a symmetry assumption may not be
reasonable. The consequences are discussed under the Comments
headings.     
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Example 2.2

The problem. The number of words in the first sentences in 12 randomly
selected paragraphs from Fisher (1948) were:

12   18   24   26   37   40   42   47   49   49   78   108

These are arranged in ascending order but the analysis is not affected by this re-
ordering of the original data. Test the hypothesis H0: θ ≤ 30 against H1: θ > 30
where θ is the population mean or median using the Pitman test.  

Formulation and assumptions.  We assume that sentence lengths are
symmetrically distributed (but see Comment 1 below).    

Procedure. We apply the Pitman randomization test to the differences formed
by subtracting 30 from each datum, giving

–18   –12    –6   –4   7   10   12   17   19   19   48   78

Clearly the sum of the negative differences is smaller than the sum of the positive
differences so we may use as our test statistic S– = 18 + 12 +6 + 4 = 40.   If    =
30 each of the 12 differences is equally likely to be positive or negative and there
are now 212 = 4096 possible allocations of signs to the differences and  it is a
formidable task to find how many of these lead to an S– ≤ 40. Software such as
that in StatXact comes to our rescue and using that program for a one-tail test
gives P = 0.0405.  

Conclusion.  The P-value indicates fairly strong evidence that the median
exceeds 30.  

Comments.  1. We remarked that Pitman (1937a) showed that results for his
test are usually close to those given by a t-test. A one-tail t-test in this example
gives an exact P = 0.0462, not markedly different from that given by the Pitman
test. However it is doubtful whether the distribution of sentence length is
symmetric, and certainly doubt about whether it is normally distributed. There
are good grounds for these doubts.  Firstly, for a symmetric distribution the
means and medians coincide and thus in a sample one expects them to be close.
For these data the median is 41 and the mean 44.17 so there is a recognizable
difference between them. Inspecting the sample values shows that this difference
is largely due to the influence on the mean of the value 108 which is 67 more than
the median, whereas the minimum observed length is only 29 less than the
median. Secondly, when one considers the nature of these data population
skewness is not unreasonable. The shortest possible sentence must contain at
least one word, but there is no fixed upper limit for the number of words in a
sentence. In practice most writers sometimes use a sentence of 100 or more
words even if their average sentence length is between 25 and 40, a common
range for the median for many writers. A formal test for normality developed in
Section 3.3.3 provides strong evidence against these data being a sample from a
normal distribution.   

2.  A breakdown of the symmetry assumption affects the performance of both
the Pitman test and the t-test in an undesirable way, and although we do not
prove it, the general effect of asymmetry is to reduce the power of both tests.

3. Number of words is only a crude measure of sentence length, especially
when comparing works by different authors because some habitually use longer
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words than others. Alternative measures are the total number of letters in a
sentence or, if all sentences are set in exactly the same type-face, the length in
centimetres between the start of the first word and the end of the last word. This
last method has the disadvantage that for typographic reasons letters and words
are usually not evenly spaced throughout a sentence. It is likely that any of the
three methods for measuring sentence length mentioned here would lead to
broadly similar inferences providing one could agree on the appropriate
equivalent null hypothesis value of θ for each measure – that in itself might call
for some sample-based experiments! For example, is a 30-word sentence broadly
equivalent to a 180-letter sentence?  

Computational aspects.  StatXact gives exact one- or two-tail permutation test
P-values for small to moderate sample sizes and also an asymptotic result which
is reliable only for larger samples. The program also provides a Monte Carlo
approximation for P if required. A few general statistical programs also provide
an asymptotic approximation to a Pitman test P-value.  

Confidence intervals for θ based on the Pitman test are seldom
used for reasons that will soon become apparent so we omit the
theory for computing them. It is given by Sprent (1998, Section 5.2)
and by Maritz (1995, Section 2.4). We know of no readily available
software package that gives confidence intervals directly in this
case, but a trial-and-error method based on a hypothesis testing
program may be used.

Example 2.3

The problem.  Given the data in Example 2.2 determine a confidence interval
with at least 95 per cent coverage for the mean or median θ based on the Pitman
procedure. Remember that we are, with little justification, assuming symmetry.

Formulation and assumptions.  Assuming symmetry we may obtain the limits
that defin e the inter val by deter mining value s θ1 and θ2 of θ where  θ1 < θ2 such
that we would retain the hypothesis that this were the true parameter value if θ = θ1
but not for any θ < θ1 or if θ = θ2 but not for any θ > θ2, in each case with a
relevant one-tail probability as close as possible to, but not exceeding 0.025.  The
interval is then based on a two-tail test with P not exceeding 0.05. We consider
the modification for a one-sided interval in Comment 2.

Procedure.  A  trial and error method is used to establish the required limits
starting with suitable initial values. Because the Pitman test usually gives results
not very different from a t-test applied (however inappropriately) to the same
data it is reasonable to start with 95 per cent confidence limits based on the t-test
procedure. These are 27.2 and 61.1 and are obtainable from most statistical
software packages. Our trial and error procedure begins by using a Pitman test
program to obtain one-tail P-values for testing the hypotheses θ = 27.2 and θ =
61.1. The data editor in most relevant statistical programs will generate the
relevant deviations directly by subtraction of the appropriate constants 27.2 and
61.1 from the data. The relevant P-values found are 0.016 in the lower tail and
0.026 in the upper tail. To adjust each of these probabilities to be as close as
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possible to 0.025 without exceeding that value clearly we should try a higher value
for    for the lower  limit  (to incre ase P) and also a highe r value  for the upper 
limit  (to decrease P). We first chose 28 and 61.5 giving respectively P = 0.021 and
P = 0.025.  Our next choice was 28.4 and 61.6 giving P = 0.024 and P = 0.024.
We then took 28.5 as a revised lower value giving P = 0.025. Both lower and
upper limits are close to the target P = 0.025 but for further refinement we took
28.6 giving P = 0.026. It is now clear that in two-tail tests at the 5 per cent level
we would favour the hypotheses θ = 28.6 or perhaps θ = 61.5, but we would not
retain the hypotheses if  θ = 28.5 or  θ = 61.6. As one further piece of fine
tuning, really unnecessary in practice, we found that the P-values associated with
θ = 28.59 and θ = 61.51 were respectively P = 0.025 and P = 0.024.

Concl usion.  A Pitma n test based  inter val (28.6 , 61.5)  has confi dence level 
[1 – (0.025 + 0.024)]100 = 95.1 per cent. This follows because if we take values
of θ just outside these limits, i.e. 28.59 or 61.51 we would reject these
hypothetical values while we would accept the values 28.6 and 61.5 in
conventional tests if we used an exact 4.9 per cent significance level.

Comments.  1.  Although discontinuities in possible P-values stop us forming
an exact 95 per cent interval our coverage of 95.1 per cent is close to 95 per cent
and the interval (28.6, 61.5) is not very different from the t-test 95 per cent
interval (27.2, 61.1). The Pitman interval is slightly shorter and shifted a little to
the right, but these differences are of no practical importance. Another effect of
discontinuities is that the exact P-values may not be equal in each tail.   

2.  Both the t-test and the Pitman test intervals indicate that with a two-tail
test there is no strong evidence against the hypothesis θ ≤ 30. Indeed the rule for
doubling the one-tail probability for getting an appropriate two-tail probability
leads  to the same concl usion if we had modif ied our H1 appro priately in
Example 2.2. Confidence intervals are usually applied in a two-tail context but
we can form intervals relevant to a one-tail test. Corresponding to the test in
Example 2.2, for such a 95 per cent interval we find a lower cut-off point that
gives a critical region of size P = 0.05 in the lower-tail. The upper limit becomes
infinity and a trial and error process similar to that used for the two-tail situation
gives a one tail P = 0.050 corresponding to θ = 30.74 and P = 0.051
corresponding to θ = 30.75. Thus a 95 per cent one-sided confidence interval is
(30.75, ∞). In other words, hypothetical values of θ ≥ 30.75 appear more
plausible than values of θ < 30.75, consistent with our finding in Example 2.2
that a one-tail test gave fairly strong evidence against H0: θ = 30. The upper limit
∞ is in practice somewhat meaningless, being a mathematically symbolic way of
saying that the true median is more likely to be some (unspecified) value above
30.75 rather than one at or below that value. One only need glance at the sample
values to see that the median is extremely unlikely to be 200!

3.  In this example it is sensible and suffices to give limits only to one dec-imal
place. Also, when quoting P-values, one or two significant figures suffice,
although some programs may produce values like P = 0.025631 in some
examples. It is sensible to report P-values below 0.001 simply as P < 0.001.

4.  We show in Example 2.11 that using a method not assuming a symmetric
distribution gives a shorter confidence interval for the median. Indeed, in that
example we obtain a 96.2 per cent interval (24, 49) for these data. Although the
lower limit is only slightly below that for the t-test or Pitman test intervals the
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upper limit is markedly lower. We discuss why this is so in Example 2.11
remarking here only that breakdown of the symmetry assumption may have a
considerable effect on confidence intervals obtained when assuming symmetry.      

5. Inferences based on the t-test and the Pitman test tend to be similar and
both are unsatisfactory when there is asymmetry. The Pitman test procedure for
computing confidence intervals is cumbersome.

2.2   INFERENCES ABOUT MEDIANS BASED ON RANKS

An alternative to the Pitman test is to apply a similar test not to the
signed deviations from the hypothesized median but to the signed
ranks of the absolute deviations. This leads to the signed-rank test
proposed by Wilcoxon (1945). The population distribution is again
assumed symmetric and ideally, continuous. In theory this means
there is zero probability of two sample values coinciding. This may
not be the case in practice; equal or tied values may be present in a
data set.  A modified form of the test allows for ties.

2.2.1   The Wilcoxon signed-rank test

Given a sample of n independent measurements we first determine,
as we did in Section 2.1.1, the magnitude of departures from the
hypothetical mean or median θ0 specified in H0. We arrange these
absolute deviations in order of magnitude and assign ranks to these
in ascending order (1 for the smallest, n for the largest). We next
attach a negative sign to each rank that corresponds to a negative
deviation (i.e. to data values below θ0). We expect a near equal
scatter of positive and negative ranks if θ0 is the true mean or
median, implying that the sum of all positive ranks and the sum of
all negative ranks should not differ greatly. A high sum of the
positive (negative) ranks relative to that of the negative (positive)
ranks implies θ0 is unlikely to be the population mean. We now
apply a test that is mechanically equivalent to the Pitman test where
signed ranks of deviations replace the signed deviations themselves.  

Example 2.4

The problem.  For a group of 12 female students, the changes in heart rate
(beats per minute) when standing up from lying down are:

–2   4   8   25   –5   16   3   1   12   17   20   9

If we assume population symmetry, we may use the Wilcoxon signed-rank test
to test H0: θ = 15 against the alternative H1: θ ≠ 15.
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Formulation and assumptions. We arrange the deviations from 15 in
ascending order of magnitude and rank these, associating with each rank the sign
of the corresponding deviation. We calculate the lesser of the sum of positive
and negative signed ranks and, if available, use appropriate computer software to
determine P.

Procedure.  Subtracting 15 from each sample value gives the deviations –17,   
–11, –7 , 10, –20, 1, –12, –14, –3, 2, 5, –6. We rearrange these in increasing
order of magnitude while retaining signs,  i.e.  1, 2, –3,  5, –6, –7, 10, –11, –12,
–14, –17, –20, whence the signed ranks are 1, 2, –3, 4, –5, –6, 7, –8, –9, –10,
–11, –12. The sum of the positive ranks, S+ = 1 + 2 + 4 + 7 = 14, is less than the
sum, S– of the negative ranks. StatXact, Testimate and some general statistical
programs give exact P-values in programs designed specifically for the
Wilcoxon test where data may be input either in its original form or as signed
ranks and the program then effectively carries out a Pitman test using signed
ranks in place of the exact signed deviations. For this example these programs
indicate that the two-tail P-value corresponding to S+ = 14 is P = 0.052.

Conclusion. The evidence against H0 is not very strong, but the P-value is
sufficiently small for a further study involving a larger group to be considered.

Comments. 1. Doctors often assume that heart rate measurements are
symmetrically distributed. In this example, the median,  8.5, is close to the mean,
9.0, indicating that symmetry is possible. There are several tests for symmetry
when we are given only the sample values. One proposed by Randles et al.
(1980) is described by Hollander and Wolfe (1999, Section 3.9) and also by
Siegel and Castellan (1988, Section 4.4) but caution is needed in assessing
significance if n < 20 in cases where the asymptotic result is on the borderline of
significance. However, for these data the test statistic has a value well below any
that would suggest asymmetry. There is, however, some evidence for a departure
from normality because there is no particular cluster of values around the mean
of 9.0; instead several values are close to zero and there is another group of
values around 17. Given the likely degree of symmetry in the distribution the
Wilcoxon test should not be seriously misleading.

2.  The two clumps of values could reflect two distinct groups among female
students: those who are heavily involved in sports such as hockey or tennis and
those who rarely participate. The females who are physically fit may not
experience a large increase in heart rate on standing compared with those who
follow a more sedentary life style.

3. One must be cautious about generalizing the above results to the
community at large. For a variety of reasons female students are probably not
typical of young adults in general.

Computational aspects. 1. Not all statistical packages give an exact P-value
for the Wilcoxon signed-rank test, some only having a program that calculates S+
or S– and then sometimes gives only a P-value based on asymptotic theory (see
Section 2.5). If one has no program to give exact P-values and is not prepared to
seek a Monte Carlo approximation for small to medium samples it may be better
to refer to published tables even though many give only values required for
significance at a ‘nominal’ 5 or 1 per cent level in one- or two-tail tests. Due to
discontinuities in the distribution of P-values the exact levels are not precisely 5
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or 1 per cent. For most published tables the exact values are the closest possible
values that do not exceed the nominal significance levels although a few tables
give a value as close as possible to the nominal level even if that closest value
exceeds the nominal level. Most major published statistical tables [e.g. Neave
(1981) or Lindley and Scott (1995)] and some books on nonparametric methods
include tables for the Wilcoxon signed-rank test and usually describe which of
the above options they use for defining the nominal level. A more satisfactory
table in Hollander and Wolfe (1999, Table A4) gives most of the exact P-values
likely to be of interest for sample sizes 3 ≤ n ≤ 60, but these tables are not
needed if programs like that in StatXact or Testimate are available.

2.  The asymptotic P-value given by StatXact for these data for a two-tail test
is P = 0.050 but this does not include a continuity correction we describe in
Section 2.5. That correction increases the value to P = 0.0545. For these data the
two-tail t-test value is P = 0.046. These values do not differ greatly from the
exact value but give a timely warning on the dangers of adhering to a rigid
‘significance’ level such as α = 0.05 as a decision-making basis for accepting or
rejecting H0.

2.2.2   Theory of the Wilcoxon signed-rank test

We pointed out in Section 2.2.1 that the Wilcoxon signed-rank test
is a special case of the Pitman test with signed ranks of the
differences replacing the signed differences themselves. Using ranks
gives theoretical simplifications and also has implications for what
happens if an assumption of symmetry is not justified. Availability
of computer software to give exact P-values means that mastery of
the theory and its implications is not so important as it once was, but
a broad understanding helps to remove misconceptions and is
needed to show how to get confidence intervals.

We describe the exact permutation test for a sample size n = 7,
assuming no deviations are tied in magnitude. As already indicated,
when H0 is true the symmetry assumption implies the sums of ranks
for positive and negative ranked deviations should be nearly equal,
whereas one sum should be much larger than the other if H0 is not
true. In the extreme case when all sample values are above the mean
or median hypothesized in H0 all ranks will be positive so S– = 0 and
S+ = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Clearly, for any allocation of
signs to ranks S+ = 28 – S– when n = 7. More generally, for n
observations S+ = 1⁄2n(n + 1) – S– since the sum of the ranks 1, 2, 3,
. . . , n is 1⁄2n(n + 1). This implies a symmetry between S+ and S– in
the sense that

Pr(S– = s) =Pr[S+  = 1/2n(n + 1) – s].
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As in the Pitman test we may use any of the statistics S+, S– or
SW = |S+ – S–|, since there is an ordered linear relationship between
them.

When n = 7, signs may be allocated randomly to ranks in 27 = 128
different and equally likely ways. The distribution of the test statistic
S+ now depends only on the sample size, 7, since all data sets then
give the rank magnitudes 1, 2, 3, 4, 5, 6, 7. To get the distribution of
S+ we write down the S+ for all possible sign allocations and it is left
as an exercise for the reader to establish that the relevant sums and
associated probabilities are those in Table 2.1. Exact P-values for
one- or two-tail tests may be obtained using that table and are
applicable to a test for any data without tied values when n = 7.  For
example, in a one-tail test where a small lower-tail value of S+ is
relevant the exact P-value corresponding to S+ = 3 is P = Pr(S+ ≤ 3) =
(1 + 1 +1 + 2)/128 = 5/128 ≈ 0.039. This probability is doubled for a
two-tail test.  

Manual calculation of probabilities associated with all values of S+

or S– for larger n is time consuming and error prone. StatXact
obtains these values rapidly for sample sizes of practical importance.

The number of different values of the rank sums increases as the
sample size, n, increases and the differences between the discrete
probabilities associated with each become smaller, especially in
the tails. Also, the distributions of S+, S– approach that of a normal
distribution as n increases. When n = 12 there are 212 = 4096
possible associations of signs with ranks and the possible signed-
rank sums range from 0 to 78. Symmetry means we need only know
the probabilities for each sum between 0 and 39. Table 2.2 is
adapted from StatXact output and gives sufficient information to
calculate the complete permutation test distribution of S+ or S–.
From Table 2.2 we easily find that Pr(S– ≤ 13) = 87/4096 ≈ 0.021
while Pr(S– ≤ 14) = 107/4096 ≈ 0.026. For two-tail tests we double
these probabilities giving 0.042 and 0.052. Thus values of the
smaller signed-rank sum not exceeding 13 indicate significance at
level 4.2 per cent or less, i.e. below a conventional 5 per cent level.  
Again from Table 2.2 we see that Pr(S– ≤  9) = 33/4096 ≈ 0.008,
while Pr(S– ≤ 10) = 43/4096 ≈ 0.0105; it follows that for a one-tail
test at a level not exceeding 1 per cent that S– ≤ 9 forms an
appropriate critical region with associated  P = 0.008.

Figure 2.1, based on Table 2.2, shows the probability mass func-
tion (also known as the frequency function) of S+ or S– for n = 12 in
the form of a bar chart. The shape resembles that of the familiar
probability density function for the normal distribution. In Exercise
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2.4 we ask the reader to draw and comment upon a bar chart based
on Table 2.1 for the case n = 7.

Table 2.1   Exact probabilities that S+, S– equal a given value k in a
Wilcoxon signed-rank  test for a sample of size n = 7 when H0 is true.

    ________________________________________________________

   k Probability   k Probability

   0    1/128 15      8/128
   1    1/128 16      8/128
   2    1/128 17      7/128
   3    2/128 18      7/128
   4    2/128 19      6/128
   5    3/128 20      5/128
   6    4/128 21      5/128
   7    5/128 22      4/128
   8    5/128 23      3/128
   9    6/128 24      2/128

    10    7/128 25      2/128
 11    7/128 26      1/128
 12    8/128 27      1/128
 13    8/128 28      1/128
 14    8/128

  ________________________________________________________

Table 2.2  Exact probabilities that S+, S– equal a given value k in a
Wilcoxon signed-rank test for a sample of size n = 12 when H0 is true.
Probabilities for k > 39 follow from the symmetry property Pr(S– = k) =
Pr(S– =78 – k).
____________________________________________________________

   k Probability       k        Probability   k   Probability

  0    1/4096     13    17/4096 26      78/4096
  1    1/4096     14         20/4096 27      84/4096

   2    1/4096     15         24/4096 28      89/4096
  3    2/4096     16         27/4096 29      94/4096
  4    2/4096     17         31/4096 30    100/4096
  5    3/4096     18         36/4096 31    104/4096
  6    4/4096     19         40/4096 32    108/4096
  7    5/4096     20         45/4096 33    113/4096
  8    6/4096     21         51/4096 34    115/4096
  9    8/4096     22         56/4096 35    118/4096
10  10/4096     23         61/4096 36    121/4096
11  12/4096     24         67/4096 37    122/4096
12  15/4096     25         72/4096 38    123/4096

39    124/4096
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Figure 2.1  A bar chart illustrating the distribution of the Wilcoxon signed-rank
statistic when n = 12.

2.2.3   The Wilcoxon test with ties

In theory, when we sample from a continuous distribution both the
probabilities of tied observations or of a sample value exactly equal-
ling the population mean or median are zero. Real observations
never have a distribution that is strictly continuous in the math-
ematical sense either because of their nature or as a result of
rounding or limited measuring precision. We measure lengths to the
nearest centimetre or millimetre; weights to the nearest kilogram,
gram or milligram; the number of pages in a book in complete
pages, although chapter layout often results in part-pages of text;
numbers of words in a sentence must be integers. These realities
may produce data with rank ties or zero departures from a
hypothesized mean or median. If they do, the exact distribution of S,
the lower of the positive or negative rank sums, requires fresh
computation for different numbers of ties and ties in different
positions in the rank order. Before the advent of software to compute
exact P-values for permutation distributions with ties, a common
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procedure was, after adjusting the scoring method based on ranks to
allow for ties, to use the asymptotic normal approximation we give
in Section 2.5. This usually works well for a few ties if n is
reasonably large, but may have bizarre consequences for small n.
Another approach for smaller samples was to use tables for the no-
tie case assuming that the relevant value of S+ would be little
affected by ties. This need not be so.

When two or more ranks are equal in magnitude, but not
necessarily of the same sign, we replace them by their mid-rank, an
idea easily explained by an example. If 7 observations are 1, 1, 5, 5,
8, 8, 8 and we want to use a Wilcoxon signed-rank test with H0 :    = 3
the relevant signed differences from 3 are –2, –2, 2, 2, 5, 5, 5. The
magnitude of the smallest difference is 2 and four differences have
that magnitude. The mid-rank rule assigns to these ties the mean of
the four smallest ranks 1, 2, 3, 4; i.e. we allocate to these
observations the signed ranks –2.5, –2.5, 2.5, 2.5. The remaining
three differences are all 5 and we give each the mean of the
remaining ranks 5, 6 and 7; i.e. each is ranked 6. The exact
permutation test is based on the signed mid-ranks –2.5, –2.5, 2.5,
2.5, 6, 6, 6. An appropriate test statistic is S– = 5, the sum of the
negative mid-ranks.

If we test using the permutation distribution for the ‘no-tie’ case
given in Table 2.1 we find Pr(S– ≤ 5) = 10/128 = 0.078. However,
with ties, the distribution of S– under H0 is not that in Table 2.1. The
exact distribution with ties depends both on how many ties there are
and where they lie in the rank sequence.   We can work out exact

Table 2.3  Exact probabilities that S+, S– equal a given value k in a
Wilcoxon signed-rank test for a sample of size n = 7 when H0 is true
and mid-ranks are 2.5 (four times) and 6 (three times).

   _______________________________________________________        

    k Probability    k      Probability

   0    1/128  14.5        12/128
   2.5    4/128  16          3/128
   5    6/128  17        18/128
   6    3/128  18          1/128
   7.5    4/128  19.5        12/128
   8.5  12/128  20.5          4/128
 10    1/128  22          3/128
 11  18/128  23          6/128
 12    3/128  25.5          4/128
 13.5  12/128  28          1/128

   _____________________________________________________
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significance levels with ties for small to medium sized samples. For
any tie pattern StatXact or Testimate give exact P-values for one-
and two-tail tests and the former will also compute the complete
distribution of S+ or S– for samples that are not too large. For the tie
pattern above for a sample of 7, StatXact gives the exact distribution
in Table 2.3.  

Comparing Tables 2.1 and 2.3 we see that in each case the
distribution of the test statistic is symmetric (that is why we may
base our test on either S+ or S–). However, the distribution with no-
ties is unimodal (i.e. it has one maximum) with values of the statistic
confined to integral values increasing in unit steps, but that in Table
2.3 is heavily multimodal with S taking unevenly spaced and not
necessarily integer values. Discontinuities are also more marked.
 From Table 2.3 we easily find that Pr(S– ≤ 5) = 11/128, compared
to the no-tie probability 10/128 found from Table 2.1. Despite  many
ties in this example and the differences in the distribution of the test
statistic in the two cases, it may appear that ties have little effect on
our conclusion. However, this is not always the case.

 Example 2.5

Ties often result from rounding. The data 1, 1, 5, 5, 8, 8, 8 considered above
could arise from rounding to the nearest integer in either of the sets:

0.9,   1.1,   5.2,   5.3,   7.9,   8.0,   8.1
0.9,   1.0,   4.8,   4.9,   7.9,   8.0,   8.1

For a Wilcoxon test with H0: _  = 3  the signed differences from 3 are:

–2.1,    –1.9,    2.2,    2.3,    4.9,    5.0,    5.1
–2.1,    –2.0,    1.8,    1.9,    4.9,    5.0,    5.1

with signed ranks:

–2,    –1,    3,    4,    5,    6,    7
–4,    –3,    1,    2,    5,    6,    7

There are now no tied ranks in either set and for the first set S– = 3, while for the
second set S– = 7. Table 2.1 gives Pr(S– ≤  3) = 5/128 ≈ 0.039 and Pr(S– ≤ 7) =
19/128 ≈ 0.148. Thus a one-tail test at a level not exceeding 5 per cent would
indicate an implausible hypothesis in the first case but not in the second.
Rounding to the nearest integer thus greatly affects the apparent strength of
evidence against the null hypothesis.

This example is a simple illustration of difficulties of interpretation with ties
due to rounding, a process that makes small perturbations or changes to most
observations. Many statistical analyses are sensitive to such changes. The impact
of ties due to rounding in this example is more extreme than one is likely to meet
in practice, resulting in only two different magnitudes for ranks. For larger
samples and not too many ties, the effect on P-values is less marked.  
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Example 2.6  

The problem.  Consider the data in Example 2.2 for the numbers of words in
sentences in Fisher (1948), i.e.

12   18   24   26   37   40   42   47   49   49   78   108

Use the Wilcoxon signed-rank test to test for the population median    the
hypothesis H0: θ ≤ 30 against the alternative H1: θ > 30.   

Formulation and assumptions.  To justify the Wilcoxon test, we assume the
population is symmetric. The deviations of observations from 30 are ranked,
with due regard to sign using mid-ranks for ties. The lesser of S+ and S– is then
found.

Procedure.  The signed deviations from 30 are –18, –12, –6, –4, 7, 10, 12, 17,
19, 19, 48, 78 and the corresponding signed ranks using mid-ranks for the tied
magnitudes at 12 and 19 are

 –8   –5.5   –2   –1   3   4   5.5   7   9.5   9.5   11   12  

giving S– = 16.5 (or S+ = 61.5). A one-tail test is appropriate. StatXact gives the
exact probability of observing S– ≤ 16.5 with this pattern of tied deviations when
n = 12 as P = 0.0405.

Conclusion. The evidence implies H0 is implausible at a 4.05 per cent
significance level, so there is fairly strong evidence against H0.

Comments.  1. Although the P-value here is identical to that for the Pitman
test in Example 2.2, in general this is not the case. Large differences between
results for the two tests, although possible, are unusual (see Example 2.13).     

2.  Before we had software that gave the exact distribution of the test statistic
when there are ties, the advice to resort to asymptotic (large sample) results of a
type we describe in Section 2.5 had little justification for small samples.

3.  The data values 78, 108 throw doubt on the validity of the symmetry
assumption. Had these observations been replaced by, say, 51, 53 our Wilcoxon
rank-sum test would give the same result but there then would have then been no
intuitive reason to doubt the symmetry assumption. However the Pitman test
would be affected by such a change and in Exercise 2.5 we ask you to confirm
that with those alterations for that test P = 0.0505.  

Computational aspects.  With packages like StatXact it is a useful exercise to
generate exact distributions for a number of tied situations for small sample sizes
to develop a feeling for the effect of ties on standard results. An extreme case
arises with the observations 4, 4, 8, 8, 8, 8, 8 for the Wilcoxon test when we set
H0: θ = 6. Then all ranks of deviations are tied apart from signs and it is easy to
see (Exercise 2.6) that the Wilcoxon test statistic distribution is now equivalent
to that for the sign test. In this sense a sign test is a special case of the Wilcoxon
test where all deviation magnitudes are tied at the same value.

If one or more sample values equal the mean hypothesized under
H0, the associated ‘deviations’ are zero. Statisticians are divided on
how best to proceed in this case. Some argue that we should omit
such observations from our computations because they are
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uninformative about any alternative hypothesis. The test is then
applied to a reduced sample. An alternative we recommend is to
rank all deviations temporarily giving any zero the rank 1 because it
is the smallest difference (or the appropriate tied rank if there is
more than one zero). After all signed ranks are allocated we then
change the rank(s) associated with zero difference to 0, leaving the
other ranks as allocated. To obtain exact tests in the latter situation a
suitable computer program is needed for the exact distribution of the
test statistic, else we may resort to asymptotic results in a way we
indicate in Section 2.5. Deleting zero differences is the simplest
procedure if no suitable program for exact probabilities of S for the
modified rank statistic is available, but the second procedure has the
theoretical advantage of providing a more powerful test.  

2.2.4   Confidence intervals based on signed ranks

For many nonparametric methods the more important aim of
calculating confidence intervals is not so simple as hypothesis
testing, but the procedures, once mastered, are often straightforward
and not difficult to program by writing a macro if no package
program is available. Although at the time of writing only a few
packages deal in a completely satisfactory way with confidence
intervals based on Wilcoxon signed-rank test theory, the position is
improving steadily.

The trial-and-error approach suggested in Section 2.1.2 for the
Pitman test is avoided by using an alternative way of calculating the
statistic S– (or S+). We outline the theory, but a reader prepared to
take this on trust may move directly to Example 2.7 where this
approach is applied to both hypothesis testing and determining
confidence intervals.

For convenience we assume a sample of n observations with no
ties has been arranged in ascending order x1, x2, . . . , xn.  The null
hypothesis for the mean or median is specified as H0: θ = θ0.  In
practice θ0 will usually lie between x1 and xn, but this is not a
theoretical requirement. A deviation xi – θ0 will have a negative
signed rank for any xi less than θ0. Since the xi are in ascending
order, among all negative ranks, if there are any, that of greatest
magnitude will be associated with x1, that of next greatest magnitude
with x2, and so on. Similarly, all xj greater than θ0 have positive
signed ranks and of these xn will have the highest rank, xn–1 the next
highest and so on.
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Consider now the paired averages of x1 with each of x1, x2, . . . , xn.
Suppose x1 has associated signed rank –p. A moment’s reflection
shows that each of the averages 1/2(x1 + xq) will be less than θ0

providing the deviation associated with xq has either a negative rank
or a positive rank less than p. Since we are assuming there are no
rank ties no observation has positive rank p (since the rank p is
already associated with x1). If xq is the smallest observation
associated with a positive rank greater than p, this implies |xq – θ0| >
|x1 – θ0| and it follows that the average of x1 and xq is greater than θ0.
Then, because the data are in ascending order, so is the average of x1

with any xr > xq. Thus the number of averages involving x1 that are
less than θ0 is equal to the negative rank associated with x1.
Similarly, if we form all the paired averages of any xi less than θ0

with each of xi, xi+1, . . . , xn the number of these averages less than θ0

will equal the (negative) rank associated with xi. Clearly, when xi has
a positive signed rank none of the averages with itself or greater
sample values will be less than θ0. The complete set of averages
1/2(xi + xj) for i = 1, 2, . . . , n and all j ≥ i are often called Walsh
averages, having been proposed by Walsh (1949a, b). Clearly the
number of Walsh averages less than θ0 equals S– and the number
greater than θ0 equals S+. We may use Walsh averages to calculate
the test statistic S for a given H0 and to obtain confidence limits for a
population mean or median.

Example 2.7

 The problem.  Given the changes in heart rate for the female students in
Example 2.4, viz.

 –5   –2   1   3   4   8   9   12   16   17   20   25

obtain an estimate of the population mean with confidence intervals at levels at
least 95 and 99 per cent, assuming a symmetric distribution.

Formulation and assumptions.  We use Walsh averages and the principle
enunciated in Section 1.4.1 that the 100(1 –  α) per cent confidence interval
contains those values of the parameter that would be accepted in a significance
test at the 100α per cent significance level.

Procedure.  Table 2.4 shows a convenient way to set out Walsh averages.  
Both the top row and the first column (in italics) of that table give the sample
values in ascending order. The triangular matrix forming the body of the table
gives the Walsh averages. Comment 2 below gives tips for calculating these if a
program to do so is not available.  

An intuitively reasonable point estimator of the population median is the
median of the Walsh averages since it follows from the arguments given before
this example that for this estimate the sums of both the negative and the positive
rank  deviations  are  equal,  both  being  equal  to  the  number  of Walsh averages
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   Table 2.4  Walsh averages for changes in heart rate from lying to standing.

                                                                                                                                   
    –5     –2   1    3    4  8  9 12 16 17 20  25

                  
   –5 –5.0 –3.5 –2.0  –1.0 –0.5 1.5 2.0 3.5 5.5 6.0 7.5 10.0
   –2  –2.0 –0.5    0.5  1.0 3.0 3.5 5.0 7.0 7.5 9.0 11.5
     1   1.0    2.0  2.5 4.5 5.0 6.5 8.5 9.0 10.5 13.0
     3    3.0  3.5 5.5 6.0 7.5 9.5 10.0 11.5 14.0
     4  4.0 6.0 6.5 8.0 10.0 10.5 12.0 14.5
     8 8.0 8.5 10.0 12.0 12.5 14.0 16.5
     9 9.0 10.5 12.5 13.0 14.5 17.0
   12 12.0 14.0 14.5 16.0 18.5
   16 16.0 16.5 18.0 20.5
  17 17.0 18.5 21.0
   20 20.0 22.5

25 25.0
                                                                                                                                   

above (or below) this median. The median of the Walsh averages may be
determined by inspecting Table 2.4. We see that entries in any row increase from
left to right and those in any column increase as we move down, so that the
smallest entries are at the top left of the table and the largest  are at the bottom
right. For a sample size n there are 2 n(n + 1) Walsh averages, i.e. 78 in this
example. Thus the median of these lies between the 39th and 40th ordered Walsh
average and inspection of the table establishes that both equal 9.0; so this is the
appropriate estimate of the population median (or mean). To establish a 95 per
cent confidence interval we select as end points values of    that will just be
acceptable if P = 0.05. From Example 2.4, P is only slightly more than 0.05 if
the sum of the lesser of positive or negative ranks is 14. Thus, if we choose a
value less than the 14th smallest Walsh average we would reject H0. Similarly if
we choose a value greater than the 14th largest Walsh average we also reject H0
since in either case our test statistic S would be such that S  ≤ 13. Thus for n = 12
a confidence interval at not less than a 95 per cent confidence level is the interval
(14th smallest Walsh average, 14th largest Walsh average). From Table 2.4, by
counting from the most extreme value we see that this is the interval (2.5, 16.0).
We noted in discussing Table 2.2 that using S ≤ 13 as a criterion for significance
corresponded to an exact significance level of 4.25 per cent (two tails). It is
intuitively reasonable therefore to regard the interval (2.5, 16.0) as an actual
95.75 per cent confidence interval. Owing to discontinuities in the distribution of
the test statistic and the fact that the end points of the confidence interval often
coincide with observed values we must regard values outside this interval as
ones indicating rejection at a 4.25 per cent significance level. We must also, if
our exact level is critical, test the end values to see if they would be accepted or
rejected at this significance level. Exact tests using StatXact show that we would
find evidence against the hypothesized means of 2.5 and 16.0. Thus in this case
all points in the open interval 2.5 < θ < 16.0 would be acceptable, but the closed
interval (2.5, 16.0) is a conservative 95 per cent interval, having a confidence
level exceeding 95 per cent. In practice it is usual to cite a confidence interval
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simply as the interval (2.5, 16.0) without being specific as to whether it is open
or closed, bearing in mind that discontinuities inherent in the Wilcoxon test
statistic distribution may imply (and it will vary from case to case) that the end
points may or may not be included as acceptable values at a nominal significance
level such as 5 per cent. One should not get  excited about subtleties due to
discontinuity at the end point of intervals. If relevant programs are available it
may be worthwhile checking the actual confidence level associated with any
quoted interval. It is left as an exercise to establish that a nominal 99 per cent
confidence interval (i.e. with at least 99 per cent coverage) is the closed interval
(0.5, 18).  

Conclusion. An appropriate point estimator of the population median is 9.0
and actual 95.75 and 99.08 per cent confidence intervals are respectively
(2.5, 16.0) and (0.5, 18), where it is understood that if values of θ outside these
intervals are specified in H0 there will be evidence against these at levels implied
by the relevant P-values.  

Comments. 1. A reasonable alternative point estimator to the median of the
Walsh averages is the mean of all sample values. It is unbiased in the sense that
if we sampled repeatedly and took the mean of the sample values as our estimate
in all cases, the mean of these estimates would converge to the population mean.
However, the median of the Walsh averages is in a certain technical sense, which
we do not discuss here, generally closer to the population median; this estimator
is called the Hodges–Lehmann estimator, having been proposed by Hodges
and Lehmann (1963). A more formal justification for its use when basing the
interval on signed ranks is given by Hettmansperger and McKean (1998, Section
1.3).

2. If confidence limits only are required we need write down only a few
Walsh averages in the top left and bottom right of the triangular matrix in Table
2.4. If a computer program is available for forming this matrix there is no
problem in computing all the averages. If the matrix has to be formed manually
once we have the Walsh averages in the first row, the required averages in the
second row may be obtained by adding the same constant, namely half the
difference x2 – x1, to the average immediately above it. To verify this denote by
xij the average of xi and xj. This is the entry in row i and column j of the matrix
of Walsh averages. Now for any k > 2

x2k = 
1
2

 (x2 + xk) = 
1
2

 (x2 – x1 + x1 + xk) = 
1
2

 (x2 – x1) + x1k.

The idea generalizes for all subsequent rows, each entry in row r + 1, say, being
obtained by adding the same constant 

2
 (xr+1 – xr) to the entry immediately

above it.
3.  In Example 2.4 we found when testing H0: θ = 15 that S+ = 14.  In Table

2.4 there are 14 Walsh averages exceeding 15.0.

  Computational aspects.  1. Minitab includes a program for computing Walsh
averages.  It gives asymptotic confidence intervals (see Section 2.5).  These may
not be satisfactory for small n, especially when there are many ties.  If one has
the matrix of Walsh averages generated by some available program one may
easily establish nominal 95 or 99 per cent confidence limits using tables of critical
values of the statistic S.    
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2. StatXact includes a program giving the Hodges-Lehmann estimator and
confidence intervals at any pre-assigned nominal level and confirms the values
obtained above.

With ties in signed ranks the method for confidence intervals in
this section needs modification. If computer software for confidence
intervals in these circumstances is not available one might use the
Walsh average method described above, then use an available
computer program to study appropriate end point adjustments to
those for the untied case along the lines indicated in Example 2.3 for
the Pitman interval. Such adjustments are usually small unless there
is heavy tying.   

Example 2.8

The problem. Consider again the numbers of words in sentences used by R. A.
Fisher with the sample given in Example 2.6, i.e.

12   18   24   26   37   40   42   47   49   49   78   108

Obtain a confidence interval at a level not less than 95 per cent for the median
sentence length based on the Wilcoxon signed-rank test.

Formulation and assumptions. We form the Walsh averages. We already
know from Example 2.7 that for samples of 12 in the no-tie case an interval with
nominal 95 per cent coverage is that between the 14th smallest and 14th largest
Walsh average. With a small number of ties one hopes these will be good
approximations and this may be tested and adjustments made as indicated under
Procedure if an exact hypothesis testing program is available.

Procedure. Walsh averages may be calculated using either some appropriate
computer program or manually in the way used to obtain Table 2.4. This is left
as an exercise (Exercise 2.8). The 14th smallest average turns out to be 27.5 and
the 14th largest to be 63 suggesting an interval (27.5, 63)  slightly longer than
that obtained in Example 2.3 based on the Pitman test. Fine tuning of end points
using a trial-and-error method with StatXact leads to an interval of (27.5, 62.5) as
an exact 95.3 per cent interval (lower-tail P = 0.022, upper-tail P = 0.025).

 Conclusion.  The  95.3 per cent confidence interval is (27.5, 62.5).

Comments.   This interval differs little from those associated with the t-test or
the Pitman test approach and is again strongly influenced by the outlying values
of 78 and more especially 108.  This may seem surprising after we intimated in
the comments on Example 2.6 that the hypothesis test result would not have
been altered if these two observations were replaced by values appreciably more
in line with the rest of the data. The reason these values influence the upper
confidence limit is evident from a full table of Walsh averages (Exercise 2.8), for
it will be apparent from this that the 14 highest averages all include at least one
of the values 78, 108

Computational aspects. Obtaining Walsh averages is reasonably straight-
forward even when no program is available. Ties create a situation where fine
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tuning of the limits is best achieved by a trial-and-error procedure using an exact
test program such as those in StatXact or Testimate, commencing with limits
that ignore tying, i.e. that are appropriate to a no-tie case.  However, if an exact
program for a confidence interval such as that in StatXact is available fine tuning
is not needed.

2.3   THE SIGN TEST

2.3.1   The sign test and the effect of sample size

We look more closely at assumptions and possible complications
and extend concepts developed in Example 1.2. For the sign test –
like most tests – the larger the sample the higher the power and the
shorter the confidence interval for a given confidence level.  

A symmetry assumption is not needed and providing all sample xi

values are independent they need not all have the same distributions
providing that they are from distributions with identical medians.
Remember that for skew distributions the median does not equal the
mean.

Example 2.9

The problem.  The percentage water content of agricultural land often varies
only slightly over an area such as a large field apart from a few local patches of
exceptionally high or low percentages associated with especially poor or good
drainage. The potential range of percentage water content is exemplified in a set
of readings for nearly 400 soil quadrats on 22 June 1992 given by Gumpertz,
Graham and Ristiano (1997). We use two small subsets (with values slightly
rounded) from this large data set to illustrate some points about single sample
nonparametric analysis. The use we make of these data has no direct relevance to
the paper from which our samples were taken. The percentage water contents for
our sampled quadrats, arranged in ascending order of magnitude, are:

Sample I  5.5 6.0 6.5 7.6 7.6 7.7 8.0 8.2     9.1     15.1

Sample II 5.6   6.1 6.3 6.3 6.5 6.6 7.0 7.5     7.9       8.0
  8.0 8.1 8.1  8.2 8.4 8.5 8.7 9.4    14.3     26.0            

We use these data to test in each case H0: θ = 9 against the alternative  H1: θ ≠ 9
for the population median θ using the sign test.

Formulation and assumptions. If the population median is 9, then any
observation in a random sample is equally likely to be either above or below 9.
Proceeding as in Example 1.2 we associate a plus sign with values greater than
9, and if the hypothesis H0: θ = 9 holds, the number of plus signs has a binomial
distribution with p = 

2
, n = 10, i.e. a B(10, 

2
) distribution for the first sample

and a B(20, 
2
) distribution for the second sample. For the alternative H1: θ ≠

9, a two-tail test is appropriate.  
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Procedure.  In the first sample there are 2 values, 9.1 and 15.1, greater than 9,
implying 2 plus signs. We gave a  table of B(10, 2 ) probabilities in Example 1.2
(p. 17) from which we easily calculate the probability of 2 or less or 8 or more
plus signs is P = 0.109, a value confirmed by any computer program for the sign
test. In the second sample there are 3 values, 9.4, 14.3 and 26.0 greater than 9.
The probability of 3 or less plus signs for a B(20, 2 ) distribution is easily
calculated although there is seldom any need to do this with the ready availability
of computer software or tables for a sign test, and any relevant program should
give P = 0.003 for the relevant two-tail test.

Conclusion.  With the sample of 10, since P = 0.109 there is no convincing
evidence against H0 since this clearly exceeds the conventional 5 per cent level.
With a sample of 20 the evidence against H0 becomes very strong since P = 0.003
corresponding to a 0.3 per cent significance level.

Comments.  1.  We used a two-tail test since there was no a priori reason to
confine alternatives to only greater or only less than the value specified in H0.

2.  The results are consistent with our remark in Section 1.3 that increasing
sample size generally increases the power of a test.

Computational aspects.  With adequate tables of binomial probabilities when p
= 2  for various n, computer programs might almost be regarded as optional
extras for the sign test but StatXact and Testimate and nearly all major general
statistics packages include programs for this or equivalent procedures.  

If one or more sample values coincide with the value of θ
specified in H0 we cannot logically assign either a plus or minus to
these observations. They may be ignored and the sample size
reduced by 1 for each such value, e.g. if in the sample of 10 in
Example 2.9 we specify H0: θ = 8.0 we treat our problem as one with
9 observations giving 3 plus signs. Doing this rejects evidence
which strongly supports the null hypothesis, but which is
uninformative about the direction of possible alternatives. Another
proposed approach is to toss a coin and allocate a plus to a value
equal to θ if the coin falls heads and a minus if it falls tails: yet
another is to assign a plus or minus to such a value in a way that
makes rejection of H0 less likely. The coin-toss approach usually
makes only a small difference and has little to commend it since it
only introduces additional randomness, being in a sense more
‘error’; the last approach is ultraconservative. Lehmann (1975,
p. 144) discusses pros and cons of these choices in more detail.

2.3.2   Confidence intervals
Example 2.10

The problem.  Obtain approximate 95 per cent confidence intervals for the
median water content using the sign test with the samples in Example 2.9.
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Determine the exact confidence level in each case.
Formulation and assumptions.  We seek all values for the population median

_ that would not be rejected in a two-tail test at a 5 per cent significance level.
Procedure. We use the argument developed in Section 1.4.1. Consider first

the sample of 10. From the table given in Example 1.2 (or any published tables
or using a computer program that calculates probabilities for any given n, p) we
easily find that a critical region consisting of 0, 1, 9 or 10 plus signs has size
2 × (0.0010 + 0.0098) = 0.0216  and that this is the largest exact size less than
0.05.  Thus we reject H0 if it leads to 1 or fewer or 9 or more plus signs. We
retain H0 if we get between 2 and 8 plus signs. It is clear from the sample values

5.5   6.0   6.5   7.6   7.6   7.7   8.0   8.2   9.1   15.1

in Example 2.9 that we have between 2 and 8 plus signs if    lies in the open
interval from 6 to 9.1, i.e. θ > 6 and θ < 9.1. This implies an exact confidence
level of 100(1 – 0.0216) = 97.84 per cent for the interval (6, 9.1).  For any θ not
in this interval we would reject the hypothesis that it is the population median at
the 100 – 97.84 = 2.16 per cent significance level.  

We leave it as an exercise for the reader, using appropriate tables or a relevant
computer program, to show that for the sample of 20 in Example 2.9 the interval
(6.6, 8.4) is an actual 95.86 per cent confidence interval.

Conclusion.  For the sample of 10 an exact 97.84 per cent confidence interval
for the median is (6, 9.1) and for the sample of 20 an exact 95.86 per cent interval
is (6.6, 8.4).

Comments.  1. The sample median is an appropriate point estimator of the
population median when we make no assumption of symmetry. For our samples
these are respectively 7.65 and 8.0. The rationale for this choice is that it gives
equal numbers of plus and minus signs, the strongest supporting evidence for H0.
Hettsmansperger and McKean (1998, Section 1.3) justify this choice on even
stronger theoretical grounds.

2. Increasing the sample size shortens the confidence interval.
3. The samples contain values 14.3, 15.1 and 26.0 that all appreciably exceed

the median, suggesting a skew distribution of water content with a long upper
tail. This is in line with the common experience that after rain, for example, one
often finds a few small areas in a field excessively wet due to poor local
drainage.   

4. Skewness makes normal theory (t-distribution) tests or confidence intervals
inappropriate. Remember that the mean and median do not coincide for a skew
distribution. In passing we note that normal theory t-test based estimation for the
sample of 10 in this example gives a mean of 8.13 with a 95 per cent confidence
interval (6.2, 10.0) and for the sample of 20 a mean of 8.77 and a 95 per cent
confidence interval (6.7, 10.9). Both intervals are slightly longer than those
obtained using the sign test and lead to the somewhat bizarre result that the
confidence interval for the larger sample is longer than that for the smaller one.
Further they apply to the means rather than the medians and thus are shifted to
the right, being symmetric about the sample mean; a moment’s reflection will
show this shift is a consequence of the presence of the high right-tail values 14.3,
15.1 and 26.0, i.e. those that suggest skewness.
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Computational aspects.  Given suitable tables there is little need for a
computer program to calculate sign-test confidence intervals. Many general
statistical packages will generate the relevant binomial probabilities if these are
not available in tables. In Comment 4 above we considered t-distribution based
95 per cent confidence intervals. For direct comparison with the nonparametric
intervals, many statistical packages provide parametric (normal theory, t-
distribution) confidence intervals at any specified level such as 95.86 or 97.84
per cent if one wants to make closer comparisons at exact levels.  

In Comment 4 above we remarked that t-distribution confidence
intervals are not appropriate because the data are skew. We
suggested when discussing in Examples 2.3 and 2.8 the Fisher
sentence length data that there is doubt there about the t-test based
intervals. However, we found in those examples that the Pitman, t-
test and Wilcoxon test based intervals were not very different. It is
interesting to consider the sign-test based interval for those data.

Example 2.11

Following arguments similar to those in Example 2.10 and applying them to the
sentence length data set given in Example 2.2, i.e.

12   18   24   26   37   40   42   47   49   49   78   108

it is easily verified (using appropriate binomial tables when n = 12, p = 2   or a
suitable computer program) that the interval (24, 49) is an exact 96.14 per cent
confidence interval and this is appreciably shorter than the interval (27.5, 62.5)
obtained in Example 2.8. The sign test does not assume a symmetric distribution
and the consequence when that assumption is violated is sometimes (but not
always) that it has higher Pitman efficiency resulting in greater power in the
hypothesis testing context which often translates to shorter confidence intervals.
However, where a symmetry assumption is valid the sign-test approach usually
leads to wider confidence intervals than either the Pitman or Wilcoxon test
methods. An exception is certain symmetric distributions with very long tails,
e.g. the double exponential, where the sign test has higher Pitman efficiency than
the signed-rank test and may give a shorter confidence interval.  

2.4   TRANSFORMATION OF RANKS

2.4.1   Normal scores

In essence transformation of a sample of n continuous ordered data
to ranks replaces the sample values by something like values we
would expect when sampling from a uniform or rectangular
distribution over (0, n) – more precisely the rank r corresponding to
the r/(n + 1)th quantile of that distribution. Might further
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transformation of these ranks increase the Pitman efficiency or have
other advantages?

In many parametric analyses a normality assumption is a key
feature and when it can validly be made it often leads to math-
ematical and computational simplicity. In Section 2.1 we indicated
that exact permutation tests were only practical for small to medium
sample sizes even with the best software. We show in Section 2.5
how we sometimes face this difficulty using asymptotic results
which themselves carry an assumption of normality. It is not
unreasonable to hope that if we start with data that resemble a
sample from a normal distribution that such asymptotic or ‘large
sample’ results will approach exact results more rapidly in the sense
that they may be reasonable for not very large samples.

Such hopes inspired a study of  transformations to give data more
like those from a normal distribution as a basis for exact tests while
retaining some of the desirable properties such as the test being
unconditional on the actual data as was the case for the Wilcoxon
signed-rank test (but not for the Pitman test). A possible
transformation is suggested by our remark that ranks correspond to
quantiles of a uniform distribution. Why not transform ranks to
values (often called scores) corresponding to quantile values for a
normal distribution?  More specifically, why not choose the standard
normal distribution, for then it is easy to make the transformation
using tables of the standard normal cumulative distribution
function (which we now abbreviate to cdf). For example, if we have
the very nonnormal sample 2, 3, 7, 21, 132 we first replace these
values by the ranks 1, 2, 3, 4, 5 and transform these to normal scores
which are the 1/6th, 2/6th, 3/6th, 4/6th and 5/6th quantiles of the standard
normal distribution. These may be read from standard normal
cumulative distribution function (cdf) tables, but many software
programs compute these as one of a set of possible data
transformations. The normal score corresponding to the 1/6 = 0.1667
quantile is the x value such that the standard normal cdf, commonly
denoted by Φ(x), is Φ(x) = 0.1667. From tables (e.g. Neave, 1981,
p.18) or from software we find x = –0.97. For the 2/6 = 0.3333
quantile we find x = –0.43 and for the 3/6th (mean or median) x = 0.
By symmetry the remaining quantiles are x = 0.43 and x = 0.97.
These quantile scores are often called van der Waerden scores
having been proposed by van der Waerden (1952; 1953).

Alternatives to the above scores are discussed by Conover (1999,
Section 5.10) and others. These include expected normal scores
where the ith ordered sample value in ascending order, sometimes
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called the ith order statistic, is replaced by the expectation of the ith
order statistic for the standard normal distribution. The ith order
statistic is often written x(i). Fisher and Yates (1957, Table XX) give
expected normal scores corresponding to ranks for n ≤ 50. In
practice using van der Waerden or expected normal scores usually
lead to similar conclusions, but both need adapting for use in the one
sample situation. We consider here only van der Waerden scores.  

Direct application of van der Waerden scores in an analogue to
the Wilcoxon signed-rank test is not possible because the rationale
of the test demands that we allocate signs to magnitudes of ranks
but van der Waerden scores are of equal magnitudes but opposite
signs. One practical way around this difficulty is first to add a
constant k to all van der Waerden scores so that they are
nonnegative. The choice k = 3 achieves this for sample sizes less
than 700. Adding 3 in effect gives normal scores for a distribution of
mean 3 and standard deviation 1. The next step is to attach a
negative sign to the score corresponding to a negative deviation.
Programs for raw data permutation tests analogous to the Pitman test
for the original data may be used with these scores now treated as
the raw data.  

Example 2.12

The problem.  Use the normal scores test procedure outlined above to test the
median hypothesis H0 : θ = 30 against H1: θ > 30 for the sentence length data
given in Example 2.2, viz:

 12   18   24   26   37   40   42   47   49   49   78   108

Formulation and assumptions.  We replace the signed ranks in Example 2.6 by
van der Waerden scores, then add three to each and perform a randomization test
on these regarding them as raw data.

Procedure.  Statistical software may be used to form the scores and add the
constant k = 3. In StatXact (or most software programs) this is a one-step process
but for completeness we give the relevant scores here. The unmodified van der
Waerden scores in order of increasing absolute ranks of differences used in the
Wilcoxon test in Example 2.6 are:      

–1.43  –1.02  –0.74  –0.50  –0.19  –0.19  0.10  0.29  0.62  0.62  1.02  1.43

Adding 3 to each of the above scores gives a set of all positive scores and we
then assign negative signs to those that correspond to negative deviations, giving
the modified scores

–1.57  –1.98  2.26  2.50  –2.81  2.81  3.10  –3.29  3.62  3.62  4.02  4.43

The raw data permutation test (effectively a Pitman test) applied to these scores
as data gives a one-tail P = 0.062, not in close agreement with the values in
Examples 2.2 and 2.6.
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Conclusion. There is only fairly weak evidence against H0 and in favour of
H1.

Comments.  1. The result is somewhat out of line with common experience
that results using these scores usually differ little from those using the Wilcoxon
test.  In Section 2.5 we consider the situation regarding asymptotic tests for each.

2.  Discontinuities in possible P-values tend generally to be smaller for this
test than for the Wilcoxon test because the test statistic used here takes more
possible values.

3.  The distribution is symmetric in the sense that we may use either the sum
of the positive scores or the sum of the negative scores as our test statistic. Ties
have been dealt with in this example by assigning quantiles corresponding to the
mid-ranks. An alternative sometimes recommended is to assign instead the mean
of the quantiles corresponding to the ranks that are tied, e.g. if there is a tie for
the rth and the (r + 1)th ordered data values we take the mean of the quantiles
corresponding to each. Generally the difference between these approaches is
small.

4.  So far as we know there is no completely satisfactory way of getting a
confidence interval based on these scores. Not only do the same difficulties arise
as in the Pitman test situation for determining end points but the interval pertains
to the transformed differences and there appears to us no satisfactory way of
back-transforming to the original data. Problems of this sort arise in many data
transformation situations both in parametric and nonparametric inference.

5. Normal score tests in this and other situations met in later chapters have
Pitman efficiency 1 when the normal theory t-test is appropriate and in any other
case the Pitman efficiency is at least 1. Any euphoria generated by this property
must be tempered by a realization that there are other tests with Pitman
efficiency greater than 1 relative to normal theory tests when certain other
appropriate distributional assumptions are made and also that an asymptotic
result does not guarantee equivalent small sample efficiency, although Pitman
efficiency is usually a good guide. We remarked in Comment 3 on Example 2.6
that these data suggest skewness.
  
 So far as we are aware the procedure in Example 2.12 was first
formally described in the second edition of this book but it is so
straightforward we would be surprised if it or something similar has
not been used earlier. An alternative method for obtaining positive
scores to which appropriate signs may be allocated is to use only
some of the positive quantiles (i.e. those lying above the median) of
the standard normal distribution as scores. Appropriate signs are
then attached to these. Recommended quantiles corresponding to the
ranks 1,  2,  3,  . . . ,  n are the (n + 2)/(2n + 2)th, (n + 3)/(2n + 2)th,
(n + 4)/(2n + 2)th, . . . , (2n + 1)/(2n + 2)th quantiles. The attached
signs are those for Wilcoxon signed ranks. One then proceeds using
these scores as though they were the original data in a Pitman-type
test. The fact that these quantiles are not symmetrically distributed
about their median detracts from the intuitive appeal of the
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transformation, but again our experience with a few examples is that
it generally gives results similar to a Wilcoxon signed-rank test.
Maritz (1995, Example 2.15) gives an example using these scores or
closely related scores based on expected values and proceeds to
discuss hypothesis testing and point estimation using these and even
more general scores.
 

2.4.2   Other scores

Scores other than normal scores are sometimes appropriate. We use
some of these in more sophisticated problems. They are needed
when data that are essentially nonnormal occur or when there are
complications due to censoring of data. An example is given in
Section 5.5.1. In analyzing survival data what are called Savage or
exponential scores are often appropriate. We introduce these in
Section 5.5.2 and they are also discussed by Lehmann (1975, p.
103) and by Sprent (1998, Section 4.9).

2.5   ASYMPTOTIC RESULTS

Widely available software for exact permutation tests for small to
medium-sized samples removes the need to use asymptotic results
for such samples where one knows these may not be reliable unless
samples are moderately large (how large depending partly upon the
procedure being used).  

All centrality test and estimation procedures given so far in this
chapter  – Pitman, Wilcoxon, sign test, rank-transformations – have
been based on statistics that are the sum of certain scores, e.g. the
sum of the positive deviations from a hypothesized mean or median
θ0 in the Pitman test, the sum of the positive signed ranks in the
Wilcoxon test, the number of positive signs in the sign test (i.e. the
sum of positive scores if each deviation is scored as +1 or –1). Here
the deviations, the signed ranks, the ±1s and likewise the signed
modified van der Waerden scores are each relevant scores for a
particular procedure.  

In general for a sample of n observations our procedures have
been based on  the sum, S, of positive (or negative) scores where the
score allocated to observation i may in general be denoted by si , i =
1, 2, . . ., n. Under the null hypothesis a key feature is that each score
si is equally likely to have a positive or negative sign. It follows
(Exercise 2.16) that any such statistic S has mean value 1/2Σ|si| and
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variance 1/4Σsi
2 where the summation is over all n scores. From the

central limit theorem it follows that for large n the distribution of    
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is approximately standard normal.
Formula (2.1) simplifies for a number of special cases (Exercise

2.16). For example, with no rank ties it is easy to verify for the
Wilcoxon signed-rank test E(S+) or E(S–) reduces to 4 n(n + 1) and
the var(S+) or var(S–) to n(n + 1)(2n + 1)/24. The formula in this
case can be improved by a continuity correction that allows for the
fact that we are approximating to a continuous distribution with a
discrete distribution where S can take only integer values. If S is the
smaller of the sums of the positive or negative ranks the appropriate
correction is to replace S by S + 2 , while if S is the larger sum it is
replaced by S – 2 .  When there are tied ranks it is easiest to revert to
the general formula (2.1) using the tied ranks as scores.  If the
statistic SW = |S+ – S–| is used it is easily verified that now (2.1)
reduces to Z = SW/√[Σ(si

2)] and if there are no ties the denominator
reduces to √[n(n+1)(2n+1)/6].  For the Wilcoxon test the asymptotic
approximation is usually satisfactory for n ≥ 20, and sometimes for
smaller values of n also.

For the sign test where S is the number of observations greater
than (or less than) the hypothesized median it is easily verified that
E(S) = 2n and var(S) = 4 n whence (2.1) reduces to

 
  
Z
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=

− 12
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.            (2.2)

Again the approximation is improved by a continuity correction
replacing S by S + 2  if S is less than its mean and by S – 2
otherwise.

Programs giving asymptotic results for many standard nonpara-
metric tests are included in most major statistical software packages
and as options in specialist programs like StatXact and Testimate.
They work well for large samples but the approximations may or
may not be good for medium or small samples. In Examples 2.13
and 2.14 we consider some uses of asymptotic results in testing and
estimation, comparing them where possible with exact results.
Manual computation is possible but tedious if software is not
available to carry out asymptotic tests automatically.
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The problem.  For the data sets on water content of soil used in Example 2.9,
viz.

5.5    6.0    6.5    7.6    7.6    7.7    8.0    8.2    9.1    15.1

and

5.6    6.1    6.3    6.3    6.5    6.6    7.0    7.5    7.9    8.0    8.0    8.1    8.1    8.2   
8.4    8.5    8.7    9.4    14.3    26.0

explore the use of asymptotic results for the Pitman, Wilcoxon and sign tests for
testing the hypothesis that the median content is θ = 9 against a two-tail
alternative.  Compare results with those for exact tests where possible.

Formulation and assumptions.  Any assumptions of symmetry implicit for
relevant exact tests also apply to asymptotic tests. Generally increasing sample
size will bring the asymptotic result closer to the exact result.  

Procedure.  Although manual computation of Z is feasible using (2.1) or (2.2)
as appropriate, we assume relevant statistical software is available. For testing
H0: θ = 9 against H1: θ ≠ 9 StatXact gives the following exact and asymptotic
P-values:

      Sample of 10       Sample of 20
Test           Exact Asymptotic           Exact Asymptotic

Pitman 0.352     0.305 0.916     0.817
Wilcoxon 0.102     0.092 0.015     0.017
Sign 0.109     0.057 0.0026     0.0017

StatXact does not use the continuity correction for the sign test. That has quite a
large effect in these examples. For instance for the sample of 20 its use increases
the two-tail asymptotic P to 0.0037, but this is not closer to the exact value,
whereas surprisingly for the smaller sample it does better, increasing P to 0.114
which is closer to the exact value. This indicates the need for caution about using
asymptotic values even for moderate n. It is particularly in the tails (i.e. for low
values of P) that asymptotic values sometimes show the greatest relative
departure from exact probabilities. When there are ties a continuity correction is
not usually used for the Wilcoxon test as it has little theoretical justification,
although in practice it sometimes tends to bring results closer to those for the
exact permutation test. The t-test P = 0.33 and 0.82 are close to the values for
the Pitman test.

Conclusion. The data in both samples are, as already pointed out, slightly
skewed to the right, especially in the sample of 20. Both the Pitman and
Wilcoxon tests indicate lower efficiency relative to the sign test in the larger
sample, but the effect of skewness is less for the Wilcoxon test than it is for the
Pitman test because the transformation to ranks does not give the more extreme
values of 14.3, 15.1 and 26.0 the influence they have in the Pitman test. Indeed
they would have had the same rankings had they had the values 12.6, 12.7 and
12.8.
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Comment.  In view of the conclusion that our rankings would not have been
altered if the three largest observations had been replaced by 12.6, 12.7 and 12.8
when there would be only a small indication of skewness, it is interesting to see
how the Pitman test would perform if these values are used in it. Intuition
suggests that the P values should then be nearer those given by the Wilcoxon test
(which, of course, are unaltered by the change). Indeed with this change the exact
P-value for the Pitman test reduces to P = 0.1230 for the smaller sample and to P
= 0.0355 for the larger, both closer to the results for the Wilcoxon test.   This
should cause no surprise because there is now little indication of skewness and
so a key validity requirement for both tests is nearer to being satisfied.  

Computational aspects. The wide availability of software to carry out asymp-
totic tests makes them appealing.  Three notes of caution are:

(i) Large sample sizes are needed to ensure consistently good approximations,
especially in the tails, so beware of asymptotic tests when n < 20.

(ii) A breakdown of an assumption such as a requirement for symmetry may
make asymptotic results of little value (as is also true for exact tests).

(iii) Practice varies regarding use of continuity corrections;  it is usually easy to
check whether or not these are used either from documentation included
with software or from the given output which often includes the test
statistic value together with its mean and standard deviation.

Asymptotic confidence intervals are obtainable using the form of
(2.1) relevant to the Wilcoxon test without ties or for the sign test
using (2.2). For the Wilcoxon test the asymptotic result enables us to
obtain an approximate value of S for significance at a suitable level
and Walsh differences may then be used to get the approximate
confidence interval. This works quite well if there are no ties and it
gives a starting point for trial-and-error refinement when there are
many ties. For the sign test we can estimate the number of positive
or negative signs that determine the end points of our interval. An
example shows how this works.

Example 2.14

The problem.  For the larger data set in Example 2.13 use the asymptotic
formulae for the Wilcoxon test and that for the sign test to establish approximate
95 per cent confidence intervals for the population median.

Formulation and assumptions.  The key to establishing end points of 95 per
cent confidence intervals is that if the statistic used for computing P-values for
some hypothetical value of the median θ is such that |Z| = 1.96 then that θ is the
end point of the approximate confidence interval.

Procedure.  Consider first the Wilcoxon test. For the sample of 20
observations in Example 2.13 either direct computation or use of statistical
software for the asymptotic test establishes that the statistic S has mean 105 and
standard deviation 26.78. Thus, if for some hypothesized mean a calculated S is
such that
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it follows that such S are appropriate values for calculating the end points of the
confidence interval using Walsh averages. Solutions are S = 52.82 and 157.18.
For practical purposes we round these to 53 and 157. In fact we only need
calculate one of these in view of the symmetry in counts of positive and negative
ranks; the smaller value 53 indicates that we should reject the 53 largest and 53
smallest Walsh averages. If no program is available to compute these averages it
is only a matter of tedious arithmetic computing the more extreme averages to
establish that the approximate interval is (7.15, 8.45).

For the sign test it follows immediately from (2.2) that when n = 20 the mean
value of the test statistic (the number of positive signs or of negative signs) is 10
and the standard deviation is 2 

√20 = 2.236 whence the lower limit is the value S
such that  (S – 10)/2.236 = –1.96, i.e. S = 5.62. Rounding to the nearest integer
suggests that we should reject H0 if there are 6 or fewer positive or negative signs
leading for these data to the approximate interval (7, 8.2).

Conclusion.  The asymptotic results give approximate 95 per cent confidence
intervals based on the Wilcoxon statistic as (7.15, 8.45) and based on the sign
test statistic as (7, 8.2).

Comments.  1.  The 95 per cent confidence interval based on the t-test statistic
is (6.7, 10.9); this is considerably longer than those obtained in this example and
reflects the inappropriateness of the t-test procedure when data are clearly skew.
Despite the fact that we found in Examples 2.3 and 2.8 for a different data set
that the Wilcoxon based intervals may be similar to the t-test based intervals in
the presence of skewness, its performance here is better. In practice how well the
Wilcoxon method performs in estimation problems depends upon the number of
outlying observations in the sample as these influence only the more extreme
Walsh averages. Only a few outliers when n is large are less influential than the
same number of outliers for smaller n.   

2.  Given programs for exact tests such as that in StatXact it is easy to
determine the exact coverage of the intervals and also to adjust the limits by a
trial and error method to give better coverage. In this example the Wilcoxon
interval (7.15, 8.45) is associated with a lower-tail P = 0.0235 and an upper-tail
P = 0.030. Although one is below and the other above 0.025 the interval is
reasonable for most practical purposes. For the sign-test interval with these end
points some observations coincide with the limits so it is useful to perform an
exact test for P-values taking values just above and below these end points.
Using StatXact we find the interval (6.95, 8.25) has only an 88.46 per cent
coverage but the interval (7.05, 8.15) has an even lower 73.7 per cent coverage.
Again there is an indication here that one needs to be cautious about asymptotic
results. Use of a continuity correction in determining the asymptotic limits may
help. In Example 2.10 we established the 95 per cent interval based on the sign
test was (6.6, 8.4).

Computational aspects.  Although programs giving exact P-values or good
Monte Carlo approximations thereto are needed to refine asymptotic limits,
limits based on asymptotic theory are usually reasonable for moderately large
samples and can be computed using any program that deals adequately with the
relevant asymptotic nonparametric tests. Some  programs (e.g. Minitab) quickly
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generate tables of Walsh averages, so if the Wilcoxon intervals are required once S
corresponding to Z = ± 1.96 has been computed it is easy to get the Walsh
averages corresponding to end points, although Minitab will itself give
asymptotic limits for the Wilcoxon test and exact limits for the sign test.

2.6   ROBUSTNESS

In Example 2.14 we found an approximate 95 per cent confidence
interval for the population mean using the Wilcoxon signed-rank
procedure was (7.15, 8.45) while that based on the sign test was
displaced slightly to the left and was slightly shorter being (7, 8.2).
However, the confidence levels were not quite identical. The
interval (6.7, 10.9) based on the normal theory t-test is appreciably
longer, reflecting the inappropriateness of the t-test approach when
applied to obviously skew data. On the other hand one commonly
meets situations where the sign-test interval is longer than that given
by the Wilcoxon test which in turn is longer than that based on the t-
test.  In such examples although there might be some evidence of
departure from normality, if the departure is not severe and there is
not much evidence of skewness these results are in general
agreement with the finding based on Pitman efficiency that when a
sample comes from a normal distribution the efficiency of the t-test
is greater than that of any other test. The Pitman efficiency of the
Wilcoxon test can be shown to be 3/π (approximately 95.5 per cent)
while that of the sign test is 2/π (approximately 63.7 per cent) when
a sample is from a normal distribution. Two kinds of departure from
normality that are common are one where the sample may come
from some distribution such as the exponential or gamma
distribution which are known to be asymmetric, or one where the
sample comes from a mixture of distributions. Mixtures may arise in
several ways. For example our data might be results of chemical
analyses carried out in two different laboratories, one of these giving
less precise results than the other and perhaps also incorporating a
consistent error (called bias) due to an equipment fault.  Mixtures
may also occur in accurate data. We explained why this was so for
the data in Example 2.10 (Comment 3). Another way skew or long-
tail distributions may occur is by the intrusion of rogue observations
often called outliers. If we know why they are rogues there may be a
good case for rejection, but often we do not know if suspect
observations are really rogues (e.g. incorrectly recorded readings,
observations on units that are not members of the population of
interest, etc.) or if we are sampling from a population where a small
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proportion of outlying values is the norm. While many parametric
tests like the t-test are sensitive to certain departures from assump-
tions, the Wilcoxon test may be less so because it makes fewer
assumptions, and the sign-test even less sensitive because it in turn
makes even fewer assumptions. These latter tests exhibit a property
called robustness which we discuss more fully in Chapter 11. Test
and estimation procedures are robust if they are little influenced by
fairly blatant departures from assumptions. In Example 2.15 we
indicate that the Wilcoxon test may be more robust than the t-test if
there is a marked departure from symmetry. We also see that in such
circumstances the sign test, not unexpectedly, may do even better
since it makes no symmetry assumption.

Example 2.15

Suppose that the data in Example 2.4, i.e.

–5   –2   1   3   4   8   9   12   16   17   20   25

are amended by omitting the observation 25 and replacing it (i) by 35 and (ii) by
65. These changes induce obvious upper-tail skewness. Table 2.5 gives the
nominal 95 per cent and 99 per cent confidence intervals based on the normal
theory t, the Wilcoxon signed-rank statistic and the sign test in each case.

For the moderately skewed set (i) we have a mixed picture, the t-test does
best at the 95 per cent level and the Wilcoxon test at the 99 per cent level but the
other methods do nearly as well in each case. For the more markedly skewed set
(ii), the t limits are highly unsatisfactory, and those based on Wilcoxon are
moderately satisfactory at the 95 per cent level but not satisfactory at the 99 per
cent level. However, the binomial-based sign-test limits are the same as those for
set (i) and are not influenced by the extreme observation at 65. For set (ii) they
are the same width as the Wilcoxon limits at the 95 per cent level although the
exact coverage (96.14 per cent) is slightly greater than the exact Wilcoxon
coverage (95.5 per cent) but this is more a reflection of the discontinuities in
possible available levels than anything else. At the 99 per cent level the sign test
limits are the clear winner. This is not surprising since no symmetry assumption
is needed.

Are such extreme values as that in data sets (i) and (ii) realistic from a medical
point of view? A change in heart rate of 35 beats per minute might just be
possible but the value of 65 in set (ii) is a data error. It is good statistical practice
to check data carefully to eliminate errors, but one often has to analyze data
where there is no indication that an extreme value (often referred to as an outlier)
is not a correct observation. This is when one may do better with the simple
sign test than with a test requiring more stringent assumptions. On the other
hand it is generally inappropriate to use the sign test when there is little or no
evidence of skewness.
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Table 2.5  95 and 99 per cent confidence intervals for data sets (i)
and (ii) in Example 2.15 based on normal theory (t), Wilcoxon
signed ranks (W) and the binomial sign test (B).  For each set the
shortest interval at each confidence level is indicated by an asterisk.
_____________________________________________________

           95 per cent      99 per cent
t (2.79, 16.88) *      (–0.12, 19.79)

 Data set (i) W (2.5, 17.0)      (0.5, 20.0)*
B (1.0, 17.0)      (–2.0, 20.0)

t (0.70, 23.97)      (–4.10, 28.77)
 Data set (ii) W (2.5, 18.5)*      (0.5, 34.5)

B (1.0, 17.0)*      (–2.0, 20.0)*
                                                                                     

2.7   FIELDS OF APPLICATION

Insurance

The median of all motor policy claims paid by a company in 1999 is
£870. Early in 2000 the management thinks claims are higher. To
test this, and to estimate the likely rise in mean or median, a random
sample of 25 claims is taken. The distribution of claims will almost
certainly be skew, so a sign test would be appropriate.

Medicine

The median systolic blood pressure of a group of boys prior to
physical training is known. If the blood pressure is taken for a
sample after exercise the sign test could be used to test for a shift in
median. Would you consider a one- or a two-tail test appropriate?
If it appears reasonable to assume a symmetric distribution a
Wilcoxon test or even a normal theory t-test is more appropriate.
Even if an assumption of symmetry in systolic blood pressures
before exercise is reasonable, this may not be so after exercise. For
instance, the increase after exercise might be relatively higher for
those above the median blood pressure at rest and this could give
rise to skewness.  A physiologist asking questions about changes
should know if this is likely.

Engineering

Median noise level under the flight path to an airport might be
known for aircraft with a certain engine type (the actual level will
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vary from plane to plane and from day to day depending on weather
factors, the precise height each plane flies over the measuring point,
etc.). If the engine design is modified a sample of measurements
under similar conditions to that for the old engine may indicate a
noise reduction. A one-tail test would be appropriate if it were clear
the modification could not increase noise. We are unlikely to be able
to use a true random sample here, but if taken over a wide range of
weather conditions, the first, say, 40 approaches using the new
engine may broadly reflect characteristics of a random sample.

Biology

Heartbeat rates for female monkeys of one species in locality A may
have a symmetric distribution with known mean. Given heartbeat
rates for a sample of similar females from locality B, the Wilcoxon
test could be used to detect a shift or to obtain confidence limits for
the true mean.  

Education

A widely used test of numerical skills for 12-year-old boys gives a
median mark of 83. A new method of teaching such skills is used
for a class of 27 such pupils. The asymptotic approximation to the
Wilcoxon test could be used to test for a shift in median if symmetry
could be assumed. If not, a sign test would be preferred.  

Management

Records give the mean and median number of days absent from
work for all employees in a large factory for 1998. The number of
days absent for a random sample of 20 is noted in 1999. Do you
think such data are likely to be symmetric? In the light of the answer
to this question one may select the appropriate test for indications of
changes in the absentee pattern.

Geography and environment

Estimates of the amount of cloud cover at the site of a proposed
airport are taken at a fixed time each day over a period. The site
might be rated unsuitable if the median cover were too high. A
confidence interval for the true median would be useful.

Local differences

A psychologist is told that the ‘national average IQ of drug abusers
aged between 16 and 18 is 103’. He assesses the IQ of a sample of
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abusers in that age group from an area where drug abuse is rife. He
might use a Wilcoxon test to assess whether it is reasonable to
assume the mean is 103 for that area. It is not unusual in a number
of contexts to find that national averages applicable to a large area
do not apply locally. In the UK, for instance, the average price per
litre of petrol in London is very different from that in the Scottish
Highlands and both (especially the latter) differ from the nationwide
average. The average price in euros of a litre of milk in Italy,
France and Germany may each differ from the average for the
whole European community.

Industry

The median time people stay in jobs in a large motor assembly plant
in Germany is known to be 5.2 years. Employment times for all 55
employees who have left a UK plant in the last 3 months are
available. Although this may not be a random sample it may be
reasonable to use the data to test whether the median time for UK
workers is also 5.2 years. If the distribution appears skew a sign test
would be appropriate.

Combining information from different sources

Tests are often carried out in more than one laboratory to determine,
for example, the mean or median level of some impurity in a
product. If it is reasonable to consider that the population means are
equal for all the material sent for analysis and the laboratory means
are centred about this value even if the distributions of the test
results differ in other respects an appropriate nonparametric test of
the combined data may be used depending upon whether
assumptions of symmetry are or are not appropriate.

Astronomy

Astronomers frequently estimate quantities such as the mass of a
particular star or the diameter of a planet in several observatories
each using non-identical equipment. The resulting measurements are
often far from normally distributed, forming either a longer tailed
or skewed distribution of readings. Providing reasonable
assumptions can be made about the nature of measurement errors
nonparametric methods of analysis may often be appropriate. Some
comments on this situation were made in Section 2.1.2.
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2.8   SUMMARY

Pitman test.  A suitable test statistic (Section 2.1.2) is the sum S+ of
the positive data deviations from a hypothesized mean or median   
assuming the sample is from a symmetric distribution. Appropriate
computer software is required for significance tests and even with
such software confidence limits can only be obtained by a
cumbersome trial-and-error approach. The procedure lacks robust-
ness and often gives similar results to a t-test even when the latter is
not appropriate. It is conditional upon each particular data set and is
not widely used in practice.

Wilcoxon signed-rank test.  The test statistic S+, the sum of the
positive signed-rank differences from the mean or median specified
in H0 (Section 2.2.1), is widely used. Tables, or more satisfactorily,
appropriate computer software may be used for significance tests.
Ties require special treatment (Section 2.2.3) and suitable computer
software is then needed to determine exact permutation distributions.
Walsh averages (Section 2.2.4) provide an alternative hypothesis
testing procedure and they are particularly useful for estimation and
calculating confidence intervals. An assumption of population
symmetry is needed for validity of test and estimation procedures.
Asymptotic normal approximations (Section 2.5) work well for
sample sizes n ≥ 20 if there are no (or very few) ties; modification
of the denominator in the test statistic is required for numerous ties
even for relatively large n.

Sign test.  The test statistic is the number of observations above or
below a median specified in H0 (see e.g. Example 2.9). Significance
is determined using binomial probability tables for p = 2  and
various n or else from a suitable computer program. The method is
easily used to obtain confidence intervals (Section 2.3.2). Normal
theory approximations (Section 2.5) may be used for sample sizes
greater than 20. Modifications are required to deal with values equal
to the median specified in H0 (Section 2.3.1). No assumption of
symmetry is required.  

Normal scores.  These scores (Section 2.4) aim to make data more
like samples from a normal distribution. Test results are usually not
very different from those given by the Wilcoxon test. There appear
to be no simple satisfactory methods for obtaining confidence
intervals using these transformations.
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EXERCISES

2.1 For the data in Example 2.1 carry out a test of H0: θ = 80 against H1: θ ≠
80 using the Pitman test.  

2.2 In Comment 3 on Example 2.1 we asserted that the usual t-statistic could
be used in place of S+ as the test statistic for the Pitman test because there
was a one-to-one correspondence between the ordering of the two
statistics. Establish that this is so. [Hint: show that the denominator of the
t-statistic is invariant under all permutations of the signs of the di.]

2.3 In Comment 3 on Example 2.4 we suggested that for a variety of reasons
one should be cautious about extending inferences about heartbeat rates for
female students to the population at large. What might some of these
reasons be?

2.4 Using the data in Table 2.1 for the distribution of the Wilcoxon S when n = 7,
construct a bar chart like that in Figure 2.1 showing the probability
function for S. Discuss the similarity, or lack of similarity, to a normal
distribution probability density function.

2.5 Verify the P-value quoted in Comment 3 in Example 2.6 for the data
modified in the way suggested in that comment.

2.6 Establish that the permutation distribution of the Wilcoxon signed-rank
statistic for testing the hypothesis H0: θ = 6, given the observations 4, 4, 8,
8, 8, 8, 8 has a distribution equivalent to that for the sign test of the same
hypothesis. Would this equivalence hold if the null hypothesis was
changed to H0: θ = 7?

2.7 Establish nominal 95 per cent confidence intervals for the median based on
the Wilcoxon signed-rank test for the following data sets. If an appropriate
computer program is available use it to comment on the discontinuities at
the end points of your estimated intervals based on Walsh averages.

     Set I      1,   1,   1,   1,   1,   3,   3,   5,   5,   7,   7
    Set II     1,   2,   2,   4,   4,   4,   4,   5,   5,   5,   7

2.8 Form a table of Walsh averages for the Fisher sentence length data given in
Example 2.8. and use it to confirm the confidence interval obtained in that
example and also to obtain an approximate 99 per cent confidence interval.

2.9 The numbers of pages in the sample of 12 books referred to in Exercise 1.2
were

  126   142   156   228   245   246   370   419   433   454   478   503

Use the Wilcoxon signed-rank test to test the hypothesis that the mean
number of pages in the statistics books in the library from which the
sample was taken is 400. Obtain a 95 per cent confidence interval for the
mean number of pages based on the Wilcoxon test and compare it with the
interval obtained on an assumption of normality.

2.10 Apply the sign test to the data in Example 2.4 for the hypotheses
considered there.

2.11 For the sample of 20 in Example 2.9 if θ is the population median test the
hypothesis H0: θ = 9 against the alternative H1: θ ≠ 9 using the sign test by
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computing any relevant binomial probabilities directly from the binomial
probability formula. Also perform the test for H0: θ = 7.5 against the
alternative H1: θ  > 7.5.

2.12 Before treatment with a new drug 11 people with sleep problems have a
median sleeping time of 2 hours per night. A drug is administered and it is
known that if it has an effect it will increase sleeping time, but some
doctors doubt if it will have any effect. Are their doubts justified if the
hours per night slept by these individuals after taking the drug are:

3.1   1.8   2.7   2.4   2.9   0.2   3.7   5.1   8.3   2.1   2.4

2.13   Assuming symmetry, carry out a test relevant to the situation and data in
Exercise 2.12 using a normal scores procedure.  

2.14  Kimura and Chikuni (1987) give data for lengths of Greenland turbot of
various ages sampled from commercial catches in the Bering Sea as aged and
measured by the Northwest and Alaska Fisheries Center.  For 12-year-old
turbot the numbers of each length were:
                                                                                                                            
    Length (cm) 64 65 66 67 68 69 70 71 72 73 75 77 78 83
    No. of fish   1   2   1   1   4   3   4   5   3   3   1   6   1   1

                                                                                                                              

Would you agree with someone who asserted that, on this evidence, the
median length of 12-year-old Greenland turbot was almost certainly
between 69 and 72 cm?

2.15 Use (i) the Wilcoxon signed-rank  test and (ii) modified van der Waerden
scores to test the hypothesis that the median length of 12-year-old turbots
is 73.5 using the data in Exercise 2.14.

2.16   Establish the values given in Section 2.5 for the mean and variance of the
statistic S relevant to certain one-sample location tests, considering in
particular the simplifications for the no-tie Wilcoxon test and for the sign
test.

2.17   Determine a  P = 0.01 two-tail test critical region for the Wilcoxon
statistic S+ when n = 12 based on the asymptotic result using equation
(2.1).  

2.18   The first application listed in Section 2.7 involved insurance claims.
The 1999 median was £870.   A random sample of 14 claims from a large
batch received in the first quarter of 2000 were for the following amounts
(in £):

  475 483 627 881  892 924 1077 1224 1783 1942 2013 2719 4650 6915

What test do you consider appropriate for a shift in median relative to the
1999 median? Would a one-tail test be appropriate? Obtain a 95 per cent
confidence interval for the median based upon these data.  

2.19  The weight losses in kilograms for 16 overweight women who have
been on a diet for 2 months are as follows:

4   6   3   1   2   5   4   0   3   6   3   1   7   2   5   6

The firm sponsoring the diet advertises ‘Lose 5 kg in 2 months’. In a
consumer affairs radio programme they claim this is an ‘average’ weight
loss.  You may be unclear about what is meant by ‘average’, but assuming
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the sample is effectively random do the data support a median weight loss
of 5 kg in the population of dieters? Test this without an assumption of
symmetry. What would be a more appropriate test with an assumption of
symmetry? Carry out this latter test.

2.20  A pathologist counts the numbers of diseased plants in randomly
selected areas each 1 metre square on a large field. For 40 such areas the
numbers of diseased plants are:

______________________________________________

  21   18   42   29   81   12   94  117     88 210
  44   39   11   83    42   94       2    11   33   91
141   48   12   50   61   35 111    73     5   44
    6   11   35   91 147      83   91    48   22   17
______________________________________________

Use an appropriate nonparametric test to find whether it is reasonable to
assume the median number of diseased plants per square metre might be 50
(i) without assuming population symmetry, (ii) assuming population
symmetry. For these data do you consider the latter assumption
reasonable?

2.21  A traffic warden notes the time cars have been illegally parked after
their metered time has expired. For 16 offending cars he records the time in
minutes as:

    10   42   29   11   63   145   11   8   23   17   5   20   15   36   32   15

Obtain an appropriate 95 per cent confidence interval for the median
overstay time of offenders prior to detection. What assumptions were you
making to justify using the method you did? To what population do you
think the confidence interval you obtained might apply?

2.22 Knapp (1982) gives the percentage of births on each day of the year
averaged over 28 years for Monroe County, New York State. Ignoring leap
years (which make little difference), the median percentage of births per
day is 0.2746. Not surprisingly, this is close to the expected percentage on
the assumption that births are equally likely to be on any day, that is,
100/365 = 0.274. We give below the average percentage for each day in the
month of September. If births are equally likely to be on any day of the
year this should resemble a random sample from a population with median
0.2746. Do these data confirm this?

                                                                                                                                      

0.277  0.277  0.295  0.286  0.271  0.265  0.274  0.274  0.278  0.290  0.295
0.276  0.273  0.289  0.308  0.301  0.302  0.293  0.296  0.288  0.305  0.283
0.309  0.299  0.287  0.309   0.294  0.288  0.298  0.289
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3
Other single-sample inferences

3.1  INFERENCES FOR DICHOTOMOUS DATA

3.1.1   Binomially distributed data

The binomial distribution is relevant to certain counts associated
with only two possible outcomes — often referred to as dichotomous
data. These counts may be the raw or primary data as in Example
1.3, where the count was the number of patients in a sample of 10
requiring treatment. In that example we used binomial distribution
properties to assess the strength of evidence against a hypothesis that
the sample came from a B(10, 3/4) distribution, i.e. to test the
hypothesis H0: p = 3/4 against H1: p > 3/4. In Example 1.2 we applied
the sign test to hypotheses about the median of measured survival
times (the primary data), basing the test not on these primary data
but on the derived or secondary data of numbers of observations
above or below a hypothesized median. For the sign test the
parameter p = 1/2 is relevant to H0, and although the test was based
on that parameter, we were interested not in the parameter itself but
in the median of an underlying continuous distribution of survival
times. In this section we give other examples of inferences about a
binomial parameter p.

 It is convenient to refer to each of the n observations as the
outcome of a trial. The key assumptions needed for a count to have
a binomial distribution are :

•  the n trials are mutually independent;
• only one of two possible outcomes A, B is observed at each trial;
• at each trial there is a fixed probability p associated with the

outcome A and a probability q = 1 — p associated with the
outcome B.

The outcomes, or events A, B are often labelled success and
failure, but for reasons explained in Section 1.1.1 this may be
inappropriate, so we designate the outcomes as event A and event B.  
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The requirement that p be constant is often violated in a strict
sense. For example, when UK children are skin-pricked for
sensitization to grass, dust mites and cats around 7 per cent show a
skin reaction to all three allergens. This does not imply that there is
a probability p = 0.07 that a child given the skin tests will react to
all three tests positively. For instance, for children with asthma the
probability of three positive reactions is around 0.14, whereas for
children without asthma it is about 0.05. However, if a random
sample is taken from a large group of UK children which is
representative of the population in terms of asthma, it is reasonable
to expect approximately 7 per cent of those in the random sample to
have reactions to all three allergens. For a similar sample of children
from a country with a desert climate coupled with few domestic cats
there is medical evidence to suggest that the proportion of children
reacting to the grass and cat allergens may be lower. An appropriate
statistical test could be based on the binomial distribution
corresponding to a sample of n with the null hypothesis H0: p = 0.07
against the alternative H1: p < 0.07. However, in a comment on
Example 3.5 we point out another complication that may invalidate
the test.

Tests based on the binomial distribution also arise in quality
control problems where we are interested in the proportion of items
in large batches having a specific attribute — often a defect. A
widely used procedure is to take a random sample of n items from a
batch of N items and for a buyer to accept the whole batch if the
number of defective items, r, in that sample does not exceed some
small fixed number s. Otherwise the batch is rejected. The
consequences of such a procedure can be studied using binomial
distribution theory.  The results are only approximate because the
usual sampling method of selecting items without replacing each
before we select later items (called sampling without replacement)
does not lead to a binomial distribution for r.  However, if N is very
much larger than n, as it often is in practice, the binomial
approximation is satisfactory.  The scheme we outline below is
usually embellished in practice, but we do not consider here the
many possible elaborations.     

Example 3.1

The problem.  A contract for supplying rechargeable batteries specifies that
not more than 10 per cent should need recharging before 100 hours of use.  To
test compliance with this requirement a potential purchaser takes a random
sample of 20 from a large consignment and finds that 3 need recharging after
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being used for less than 100 hours. Assess the strength of evidence that the batch
is below specification.

Formulation and assumptions.  The test is distribution-free in the sense that
we make no assumption about the distribution of times before a recharge is
needed. However, we assume that there is a fixed probability p, say, that any
one battery will need recharging in less than 100 hours and that the failure time
for each battery is independent of that of any other battery. The null hypothesis
is H0: p ≤ 0.10 and the alternative is H1: p > 0.10.  

Procedure. Tables for the binomial distribution or standard statistical
software indicate that when p = 0.10 the probability that a sample of 20 contains
3 or more batteries that fail to meet specifications is P = 0.323.  

Conclusion. Since the probability that 3 or more batteries will need recharging
in less than 100 hours when p = 0.10 is nearly one-third there is little evidence
for preferring the alternative that the failure rate in the large consignment exceeds
10 per cent.

Comments. 1. This example does little more than highlight serious limitations
of hypothesis testing. Three failures in 20 items represents a 15 per cent failure
rate in the sample, so the data would clearly support a null hypothesis that
specified p = 0.15 and also many higher values. Confidence intervals for p will be
informative. We show in Example 3.2 that a two-sided confidence interval with
at least 95 per cent coverage for the true p is the interval (0.032, 0.379). This
implies that we would only reject a hypothesized value of p falling outside that
interval when we use the conventional P ≤ 0.05 as sufficient evidence against
that hypothesis, i.e. the sample evidence here suggests only that the batch
percentage failing to live up to specification is likely to be between about 3.2 and
37.9 per cent.

2.  Having obtained a confidence interval, two further questions of interest are
(i) what is the power of a test for H0:p = 0.1 against various alternatives and
(ii) how may we use larger samples to make a test more precise (in the sense of
shortening the confidence interval or increasing the power for specific alter-
natives)? We address these questions in Examples 3.3 and 3.4.

Computational aspects. In Examples 3.1–3.4 we discuss computational
aspects under Procedure as they form an integral part of that.

 
3.1.2   Confidence intervals for binomial proportions

For a binomial distribution, if an event A occurs in r out of n trials
the sample estimate of the binomial probability, p, is p ̂    = r/n. We
use the notation X = r where r = 0, 1, 2, . . . , n to indicate that the
event A occurs in r among n trials. To find a two-sided confidence
interval for p with at least 95 per cent coverage we seek for its
upper limit a value pu such that if the binomial parameters are n, pu,
then the value of Pr(X ≤ r) is as close as possible to, but does not
exceed, 0.025.  Well-known binomial distribution theory indicates
that pu must satisfy the equation
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 Σi (
n
i  )(pu)

i (1 – pu )
n – i = 0.025 (3.1)

where the summation is over i from 0 to r. A similar approach
provides an equation for a lower limit, pl. These equations may be
modified to give any required level by replacing 0.025 by another
appropriate value, e.g. 0.005 for a 99 per cent interval.  

The equation (3.1) generally has no simple analytic solution for
pU.  The classic way of overcoming this difficulty was recourse to
tables or charts obtained by numerical methods where these limits
were presented for several confidence levels (usually 90, 95 and 99
per cent) for a range of values of n and r. Table A4 in Conover
(1999) is one such table. Many computer packages including
Minitab and StatXact compute exact confidence limits at any level
chosen by the user.   

For reasonably large n if neither exact tables nor relevant
computer programs are available an asymptotic approximation may
be used. If we observe X = r occurrences of event A in n trials for
any p such that 0 < p < 1, then

Z
p p

p p n
=

−
−

ˆ

ˆ( ˆ) /1

has for large n approximately a standard normal distribution. The
approximation is good for n > 20 if p is close to 0.50, but appreci-
ably larger values of n are needed if p is close to 0 or 1.  To obtain
an approximate 95 per cent interval for p we follow the usual
normal distribution confidence interval procedure and find the upper
and lower limits as the value of p that satisfy the equations

  
Z

p p

p p n
=

−
−

= ±
ˆ

ˆ( ˆ) /
.

1
1 96 (3.2)

To obtain limits for other confidence levels 1.96 is replaced by the
appropriate value, e.g. 1.64 if a 90 per cent interval is required.    

If the event does not occur at all (r = 0) then the estimate of the
binomial probability is zero. An upper limit for p can be readily
obtained (using a tail probability of 0.05 as the lower tail is not
meaningful) and equation (3.1) reduces to

(1 – pu )
n = 0.05

Correspondingly, if r = n a lower limit can be obtained by solving

   (pl )
n = 0.05.
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Sackett et al. (1991) tabulate pl and pu when r = 0 and r = n for a
selection of sample sizes between 1 and 300.

Example 3.2 

The problem.  For the data in Example 3.1 confirm that an exact 95 per cent
confidence interval for p is (0.032, 0.379). Determine also 90 and 99 per cent
intervals. Obtain an asymptotic approximation to the 95 per cent interval.

Formulation and assumptions.  Assuming that the number of batteries in a
sample of 20 that fail to last 100 hours before needing a recharge has a binomial
distribution, the exact 95 per cent confidence limits are given by equation (3.1)
and the corresponding equation for the lower limit. For the 90 per cent and 99
per cent limits the 0.025 on the right-hand side is replaced by 0.05 and 0.005
respectively. Because the equations have no analytical solution the required
limits are obtained in practice from tables or by using appropriate software. The
relevant asymptotic limits are given by (3.2).

Procedure.  From Conover (1999) Table A4 one finds the following exact
intervals for this problem where n = 20 and r = 3.   

90 per cent   (0.042, 0.344)
 95 per cent   (0.032,  0.379)
99 per cent   (0.018, 0.450)

Both Minitab and StatXact give the same values and these should also be
obtained from any other software correctly claiming to give exact intervals.

For the asymptotic limits we use (3.2) with n = 20 and  p ̂    = 3/20 = 0.15 and
the solutions give the 95 per cent interval (–0.0065, 0.306). Most computer
software will give these limits as an alternative to exact limits, but not all include
the timely warning in Minitab that these may be unreliable for small samples.

Conclusion.  Evidence from this sample of 20 indicates only that it seems
likely that the overall proportion in a large batch lies somewhere between about
3 – 4 per cent and about 35 – 40 per cent.   

Comments. 1. We have already indicated that the asymptotic approximation
requires n to be considerably greater than 20 for small p. The asymptotic 95 per
cent lower limit, –0.0065 is a statistical nonsense, being outside the permissible
range 0 ≤ p ≤ 1. Tables of exact values in Conover cover values of n ≤ 30 but
with small values of p the asymptotic result may still be unreliable even when n
> 30, meaning that unless one has access to a table for larger values of n one
needs statistical software for an exact interval. For the case n = 30 and r = 2 an
exact 95 per cent interval for p is (0.008, 0.221) while the normal approximation
gives the nonsense interval (–0.023, 0.156). However, if n = 30 and r = 13 the
exact 95 per cent interval is (0.255, 0.626) and the asymptotic approximation is
a reasonable (0.256, 0.611).  

2. In this example we considered a two-sided confidence interval whereas in
Example 3.1 we were interested in a one-tail hypothesis test. The lower limit of
the one-sided 95 per cent confidence interval for the test considered there
corresponds to the lower limit for the two-sided 90 per cent interval, i.e. the 95
per cent one-sided interval is in this example (0.042, 1).
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3.1.3   Power and sample size

In Examples 3.1 and 3.2 there is considerable doubt about the
population value of p. In practical quality control problems a
common situation is that where a purchaser would ideally like all
batches of items such as the rechargeable batteries that are accepted
to contain not more than 10 per cent that require recharging before
100 hours of use.  However, taking marketing realities such as
production cost into account, the purchaser may be prepared to
accept a few batches where as many as, say, 20 per cent fail to live
up to this requirement, but be reluctant to accept batches where
more than 20 per cent fail.  By the same token the supplier does not
want the purchaser to reject batches where less than 10 per cent will
fail.

If we test H0: p ≤ 0.10 against the alternative H1: p > 0.10 and
agree the evidence is strong enough to reject H0 if the associated
P-value is P ≤ 0.05 this means there is a probability not greater than
0.05 that the purchaser will reject a batch that would be acceptable
(i.e. that in reality contains 10 per cent or less that are defective).
Be careful in your reading to distinguish between the binomial
probability (lowercase p) and the test P-value (capital P). In
acceptance sampling terms P = 0.05 is called the producer’s risk
because in agreeing to accept these terms it is the maximum long
run probability that an acceptable batch will be rejected. In
conventional hypothesis testing terms producer’s risk is the
probability of an error of the first kind. If the consumer is prepared
to accept a few batches with more than 10 but less than 20 per cent
defective the consumer and producer might agree that they should
devise a test procedure that ensures a certain preassigned high
probability, say P* = 0.90 that one does not accept a batch with 20
per cent or more defective. This means there is only a probability 1
– P* = 0.10 that a batch with 20 per cent or more defective will slip
through. This last probability is called the consumer’s risk because
in agreeing to accept these terms it is the maximum probability that
an unacceptable batch will be purchased. It is the probability of an
error of the second kind, and P* is the power. A practical problem is
to choose the sample size n such that there is both a preassigned
small probability P that batches for which p ≤ 0.10 will be rejected
and also a preassigned large probability P* that batches for which
p ≥ 0.20 will also be rejected.

Here the concept of power (Section 1.3) is useful. Power depends
on the value of P chosen to indicate significance, i.e. as sufficient
evidence to make H0 unacceptable, and also upon the sample size n
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and upon the value of the binomial p specified for an alternative
hypothesis.  Two relevant questions are:

• Given a sample of size n what is the power of a test of H0: p =
0.1 against H1: p = 0.2 if we agree to reject H0 for any P less
than some fixed preassigned value in a one-tail test?

• What sample size n will ensure that a test of H0: p = 0.1 against
H1: p = 0.2 where we reject H0 for any P less than some fixed
value (e.g. P = 0.05) has a given power P* for that alternative?

The rationale for these choices of H0, H1 is that if the true p is less
than 0.1 we are less likely to reject a good batch than would be the
case if p = 0.1 and that if p > 0.2 the power of our test will exceed
that when p = 0.2. A moment’s reflection shows these are desirable
characteristics for both producer and consumer.

If we observe r occurrences of event A in a sample of size n and
want to test H0: p = p0 against H1: p > p0 and agree that there is
sufficient evidence to prefer H1 for all P-values less than or equal to
some fixed value α, then the critical region of size α consists of all
values of r ≥ r0 where r0 is the smallest value of r such that the
binomial distribution B(n, p0) probabilities for all r ≥ r0 have a sum
not exceeding α. In practice we either read r0 from tables or now
more commonly obtain it using computer software.  

Having determined r0 it is easy to find the power of this test
against a single-valued alternative H1: p = p1 because this is simply
the Pr(r ≥ r0) when H1 is true. This probability may be read from
tables or obtained using appropriate computer software.

For large n asymptotic approximations may be used. These are
based on the fact that under H0 the distribution of

Z
p p

p p n
=

−
−

ˆ

( ) /
0

0 01
(3.3)

is approximately standard normal. If, for example, α = 0.05 for an
upper-tail test we set Z = 1.64 in (3.3) and solve for p ̂    given n and
p0.  To get an asymptotic expression for the power when H1: p = p1

is true we replace p0 by p1 in (3.3) and insert the solution p ̂   that we
have just obtained in this amended expression for Z and calculate the
resulting Z, say Z = z1. The asymptotic approximation to the power
is Pr(Z ≥ z1).

Example 3.3
The problem.  For a sample of 20 batteries from a large batch suppose we

wish to test H0: p = 0.1 against H1: p = 0.2 where p is the population proportion



 

of batteries requiring recharging in less than 100 hours and decide we will prefer
H1 for any P-value P ≤ 0.05. What is the minimum number of faulty batteries in
the sample for which we prefer H1? Obtain both exact and asymptotic
expressions for the power of this test.

Formulation and assumptions.  Let X be the number of occurrences, r, of the
event A (battery needs recharging in less than 100 hours), then under H0, X has a
binomial (20, 0.1) distribution. We prefer H1 if our sample gives r0 or more
occurrences of A where r0 is the least r such that Pr (X ≥ r0) ≤ 0.05 when H0 is
true. Once we know r0 the power is obtained by computing for that r0 the
corresponding probability under H1. Asymptotic results for large n use the
normal approximations given above for these probabilities.

Procedure.  If suitable tables are available these may be used although it is
often easier to use software. We outline the procedure for both methods. When
n = 20,  p = 0.10, Table A3 in Conover (1999) indicates that Pr(X  ≤ 4) = 0.9568
whence Pr(X ≥ 5) = 1 – 0.9568 = 0. 0432. Thus we prefer H1 if and only if r ≥ 5.
To determine the power we require Pr(X ≥ 5) for a B(20, 0.2) distribution. The
same tables indicate that now Pr(X ≥ 5) = 1 – Pr(X ≤ 4) = 1 – 0.6296 = 0.3704.
In the asymptotic approach  under H0 we have, using (3.3)

Z = (p ̂    –  0.1) /√(0.1 × 0.9/20) = 1.64

whence p^   = 0.2100.  Thus the relevant power is given by

Pr[Z ≥ (0.2100 – 0.2)/√(0.2 × 0.8/20)] = Pr(Z ≥ 0.1118).

From standard normal distribution tables this probability is 0.4555.  
Most computer software easily generates P-values corresponding to any

number of successes for one- or two-tail tests. For example, the 1-proportion
program in Minitab confirms that Pr(X ≥ 5) = 0.043 and the same program using
p = 0.2 indicates Pr(X ≥ 5) = 0.370 confirming our result for the power.
Minitab, version 12, also gives a separate program relating power to sample size
but uses an asymptotic approximation. This gives an approximate power 0.432
which differs somewhat from our 0.4555. The discrepancy is explained by the
estimate being sensitive to round off. If we replace 1.64 by the more precise
1.645 the estimated power is 0.434, close to the Minitab estimate. The
discrepancy between the true power and the asymptotic estimate reflects the
unsatisfactory nature of the asymptotic result for even moderate n associated
with small p. StatXact, version 4 gives the exact power directly for any sample
size for any pair of values of p specified in H0 and H1.

Conclusion. The power of our test against an alternative p = 0.20 is only
0 . 37 0 if  w e ch o os e P ≤ 0. 05  ( o r mo re  p re ci se l y be ca us e of  d i sc on ti nu it ie s 
P  ≤  0.043) as our criterion for not accepting p = 0.10.

Comments. 1. In the discussion preceding this example we suggested a
practical aim might be to reject a batch with probability (power) 0.90 if p ≥ 0.20.
The power 0.370 is far short of this requirement.  

2. The unsatisfactory nature of asymptotic power calculations with the n and
p used here is less acute with larger samples.  

3. In Section 1.3 we indicated that reducing the P-value chosen as acceptable
evidence against H0 generally results in reduced power against a particular
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alternative. In this example tables or appropriate software indicates that if we set
the requirement that P must not exceed 0.02 the power of the one-sided test
against the alternative p = 0.2 is reduced from 0.370 to 0.196. However, due to
discontinuities in possible P-values the exact P is not 0.02 but is 0.011.

Modern software yields exact P-values for one- or two-tail tests
for any n, p and r which effectively means we can obtain the values
of Pr(X ≥ r), 0 ≤ r ≤ n for any B(n, p) distribution.  This is useful
for developing tests such as those for attribute sampling considered
in this section that have preset producer’s risk (i.e. P-values for
rejection of H0) and consumer’s risk (i.e. power against a specified
H1 that gives the maximum p the consumer considers tolerable).  

Example 3.4

The problem.  Determine the power of the test H0: p = 0.10 against H1: p =
0.20 when P ≤ 0.05 when n = 50, 100, 150, 200, 300. Compare exact values with
the asymptotic approximation. Also determine the minimum n to ensure a power
of at least 0.9 for this test.

Formulation and assumptions.  For illustrative purposes we use programs in
Minitab, version 12 and in StatXact, version 4, but modifications for other
packages with binomial distribution programs are generally straightforward.

Procedure.  We describe the procedure fully for the case n = 100 and only
quote results for other n.   We urge readers to confirm the results using available
software.  When n = 100 and p = 0.10 it is intuitively reasonable to expect a P-value
not exceeding 0.05 if r, the number of batteries needing recharging before 100
hours, is close to 15.  Minitab and StatXact both give the following values

  r    15    16    17     
 P 0.073 0.040 0.021

establishing r = 16 as the critical value. To obtain the power we need to know
Pr(X ≥ 16) when p = 0.20. StatXact gives this probability, the exact power, to be
0.871 directly without the need to first ascertain, as we just did, that r = 16 is
the critical cut-off value. The sample size and power program for proportions in
Minitab gives an asymptotic approximation which in this case indicates a power
of 0.897 for a nominal P = 0.05. For our exact P-value 0.040 the asymptotic
power approximation is 0.882. The asymptotic approximation is reasonable for
this sample size. For n = 100 and the remaining sample sizes of interest with the
largest exact P-values meeting the requirement P ≤ 0.05, the exact power and the
asymptotic estimate of power based on the corresponding exact P are: 

     n   50       100  150       200   300
      P 0.025      0.040 0.044      0.043  0.038

Exact power 0.556      0.872 0.963      0.989  0.999
Asymptotic power 0.617      0.882 0.962      0.988  0.999

How best to estimate the sample size n needed to ensure an exact power 0.9 may
depend on available software. Clearly the size lies between 100 and 150. Since
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asymptotic power calculations seem reasonable for samples exceeding 100 one
might use an asymptotically based facility in Minitab that gives an estimate of
sample size having any required power for the relevant critical P-value (here P =
0.05). One may fine tune this using a program for exact binomial probabilities in
a way we now describe. For our test the power-sample size program in Minitab
indicates the required n = 102. We used this as a starting estimate for the exact
result. When n = 100 we found the critical region was defined by r ≥ 16.  When n
= 102 the Minitab binomial program relevant to our one-tail test shows that
when r = 16 the corresponding P-value is P = 0.047, while r = 15 gives P =
0.083.  The exact power for the alternative p = 0.20 corresponding to P = 0.047
is given by Minitab as 0.890. In practice this may be accepted as a suitable
approximation or one might seek some insurance by choosing a slightly greater
sample size such as n = 105. With that latter choice Minitab gives the exact P =
0.032 with power 0.865! The apparent anomaly of reduced power with
increased sample size is simply a reflection of the impact of discontinuities in P-
values and possible values of the power (which remember is also a probability
with associated discontinuities). Our nearest P-value above P = 0.032 would
have been P = 0.058 and the associated power then becomes 0.914. StatXact also
gives exact power for the above or other sample sizes directly. These indicate
that a sample size of 109 has power 0.901 in the problem considered here.

Conclusions.  In general for a specified single-value alternative hypothesis
power increases with sample size for a fixed P-value but there are some
irregularities due to discontinuities in possible exact P-values. These irregularities
are generally of little practical importance.

Comment.  Although one should be aware of the effects of discontinuities in
P-values in assessing evidence for abandoning a hypothesis and in calculating
power and sample sizes to achieve certain aims the importance of such effects
should not be overemphasized. While it is clearly unwise, for example, to use
asymptotic results for small samples, the discrepancies due to discontinuities in
possible P-values are usually small in larger samples and in this context it is also
worth remembering that nearly all mathematical models of real world situations
are only approximations. Hopefully these will reflect key features of reality, but
there will always be some discrepancies. For instance, we have already pointed
out that when we take a sample of n from a large batch of N items by sampling
without replacement the binomial distribution is only an approximation, albeit
quite a good one.  

3.1.4   A caution

In Section 3.1.1 we considered a situation where, in the population at
large, 7 per cent of all children skin-pricked for sensitization to grass,
dust mites and cats had a positive skin reaction to all three allergens.
However, the presence or absence of asthma meant that each child did
not have the same probability of showing three positive skin tests. We
indicated there that if a random sample were taken from that larger
population it is not unreasonable to expect this to reflect the
population proportion of 7 per cent showing three
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positive tests, because statistical theory backs an intuitive hunch that a
random sample should reflect fairly closely characteristics of a
population. On these grounds we indicated that it may be reasonable
to take a random sample of children from a country with a desert
climate and few domestic cats to see whether there is a lower
proportion of positive skin tests in that population. We formalize a
simple test based on the binomial assumption in Example 3.5 but
warn in the Comment that the analysis may still not be valid.

Example 3.5

The problem.  It is known that 7 per cent of UK children give positive skin
tests to grass, dust mites and cats. It is thought that a desert climate and few
domestic cats may reduce the proportion of positive tests. A random sample of
54 children from such a country were given the allergen tests and only one of
these had positive reactions to all three allergens. Is there sufficient evidence of a
lower incidence compared with the UK?

Formulation and assumptions.  We justify a one-tail test of H0: p = 0.07
against H1: p < 0.07 because there are good medical reasons for assuming that the
proportion should be lower under such conditions. If the direction of any effect
on sensitization were unknown then a two-tail test of H0: p = 0.07 against H1: p
≠ 0.07 would be appropriate.

Procedure.  As exact tables for n = 54 are not widely available and a small p
makes asymptotic results unreliable one should resort to appropriate software.
For the one-tail test StatXact or Minitab gives an exact P = 0.101. The exact
two-sided nominal 95 per cent confidence interval for p is (0.0005, 0.0989).

Conclusion. The evidence of a reduction is not strong.  If it were important to
detect even a small reduction to, say, p = 0.05 a larger experiment would be
needed to give reasonable power.

Comment.  In Section 3.1.1 we pointed out possible difficulties if particular
groups of patients have markedly different probabilities of showing a reaction.
We stressed the need for a random, or effectively random sample, to overcome
this problem. Another type of problem may arise in, for instance, the testing of a
new drug. For the new drug there may be a quite different set of factors
influencing the likelihood of an individual showing side-effects compared with
the original drug. For instance, with one antibiotic for the treatment of
pneumonia people with asthma may be more likely to exhibit side-effects,
whereas for a new antibiotic the reverse may be the case. In these circumstances
what could be an overall beneficial effect can sometimes be masked or distorted
in our sample. The solution lies in either further experimentation or at least in
using more detailed observations and tests. For example, one may require an
analysis that takes into account other factors that might influence outcomes for
individuals, e.g. factors such as weight, age, sex of patients. The result is a more
complex analytic problem and indeed most real life statistical problems are more
complicated than the simple ones discussed in this section!
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3.2   TESTS RELATED TO THE SIGN TEST

3.2.1   An alternative approach to the sign-test  

We described the sign test in detail in Section 2.3.  An alternative
but equivalent approach more in the spirit of the work in Section
3.1 is sometimes used and we illustrate this by an example.

Example 3.6

The problem.  For the second data set in Example 2.9, i.e.

5.6  6.1  6.3  6.3  6.5  6.6  7.0  7.5  7.9   8.0  8.0  8.1  8.1  8.2  8.4  8.5  8.7 9.4  14.3  26.0

if θ is the population median test the hypothesis H0: θ = 9 against the alternative
H1: θ ≠ 9 using the sign test. Obtain a 95 per cent confidence interval for θ using
the methods developed in Section 3.1.

Formulation and assumptions.  Wide availability of programs giving exact P-
values provides a useful facility for testing and estimation in a sign-test situation.

Procedure.  For illustrative purposes we use the basic statistics 1-proportion
option in Minitab. Here n = 20 and the number of observations below the
hypothesized median is r = 17. The sign test calls for evaluation of P for a two-
tail test with p = 0.5 and the Minitab program gives at the same time a
confidence interval for the true p at a nominal level which we here set at 95 per
cent. The program gives P = 0.003 and a nominal 95 per cent confidence interval
for p of (0.621, 0.967). Allowing for rounding our P-value agrees with that
obtained in Example 2.9 and indeed here we did nothing essentially different
from what was done there. To obtain a confidence interval for θ we now decrease
r by steps of 1 until we get a 95 per cent confidence interval for p that just
includes the value p = 0.5. This straightforward stepwise process indicates that
when r = 15 the confidence interval is (0.508, 0.913) while for r = 14 it is
(0.457, 0.881). Thus when r = 14 we would regard p = 0.5 as acceptable with
P > 0.05 but not when r = 15. The symmetry of the binomial distribution
when p = 0.5 implies that we would accept when r = 6 but not when r = 5. This
implies that an appropriate 95 per cent confidence interval for the median is
from the sixth to the fifteenth largest observations, i.e. the open interval (6.6,
8.4), agreeing with the result in Example 2.10.

Computational aspects.  The procedures in Examples 2.9 and 2.10 and in this
example are basically equivalent. Which is preferred is largely determined by the
availability of appropriate tables or computational software.

3.2.2   Quantile tests

The sign test is relevant to population medians. We are often
interested in other quantiles of a population. For example a quantile
such that three-quarters of the population values lie below it and one
quarter  above  is  known  as  the  upper  (or third)  quartile  while  a
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quantile such that r tenths of the observations lie below it and (10–r)
tenths of the observations lie above it where r = 1, 2, . . . , 9 is
called the rth decile. Many tests and estimation procedures involving
quantiles proceed along similar lines to those about medians by
simply replacing p = 0.5 by a value appropriate to the relevant
quantile. For continuous distributions quantiles are unique, but for
discrete distributions conventions given in most standard textbooks
are needed to give unique quantiles. We have already met the usual
convention for the median of a set consisting of an even number,
say, 2m, observations. We arrange them in ascending order and
denoting the rth ordered observation by x(r) we define the median as
1/2(x(m) + x(m + 1)). Note that the fifth decile is the same as the median.

Example 3.7

The problem.  A central examining body publishes the information that ‘three-
quarters of the candidates taking a mathematics paper achieved a mark of 40 or
more’ (i.e. the first population quartile is 40). One school entered 32 candidates
for this paper of whom 13 scored less than 40. The president of the Parents’
Association argues that the school’s performance is below national standards.
The headmaster counters by claiming that in a random sample of 32 candidates it
is quite likely that 13 would score less than the lower quartile mark even though
8 out of 32 is the expected proportion. Is his assertion justified?

Formulation and assumptions.  Denoting the first quartile by Q1 a test for the
headmaster’s assertion is a test for  H0: Q1 = 40 against H1: Q1 ≠ 40.

Procedure. We associate a minus with a mark below 40; thus for our ‘sample’
of 32 we have 13 minuses (and 19 pluses). If the first quartile is 40 then the
probability is p = 0.25 that each candidate in a random sample has a mark below
40 (and thus is scored as a minus). The distribution of minuses is therefore
binomial B(32, 1/4). Using any program that gives a 95 per cent confidence
interval for p given r = 13 minuses (event A) when n = 32 we find the relevant
confidence interval is (0.24, 0.59).  This includes p = 0.25. The associated
P-value is P = 0.0755.

Conclusion. If we observe 13 minus signs we would not reject the hypothesis
H0: first quartile is 40 at a conventional 5 per cent significance level.
Nevertheless there is some evidence against this hypothesis – enough to worry
many parents and some may be reluctant to give the headmaster’s claim the
benefit of the doubt until further evidence were available.

Comments. 1. Remember that even if we use formal significance levels, non-
rejection of a hypothesis does not prove it true. It is only a statement that the
evidence to date is not sufficient to reject it. This may simply be because our
sample is too small. We may make an error of the second kind by non-rejection.
Indeed, since the above confidence interval includes p = 0.5 we would not reject
the hypothesis that the median is 40.

2.  We used a two-tail test. A one-tail test would not be justified unless we
had information indicating the school’s performance could not be better than the
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national norm. For example, if most schools devoted three periods per week to
the subject but the school in question only devoted two, we might argue that lack
of tuition could only depress performance. Indeed, a one-tail test at the
conventional 5 per cent level would reject H0 if there are more than 12 minuses.
If we observe 13 minuses and feel a one-tail test with P = 0.05 as a significance
indicator is appropriate and want to use the method described in this example we
might determine a 90 per cent confidence interval for p and reject H0 if p = 0.25
is below the lower limit for this interval. Think carefully about this to be sure
you see why. Have you any reservations about the accuracy of this approach?  

3.  The headmaster’s claim said ‘if one took a random sample’. Pupils from a
single school are in no sense a random sample from all examination candidates.
Our test only establishes that results for this particular school are not too
strongly out of line with national results in the sense that they just might arise if
one took a random sample of 32 candidates from all entrants.

4.  Tests for a third quartile are symmetric with those for a first quartile if we
interchange plus and minus signs.

3.2.3   The Cox–Stuart sign test for trend

Cox and Stuart (1955) proposed a simple test for a monotonic trend,
i.e. an increasing or decreasing trend. A monotonic trend need not
be linear; it need only express a tendency for observations to
increase or decrease subject to some local or random irregularities.
Consider a set of independent observations x1, x2, . . . , xn ordered
in time. If we have an even number of observations, n = 2m, say,
we take the differences xm+1 – x1, xm+2 – x2, . . . , x2m – xm. For an
odd number of observations, 2m+1, we may proceed as above
omitting the middle value xm+1 and calculating xm+2 – x1, etc. If there
is an increasing trend we expect most of these differences to be
positive, whereas if there were no trend and observations differed
only by random fluctuations about some median these differences
(in view of the independence assumption) are equally likely to be
positive or negative. A preponderance of negative differences
suggests a decreasing trend.

This implies that under the null hypothesis of no trend, the plus
(or minus) signs have a B(m, 1/2) distribution and we are in a sign
test situation.

Example 3.8

The problem. The US Department of Commerce publishes estimates obtained
from independent samples each year of the mean annual mileages covered by
various classes of vehicles in the United States. The figures for cars and trucks
(in thousands of miles) are given below for each of the years 1970–83. Is there
evidence of a monotonic trend in either case?
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Cars     9.8   9.9    10.0    9.8    9.2     9.4     9.5    9.6    9.8      9.3    8.9    8.7     9.2    9.3
Trucks  11.5 11.5    12.2  11.5  10.9   10.6   11.1   11.1   11.0    10.8  11.4   12.3   11.2  11.2
                                                                                                                                        

Formulation and assumptions.  The figures for each year are based on
independent samples so we may use the Cox–Stuart test for trend. Without
further information a two-tail test is appropriate as a trend may be increasing or
decreasing.

Procedure.  For cars relevant differences are 9.6 – 9.8, 9.8 – 9.9, 9.3 –10.0,
8.9 – 9.8, 8.7 – 9.2, 9.2 –9.4, 9.3 – 9.5 and all are negative. Appropriate tables or
computer software immediately establishes that seven negative signs or seven
positive signs when p = 0.5 has an associated P = 0.016.

Conclusion.  There is strong evidence of a downward monotonic trend.

Comments.  1. For trucks the corresponding differences have the signs –, –, –,
–,  +, +, +. Clearly when we only have seven data values 3 plus and 4 minus (or
3 minus and 4 plus) signs provides the strongest possible evidence to support a
hypothesis of no monotonic trend. The fact that the first four differences are all
negative and the last three all positive suggests the possibility of a decreasing
trend followed by an increasing trend (i.e. a non-monotonic trend) rather than
random fluctuations. The sample is too small to establish this, but in Section 3.5
we describe a ‘runs test’ appropriate when we have larger samples for testing
whether in circumstances like these fluctuations are random.   

2. Periodic trends are common.  For example, at many places in the northern
hemisphere mean weekly temperature tends to increase from February to July
and decrease from August to January. A Cox–Stuart test applied to data of this
type might either miss such a trend (because it is not monotonic) or indicate a
monotonic trend for records over a limited period (e.g. from February to June).
Conover (1999, Examples 4 and 5, pp. 172–175) shows how in certain
circumstances the Cox–Stuart test may be adapted to detect periodic trends by
re-ordering the data.

3. If the same samples of cars and trucks had been used each year the
independence assumption would not hold; inference would then only be valid for
vehicles in that sample, for anything atypical about the sample would influence
observations in all years. With independent samples for each year, anything
atypical about the sample in any one year will be incorporated in the random
deviation from trend in that year.

3.3   MATCHING  SAMPLES TO DISTRIBUTIONS

Test and estimation procedures for centrality measures were covered
in Chapter 2 but other population characteristics such as spread or
skewness may be of interest. In particular, we often want to know
whether observations are consistent with their being a sample from
some specified continuous distribution. Kolmogorov (1933; 1941)
devised a test for this purpose.
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Given observations x1, x2, . . . , xn, we ask if these are consistent
with our sample being from some completely specified distribution.
This might be a uniform distribution over (0, 1) or over (20, 30), or
a normal distribution with mean 20 and standard deviation 2.7.
Kolmogorov’s test is distribution-free because the procedure does
not depend upon which distribution is completely specified under
H0. In Section 3.3.3 we look at modifications to answer questions
like ‘Can we suppose these data are from a normal distribution with
unspecified mean and variance?’

3.3.1   Kolmogorov’s test

The continuous uniform distribution (sometimes called the
rectangular distribution) is a simple continuous distribution that
arises when a random variable has the same probability of taking a
value in any small interval of length δx within a fixed and specified
finite interval (a, b). For example, suppose pieces of thread each
6 cm in length are clamped at each end and a force is applied until
they break; if each thread breaks at the weakest point and this is
equally likely to be anywhere along its length, then the breaking
points will be uniformly distributed over the interval (0, 6), where
the distance to the break is measured in centimetres from the left-
hand clamp.

The probability density, or frequency, function has the form

f(x) = 0, x ≤ 0;   f(x) = 1/6,  0 < x ≤ 6;   f(x) = 0, x > 6.

The rectangular form of f(x) over (0, 6) explains the name rect-
angular distribution.  If the thread always breaks, the probability
is 1 that it breaks in the interval (0, 6), so the total area under the
density curve must be 1; clearly only the density function above
satisfies both this condition and that of equal probability of a break
in any small segment of length   x no matter where that segment lies
within the interval. The function is graphed in Figure 3.1 and is
essentially a line running from 0 to 6 at height 1/6 above the x-axis.
The lightly shaded area represents the total probability of 1
associated with the complete distribution. The heavily shaded
rectangle PQRS between x = 3.1 and x = 3.8 represents the prob-
ability that the random variable X, the distance to the break, takes a
value between 3.1 and 3.8.  Since PQ = 3.8 – 3.1 = 0.7 and PS = 1/6

, clearly this area is 0.7/6 ≈ 0.1167. The probability of a break
occurring in any segment of length 0.7 lying entirely in the interval
(0, 6) is also 0.1167.  
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Following convention we use X, Y . . . as names for random
variables, and corresponding lowercase letters x, y . . . (with or
without subscripts) for specific values of these variables.

The Kolmogorov test uses not the probability density function,
but the cumulative distribution function (cdf), a function that gives
Pr(X ≤ x) for all x in (0, 6). In our example the probability the break
occurs in the first two centimetres is Pr(X  ≤ 2). Clearly this is 1/3.

The cdf is written F(x) and for any x between 0 and 6, F(x) = x/6.
It has the value 0 at x = 0 and 1 at x = 6. It is graphed in Figure 3.2.
These notions generalize to a uniform distribution over any interval
(a, b) and the cdf is F(x) = (x – a)/(b – a), a < x ≤ b, specifying a
straight line rising from zero at x = a to 1 at x = b. Clearly F(a) = 0
and F(b) = 1. This is illustrated in Figure 3.3.

Figure 3.1  Probability density function for a continuous uniform distribution
over (0, 6).

Figure 3.2  Cumulative distribution function (cdf) for a uniform distribution
over (0, 6).
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Figure 3.3  Cumulative distribution function (cdf) for a uniform distribution
over (a, b).

Figure 3.4  Cumulative distribution function (cdf) for the standard normal
distribution.

For any continuous distribution the cdf is a curve starting at zero
for some x and increasing as we move from left to right until it
attains the value 1. It never decreases as x increases and is said to be
monotonic non-decreasing (or monotonic increasing). Figure 3.4
shows the cdf for the standard normal distribution.
 The Kolmogorov test compares a population cdf with a related
curve S(x) based on sample values and called the sample (or
empirical) cumulative distribution function. For a sample of n
observations
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Example 3.9

The problem.  The distances from one end at which each of 20 threads 6 cm
long break when subjected to strain are given below.  Evaluate and graph S(x).
For convenience the distances are given in ascending order.

0.6    0.8    1.1    1.2    1.4    1.7    1.8    1.9    2.2    2.4
2.5    2.9    3.1    3.4    3.4    3.9    4.4    4.9    5.2    5.9

Formulation and assumptions. From (3.4) it is clear that S(x) increases by
1/20 at each unique x value corresponding to a break, or by r/20 if r break
distances coincide.

Procedure.  When x = 0, S(x) = 0; it keeps this value until x = 0.6, the first
break.  Then S(0.6) = 1/20, and S(x) maintains this value until x = 0.8 when it
jumps to 2/20, a value retained until x = 1.1. It jumps in steps of 1/20 at each break
value until x = 3.4, where it increases by 2/20 since two breaks occur at x = 3.4.  
S(x) is referred to as a step function for obvious reasons. Its value at each step is
given in Table 3.1.

Conclusion.  Figure 3.5 shows the form of S(x) for these data.

Comment.  S(x) is a sample estimator of the population cdf F(x). If a sample
comes from a specified distribution, the step function S(x) should not depart
markedly from the population cdf F(x) unless the sample is very small, say, n =
10 or less. In this problem if breaks are uniformly distributed over (0, 6) one
expects, for example, about half of these to be in the interval (0, 3), so that S(3)
should not have a value very different from 0.5 and so on. In Figure 3.5 we show
also the cdf for a uniform distribution over (0, 6) reproduced from Figure 3.2.
Intuitively one may feel that this is not a good fit.

Recognizing that S(x) should not depart violently from F(x) for a
sample from a distribution with that specific cdf is basic to
Kolmogorov’s test. The test statistic is the maximum difference in
magnitude between F(x) and S(x).  

Example 3.10

The problem.  Given the 20 breaking points and the corresponding S(x) values
in Table 3.1, is it reasonable to suppose breaking points are uniformly
distributed over (0, 6)?

Table 3.1  Values of S(x) at step points.
___________________________________________________________
x     0.6      0.8    1.1     1.2     1.4     1.7    1.8    1.9     2.2     2.4     2.5
S(x)     0.05   0.10   0.15   0.20   0.25   0.30  0.35  0.40   0.45   0.50   0.55

x     2.9      3.1    3.4*   3.9     4.4     4.9    5.2    5.9
S(x)     0.60    0.65  0.75   0.80   0.85   0.90  0.95  1.00

    ___________________________________________________________
* Repeated sample value
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Figure 3.5 Sample cumulative distribution function (cdf) for thread breaks (step
function) together with the cdf for a uniform distribution over (0,6) (straight
line).

     Table 3.2 Comparison of F(x) and S(x) for thread breaks.
                                                                                              

xi F(xi) S(xi)   F(xi)–S(xi)   F(xi)–S(xi–1)
                                                                                              

0.6 0.10 0.05       0.05          0.10
0.8 0.13 0.10       0.03          0.08
1.1 0.18 0.15       0.03          0.08
1.2 0.20 0.20       0.00          0.05
1.4 0.23 0.25     –0.02          0.03
1.7 0.28 0.30     –0.02          0.03
1.8 0.30 0.35     –0.05          0.00
1.9 0.32 0.40     –0.08        –0.03
2.2 0.37 0.45     –0.08        –0.03
2.4 0.40 0.50     –0.10        –0.05
2.5 0.42 0.55     –0.13        –0.08
2.9 0.48 0.60     –0.12        –0.07
3.1 0.52 0.65     –0.13        –0.08
3.4 0.57 0.75     –0.18        –0.08
3.9 0.65 0.80     –0.15        –0.10
4.4 0.73 0.85     –0.12        –0.07
4.9 0.82 0.90     –0.08        –0.03
5.2 0.87 0.95     –0.08        –0.03
5.9 0.98 1.00     –0.02          0.03
                                                                                              

Formulation and assumptions. The maximum difference in magnitude between
F(x) and S(x) is compared with a tabulated value to assess the goodness of fit. Or
better, software is used to determine the exact P-value.
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 Procedure.  Table 3.2 shows values of F(x) and S(x) at each break point given
in Table 3.1. It also gives at each of these points the difference F(xi) – S(xi).  In
view of the stepwise form of S(x), the maximum difference may not be in this
set. Inspecting Figure 3.5 it is clear that a greater difference may occur
immediately before such a step. There S(x) has the value attained at the previous
step, so a maximum may occur among the F(xi) – S(xi – 1). These differences are
also recorded in Table 3.2.

Figure 3.5 shows that for much of the interval (0, 6) S(x) lies above F(x). The
entry of greatest magnitude in the last two columns of Table 3.2 is –0.18 when
xi = 3.4. Published tables give values of the minimum difference required for
significance at nominal 5 and 1 per cent levels for various n, and in some cases
also for other quantiles but modern software makes these somewhat redundant.
If required, tables may be found in Gibbons and Chakriborti (1992), in
Conover (1999) or in many general statistical tables. The theory for computing
exact P-values is more complicated than that for situations we have met so far
and Gibbons and Chakriborti (1992, Section 4.3) give a detailed account. Tables
indicate that the statistic must have a value of at least 0.294 for significance at
the 5 per cent level in a two-tail test. The exact test gives P = 0.458.

Conclusion.  There is no evidence against H0.

Comments. 1. A two-tail test is appropriate if the alternative hypothesis is
that the observations may come from any other unspecified distribution.
Situations may arise where the only alternative is that the cdf must lie either
wholly at or above or wholly at or below that specified in the null hypothesis.
For example, in the thread problem we may know that the test equipment places
strains on the thread that, if not uniformly distributed, will be greater at the left
and decrease as we move to the right. This might increase the tendency for
breaks to occur close to the left end of the string. Then the cdf would always lie
above the straight line representing F(x) for the uniform distribution. In that case
a maximum difference with S(x) greater than F(x) for the uniform distribution
would, if significant, favour the acceptable alternative, making a one-tail test
appropriate.

2. In commenting on Figure 3.5 we noted that the step function did not
appear to match the population cdf very well. The Kolmogorov test does not
indicate a meaningful departure, a point we take up again in Section 3.3.2.

Computational aspects. Some general statistical packages include programs for
the Kolmogorov test but may use only asymptotic results applied at nominal
significance levels and these are not satisfactory even in that context unless
sample sizes are at least 20, or sometimes more. The exact test program in
StatXact avoids these difficulties and allows a comparison with an asymptotic
approximation to the P-value, which often shows a surprising difference.
 

The Kolmogorov test appears to waste information by using only
the difference of greatest magnitude. Tests that allow for all
differences exist but tend to have few, if any, advantages. This is
not as contrary as intuition may suggest, for the value of S(x) at any
stage depends on how many observations are less than the current x
and therefore at each stage we make the comparison on the basis of
accumulated evidence.
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For a discrete distribution the Kolmogorov test tends to give too
few significant results and in this sense is conservative. We consider
preferred tests for discrete distributions in Section 9.4.

3.3.2  Comparison of distributions: confidence regions

If, in Figure 3.5 we had drawn step functions everywhere at
distances 0.294 units above or below that representing S(x), with
adjustments at each end to stop them falling below zero or above
one, we would, since 0.294 is the critical difference for significance
at the 5 per cent level given by tables, have a 95 per cent confidence
region for F(x) in the sense that any F(x) lying entirely between
these two new step functions would be an acceptable F(x) when
testing at a 5 per cent significance level in a two-tail test. This
interval is not very useful in practice. A more common practical
situation is one where it is reasonable to assume that our data may
come from one of a (usually small) number of completely specified
distributions. We might then use a Kolmogorov test for each. In
each test the relevant S(xi) will be the same for a given data set. As a
result of these tests we may reject some of the hypotheses but still
find more than one acceptable. It is then useful to get at least an
overall eye comparison of how well the match of S(x) is to each
acceptable F(x). Ross (1990, p. 85) gives a useful procedure for
such eye comparisons. Basically it consists of plots of the maximum
of the two deviations given for the last two columns of each row in
a table like Table 3.2 against the S(xi) for that row. Plots may easily
be done for several different hypothesized population distributions
on the same graph.

Example 3.11

The problem.  Compare the fit of the thread break data in Example 3.9 to (i) a
uniform distribution over (0, 6) and (ii) the distribution with cumulative dist-
ribution function over (0, 6) given by

F(x) = x/5, 0 < x ≤ 3;  F(x) = 0.2  + 4x/30, 3 < x ≤ 6.                 (3.5)

Formulation and assumptions. All information needed for the Kolmogorov
test procedure for the distribution (i) was obtained in Example 3.10. We require
similar information for the alternative distribution in (ii). We make a graphical
comparison using the format suggested by Ross.

Procedure.  For (i) the values of S(x) of interest are those in column 3 of
Table 3.2. In each case the corresponding deviation is the value of greatest
magnitude in columns 4 and 5. For (ii) the values of S(x) are again those in Table
3.2.  However, fresh values of F(x) for each xi must be calculated using (3.5).
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Figure 3.6  Plot of deviations  F(x) – S(x) against S(x) for the two F(x) functions
specified in Example 3.5.

Table 3.3  Values of xi,  S(xi),  di = max[F(xi) – S(xi), F(xi)
– S(xi–1)] for population distributions specified in (i) and
(ii) of Example 3.11.

                                                                                                 

xi S(xi)         di(i)        di(ii)
                                                                                            

0.6 0.05         0.10        0.12
0.8 0.10         0.08        0.11
1.1 0.15         0.08        0.12
1.2 0.20         0.05        0.09
1.4 0.25         0.03        0.08
1.7 0.30         0.03        0.09
1.8 0.35       –0.05        0.06
1.9 0.40       –0.08        0.03
2.2 0.45       –0.08        0.04
2.4 0.50       –0.10        0.03
2.5 0.55       –0.13       –0.05
2.9 0.60       –0.12        0.03
3.1 0.65       –0.13      –0.04
3.4 0.75       –0.18      –0.10
3.9 0.80       –0.15      –0.08
4.4 0.85       –0.12      –0.06
4.9 0.90       –0.08      –0.05
5.2 0.95       –0.08      –0.06
5.9 1.00         0.03        0.04

                                                                                            

case(ii)

case (1)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

S(x)
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For example, when xi = 1.2, (3.5) gives F(1.2) = 1.2/5 = 0.24.  Using this and the
values of S(1.1) and S(1.2) in Table 3.2 we find that F(1.2) –S(1.2) = 0.24 – 0.20 = 0.04
and F(1.2) – S(1.1) = 0.24 – 0.15 = 0.09. Thus, corresponding to x = 1.2, the
maximum deviation is 0.09 just before the step in S(x) at x = 1.2.  In Table 3.3
we set out for each xi the corresponding S(xi) and maximum deviations for the
population distributions specified in (i) and (ii). These deviations are plotted
against S(x) in Figure 3.6.  Although it is not essential we have joined consecutive
points in each case by straight line segments. The parallel broken lines at y = ±
0.294 represent the critical value for significance at the 5 per cent level. We reject
H0 at a formal 5 per cent significance level only if we observe a deviation outside
these lines.

Conclusion. There is no strong evidence against either of the population
hypotheses specified in (i) and (ii).

Comment. The deviations, except for the early observations, are rather smaller
for (ii), suggesting (but only marginally) that this may be a slightly better fit.
The hypothesis (ii) implies a uniform but higher probability of breakages
between 0 and 3 cm relative to a uniform distribution, but a lower probability
between 3 and 6 cm. If other hypotheses are of interest relevant deviations for
these may be entered in Figure 3.6.

3.3.3   A test for normality

The Kolmogorov test is valid for any completely specified con-
tinuous distribution. If we specify in H0 only that the sample has a
normal distribution and estimate the parameters µ, σ2 from the data
we may still use the Kolmogorov statistic but the associated P-values
differ from those for the fully specified model.  
 For this important practical situation a test proposed by Lilliefors
(1967) is useful. We assume observations are a random sample from
some unspecified continuous distribution, and test whether it is
reasonable to suppose this is a member of the normal family. To this
extent our test is not distribution-free, but it is nonparametric in the
sense that we do not specify parameter values.

The basic idea can be extended to test compatibility with other
families of distributions such as a gamma distribution with
unspecified parameters, but separate tables of critical values or
appropriate software to estimate P-values are needed for each family
of distributions. Conover (1999, Section 6.2) describes some dif-
ficulties in obtaining critical values and indeed one may only get
approximate values of the statistic corresponding to precise P-values
such as P = 0.05 or 0.01, or alternatively Monte Carlo approx-
imations for the exact P-value corresponding to an observed value
of the statistic.  StatXact provides a program for the latter.  Conover
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(1999, Table A14) gives approximate critical values for sample sizes
up to 30 and asymptotic approximations for larger samples.

Another test for normality is the Shapiro–Wilk (1965) test which
again requires special tables or appropriate software for
implementation. An account of how the test works, without detail of
the theory, is given by Conover (1999, Section 6.2) who also
provides extensive tables that are required if relevant computer
software is not available. This test has good power against a range
of alternatives but the rationale is less easy to describe by intuitive
arguments. StatXact includes a program for asymptotic estimates of
P-values. Except for very small samples, where exact results are
available, these usually prove adequate.

Tests for normality may be important in deciding whether to
apply nonparametric methods in a particular problem. We describe
Lilliefors’ test and also quote results for analysis of the same data
using the Shapiro–Wilk test.  

Example 3.12

The problem. In the Badenscallie burial ground in Wester Ross, Scotland,
Sprent recorded the ages at death in years of males on all tombstones for four
clans in the district and reported these in the first edition of this book. The
complete list is given in the appendix. From all 117 ages recorded a random
sample of 30 was taken and the ages for that sample were, in ascending order:

11   13   14   22   29   30   41   41   52   55   56   59   65   65   66
74   74   75   77   81   82   82   82   82   83   85   85   87   87   88

Is it reasonable to suppose the death ages are normally distributed?

Formulation and assumptions.  In Lilliefors’ test the Kolmogorov statistic is
used to compare the standard normal cdf Φ(z) with the standardized sample cdf
S(z) based on the transformation

z
x m

si
i=

−

where m is the sample mean and s the usual estimate of population standard
deviation, i.e.

 
s

x x n

n

i i
ii2

2 2

1
=

−

−

∑∑ ( ) /

Procedure.  We find m = 61.43, s = 25.04. Successive zi are calculated: e.g. for
x1 = 11, we find z1 = (11 – 61.43)/25.04 = –2.014. We treat this as a sample value
from a standard normal distribution and tables (e.g. Neave, 1981, pp. 18–19) show
Φ (–2.014) = 0.022.  Table 3.4 is set up in analogous manner to Table 3.2.
Here Φ (z), S(z) represent the standard normal and sample cdfs respectively.  
These computations are done automatically in StatXact.  It is not essential, but
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we have included the x values, an asterisk against a value implying it occurs more
than once.  The largest difference is 0.192, occurring in the final column when x =
74.  Tables such as Table A14 in Conover (1999, p.548)  give the 1 per cent
critical value when n = 30 for a one-tail test to be 0.183.  StatXact computes a
Monte Carlo approximation to the exact P-value for this particular data set as a
worked example in the manuals for StatXact versions 3 and 4.  These
approximate P-values differ slightly between simulations.  That in the version 3
manual is P = 0.0057 while that in the version 4 manual is P = 0.0055.  

Conclusion.    The Monte Carlo approximations to exact P-values provide
strong evidence that the sample is not from a normal distribution.

Comments.  1.  The StatXact manuals for versions 3 and 4 also use these data
to illustrate the Shapiro–Wilk test and obtain an asymptotic estimate P =
0.0007.  Shapiro, Wilk and Chen (1968) carried out studies that show this test
has good power against a wide range of departures from normality.

2. A glance at the sample data suggests that a few males died young and that
the distribution is skew with a large number of deaths occurring after age 80.
Figure 3.7 shows these data on a histogram with class interval of width 10.
Readers familiar with histograms for samples from a normal distribution will not

Table 3.4  The Lilliefors normality test: Badenscallie ages at death.
                                                                                                                                       
 x      z Φ(z) S(z) Φ(zi)–S(zi) Φ(zi)–S(zi–1)

                                                                                                                                       
11  –2.014 0.022 0.033  –0.011      0.022
13  –1.934 0.026 0.067  –0.044    –0.007
14  –1.894 0.029 0.100  –0.071    –0.038
22  –1.575 0.058 0.133  –0.075    –0.042
29  –1.295 0.098 0.167  –0.069    –0.035
30  –1.255 0.105 0.200  –0.095    –0.062
41*  –0.816 0.207 0.267  –0.060    –0.007
52  –0.377 0.353 0.300    0.053      0.086
55  –0.257 0.399 0.333    0.066      0.099
56  –0.217 0.414 0.367    0.047      0.081
59  –0.097 0.461 0.400    0.061      0.094
65*    0.142 0.556 0.467    0.089      0.156
66    0.183 0.572 0.500    0.072      0.105
74*    0.502 0.692 0.567    0.125      0.192
75    0.542 0.706 0.600    0.106      0.139
77    0.622 0.733 0.633    0.100      0.133
81    0.781 0.782 0.667    0.115      0.149
82*    0.821 0.794 0.800  –0.006      0.127
83    0.861 0.805 0.833  –0.028    –0.005
85*    0.942 0.827 0.900  –0.073    –0.006
87*    1.021 0.846 0.967  –0.121    –0.054
88    1.061 0.856 1.000  –0.144    –0.111

                                                                                                                                       
*repeated value
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Figure 3.7  Histogram of death ages at Badenscallie.

Figure 3.8  Histogram of death ages for clan McAlpha.

be surprised that we reject the hypothesis of normality.  Indeed ‘life-span’ data,
whether for man, animal or the time a machine functions without a breakdown,
will often characteristically have a non-normal distribution.

Computational aspects.  We indicated above that these data are used to
illustrate Lilliefors’ test in StatXact.  Because there is no analytic formula for
exact P-values only a Monte Carlo approximation is available for Lilliefors’ test.
These are given together with a confidence interval for that estimate and this will
usually be quite short if the estimate is made on a large number of Monte Carlo
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samples.  In practice it is customary to use anything between 1000 (minimum)
and perhaps 1 000 000 samples if high precision is required.  For the
Shapiro–Wilk test the distribution of the test statistic appears to be known only
for sample sizes of six or less and is very nonnormally distributed for larger
sample sizes.  However it may be transformed to approximate normality and the
transformation provides a basis for determining the asymptotic P-value given in
StatXact.

3.3.4   Relevant inference

Situations arise where inferences about means or medians are by their
nature somewhat irrelevant to sensible deductions and here tests such
as Kolmogorov’s or Lilliefors’ test may be more useful.  We
comment upon one such case.

Example 3.13

For one particular clan – it would be invidious to give it the real name, so we
shall call it the McAlpha clan (but the data are real) – ages at death were recorded
for all males of that clan buried in the Badenscallie burial ground. For all 59
burials the ages (arranged for convenience in ascending order) were:

  0   0   1   2   3   9 14 22 23 29 33 41 41 42 44 52 56 57 58 58

60  62 63 64 65 69 72 72 73 74 74 75 75 75 77 77 78 78 79 79

80 81  81  81 81 82 82 83 84 84 85 86 87 87 88 90 92 93 95

A histogram of these data with class interval 10 is given in Figure 3.8. The
mean and median are respectively 61.8 and 74 while the age range with most
deaths is 80 – 89.  Striking features in Figure 3.8 are the skewness of the data to
the left and the bimodal nature with a small peak (secondary mode) of infant
deaths in the range 0–9 followed by lower death rates in 10-year intervals until
age 60. The death rate then rises sharply to the primary mode at the 80–89
range. One might go through formal motions of  attaching confidence intervals
to the mean or median using an approach based on the t-test (obviously
irrelevant because of nonnormality – Lilliefors’ test indicates P < 0.001), the
Wilcoxon test (not valid because of asymmetry) or the sign test (valid but not
very interesting in the light of the bimodality). Such approaches are at worst
wrong and at best pointless. In this example the histogram is probably the most
useful aid in interpreting the data.

What is the relevance of any formal inference procedure in a case like this?    
From what population is this a random sample? It is clearly not a random
sample of all males buried at Badenscallie, for clans and families have differing
lifespan characteristics. Perhaps the pattern of death ages is a reasonable
approximation to that for the McAlpha clan in Wester Ross, Sutherland and the
Western Isles (where the clan is well established). The main use we can envisage
for these data would be for comparisons with patterns for other clans.

Difficulties like these may arise with data collection generally and are not
confined to nonparametric methods. Analyses making various assumptions often
draw attention to interpretation problems.
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 Using modern software it is easy to apply several tests to the same data.
Indeed, for centrality tests StatXact allows one to use Wilcoxon and normal
scores test and also to base tests on any scores one chooses.  Do not abuse this
freedom; a scoring system should be chosen on logical grounds. Remember our
ethical warning in the penultimate paragraph of Section 1.5!   If different choices
are logical under differing assumptions and these lead to inconsistent results (as
in this example for means or medians) further analysis (e.g. applying Lilliefors’
test) or more simply drawing a histogram as in Figure 3.8, or sometimes even
just looking at the data critically, may suggest the most appropriate choice.  In
this example clearly a sign-test-type confidence interval for the median is less
inappropriate than many others but this begs the question as to whether the
median is a useful summary statistic for bimodal data.

3.4   ANGULAR DATA

In some investigations measurements are made on directions, e.g.
wind directions in a certain town at noon on successive days, the
bearings at which released pigeons disappear over the horizon and
the successive stopping positions of a roulette wheel. In other studies
the data, although not measured directly as angles or directions, can
be represented in this way.  For instance, the time of day at which
babies are born in a large hospital or the days during the year in
which new cases of leukaemia are diagnosed in a certain region are
effectively angular measurements. The names circular or
directional measurements are also used, the former because
observations of this type are appropriately represented as points on
the circumference of a circle.

Such data are sometimes analyzed as though they are distributed
along a line without taking the directional aspect into account. A
moment’s reflection shows that this is not always a sensible course
of action. As an extreme example, observations of 1° and 359°
would lead to a mean and median of 180°. The values then appear
to be very different. If, however, the two points are plotted on the
circumference of a circle, the two directions are similar and a more
appropriate average would be obtained from the direction bisecting
the smaller arc between the two directions, in other words, 0°. If the
data consisted of two observations of 31 December and 2 January
the ‘straight-line’ approach leads to an average around 1 July
whereas a directional analysis leads to the more reasonable average
of 1 January. The book by Mardia (1972) on directional data
analysis is written from a mathematical perspective. Fisher (1993)
provides an introduction based around real life examples from many
fields and an up-to-date treatment of theory and practice is given by
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Mardia and Jupp (2000). Measures of centrality (e.g. the median)
and spread (e.g. the range) may be adapted for use with angular data.

One often wants to know whether data support a hypothesis that a
sample is from a population uniformly distributed on the circum-
ference of a circle or whether they indicate clustering (Mardia
1972). The Hodges–Ajne test (Hodges, 1955; Ajne, 1968) and the
range test, the latter developed from work on the circular range by
Fisher (1929), address this situation.

Another question of interest is whether points are symmetrical
around a particular angular direction such as the North-South line.
The sign test and the Wilcoxon signed-rank test are easily adapted
for this situation.

3.4.1    The Hodges–Ajne test

This test is used to investigate whether a sample of n observations
on a circle could arise from a uniformly distributed population. The
alternative is that in the population observations are more
concentrated within a particular arc of the circumference; outliers
may nevertheless occur well away from this arc.

To carry out this test, a straight line is drawn through the centre
of the circle; this will divide the observations into two groups. The
line is rotated about the centre to a position at which there is a
minimum possible number of points, m, on one side of this line. If
the points were regularly spaced they would lie at the vertices of a
regular polygon and then either m = 1/2n if n is even or m = 1/2(n – 1)
if n is odd. For observations around the circle from a uniform
distribution there will be some variation in the angles between
adjacent points and the value of m will generally be lower. The
lowest values of m occur when there is a clustering of points on one
side of the line. Under the assumption of uniformity, the probability
that m is no more than a value t is shown by Mardia (1972) to be:

    
Pr ( )

( )( )
m t

n tt
n

n≤ =
−
−

2
2 1 (3.6)

Mardia (1972) gives a table of critical values for this test.

Example 3.14

The problem. A midwife recorded the times of birth for twelve consecutive
home deliveries. She was interested in whether births tended to occur at
particular times of the day. The times (rearranged in order throughout the day)
were 0100, 0300, 0420, 0500, 0540, 0620, 0640, 0700, 0940, 1100, 1200, 1720.
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Since on a 24-hour circular clock one hour corresponds to 360/24 = 15 degrees
the successive angles on the circle (assuming midnight corresponds to 0°) are
15°, 45°, 65°, 75°, 85°, 95°, 100°, 105°, 145°, 165°, 180°, 260°. We test the
hypothesis H0 that the times of birth have a uniform distribution around the
circle.

Formulation and assumptions. A line is drawn through the centre of the
circular plot of these data and rotated until the number of points on one side of
the line takes the minimum value, m. A small value for m provides evidence
against the assumption of uniformity in H0.

Procedure. A circular plot of the data (Figure 3.9) shows that m = 1 (e.g.
when the line runs from 10° to 190°). A value of zero for m represents an even
greater degree of clustering. The appropriate P-value (the probability that m is
equal to zero or one, assuming that H0 is true) given by (3.6) is 0.059.

Conclusion. The evidence against H0 when P = 0.059 casts some doubt on the
assertion that births are equally likely at any time throughout the day.

Comments.  1. Inspection of the data shows that most of the babies are born
in the morning, particularly between 0300 and 0700. If further evidence for this
pattern could be obtained, the information might be useful in planning maternity
services and in preparing mothers for the births of their babies.

2. This test is especially useful where some observations may be clustered
together but a few may be more distant, e.g. injuries from fireworks in the UK
are concentrated around 5 November and deaths from drowning are more
common during summer months, but such events are clearly not confined
exclusively to these periods.

3.4.2   The range test

Like the Hodges–Ajne test, the range test is also based on the null
hypothesis that a sample of n observations on the circle could arise
from a uniformly distributed population, but now the alternative is
that in the population all observations come from a particular arc;
this test is therefore not appropriate in the presence of outliers.

To perform this test, the smallest arc which contains all of the
points is found. The length of this arc, w, is the circular range. As
we have already pointed out, if the points are spaced at regular
intervals they will form the vertices of a regular polygon and the
circular range will take the maximum possible value of 360(n –
1)/n°. The circular range will be small if all points occur close
together. Under the assumption of uniformity, the probability that
the circular range w is no more than r radians is shown by Mardia
(1972) to be:

( )Pr( ) ( )
( )[ ]w r

k rk
k
n

nv
≤ = − −

−−
−

1 1
2

2
1

1

1

π
π (3.7)
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Figure 3.9  Circular plot of delivery time data in Example 3.14 on a 24-hour
clock.

where the summation is over k and v is the largest value of k such
that 1 – k{(2? – r)/2?} exceeds zero.  Mardia (1972) gives a table
of critical values for the range test.

Example 3.15

The problem.  Smeeton and Wilkinson (1988) give data for a female
psychiatric patient who repeatedly attempted to commit suicide. There was
evidence to suggest that these attempts occurred during one particular part of the
year.  Records showed that attempts had occurred on 2 June 1980, 3 June 1980,
8 June 1980, 18 June 1980, 4 July 1980, 5 June 1981, 6 June 1981 and 31 July
1981.

The successive angles on the circle (assuming 0° is the start of the year) are
151°, 152°, 157°, 167°, 182°, 154°, 155°, 209°. We test the null hypothesis H0
that the dates of the suicide attempts have a uniform distribution.

Formulation and assumptions. The circular range w is the length of the
smallest arc that contains all of the dates. If the suicide attempts are uniformly
distributed around the circle then the circular range will be relatively large. By
contrast, if the dates form a tight cluster the circular range will be small,
providing evidence against H0.

Procedure. In this example, the circular range is the difference between the
largest and smallest angle (209° – 151° = 58°). This is illustrated on the circular
plot in Figure 3.10.  Converting 58° to radians, r = 1.0123 radians. The approp-
riate P-value given by (3.7) is P < 0.0001 providing overwhelming evidence
against H0.

0˚

1800 hrs

recorded time
180˚

270˚ 90˚

Noon

0600 hrs

Midnight
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Figure 3.10  Recorded dates of 8 suicide attempts on an annual clock where 0˚
represents 1 January.

Conclusion. In view of the strength of evidence against H0 when P < 0.0001,
it is reasonable to accept that for this patient clustering of suicide attempts
occurs in June and July.

Comments.  1. If the points within a cluster lie on both sides of 0° the
difference between the largest and smallest values does not give the circular
range; it is then most easily obtained from the circular plot.

2.  Unlike the Hodges–Ajne test, the range test is only useful when all
observations lie in one cluster since the circular range is highly susceptible to
outliers. The occurrence of a further attempt on, say, 5 February illustrates this.

3. The detection of a single cluster of points containing all the observations is
particularly relevant in psychiatry. Extra support can be targeted at the patient
during the appropriate period. For the patient in this example, the data suggest
that each year the anniversary of a distressing event that happened around the
beginning of June could be triggering a series of suicide attempts that diminish in
frequency over the subsequent weeks.

4.  The circular range increases with sample size so that over subsequent
years suicide attempts by this individual may be recorded outside of June and
July, even if the underlying model remains the same. In fact, follow-up data for
this patient (to September 1987) subsequently became available. In 1982, three
attempts were recorded between 10 April and 10 June. In 1983, four attempts
were recorded between 22 August and 14 December. Following this, no further
attempts were recorded. Taking all of the evidence into account the most likely
explanation is that any anniversary effect gradually dampened out.

3.4.3   Median or symmetry tests for angular data

In many sports (archery, cricket, target shooting, netball, bowls, etc.)
the objective – at least at some phase of the activity and for some

1 October

180˚
recorded date

270˚ 90˚

180˚

1 April

1 July
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participants – is to hit a small target by dispatching an appropriate
missile (e.g. throwing, kicking or pitching a ball, firing an arrow or
bullet). In practice even the most skilled exponents will tend
sometimes to go left of target and sometimes right of target (or in
three dimensions perhaps also above or below target). It is often of
interest to see whether there is a tendency to go more often to the
left than to the right or vice versa. Clearly if we know the total
number of times there is a deviation to the right or to the left in n
attempts we might use a sign test to see if there is evidence that the
‘median direction’ is or is not that of the target. If there were
evidence of a tendency to deviate more often to one side than the
other the players or their coaches may want to take corrective
action.  In some cases we may also have information on the angular
deviations from the target line for each attempt made by a player.
We may use those angular deviations with appropriate signs (say
plus to the right, and minus to the left) and after ranking absolute
values use a Wilcoxon signed rank test to carry out what is usually
called in this context a test of symmetry. In doing so we make an
assumption that the directional distribution of the attempts is
symmetric and the question of interest then is whether it is
symmetric about the target direction (zero deviation).  

Of course, for the serious player symmetry of shots around the
target is not enough; the deviations themselves must be small. Also, in
sports involving a vertical target such as archery or darts the falling of
the missile above or below target has to be addressed in order to
ensure an accurate ‘hit’.

These ideas are also relevant in scientific and other applications
and extend to testing whether angular data indicate a symmetric
distribution about some specified direction. An example of the use
of the Wilcoxon test this way in a geological context is given by
Fisher (1993, Example 4.17). Where these tests are appropriate they
follow the usual procedure for the Wilcoxon test and the sign test
given in Chapter 2.

3.5   A RUNS TEST FOR RANDOMNESS

Many statistical inferences are valid only when the data are a sample
or samples of independent (random) observations. Methods for
obtaining a random sample – especially in simulation or Monte
Carlo studies – often depend upon sophisticated mechanisms that
purport to be equivalent to repeatedly tossing a fair coin or to
repeatedly selecting one of the 10 digits between 0 and 9 inclusive,
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each having a probability 0.1 of selection. One characteristic of the
coin tossing situation is that in the long run there should be
approximately equal numbers of heads and tails and a characteristic
of random digit selection is that in a long string of such digits each
digit should occur approximately the same number of times. In the
coin tossing situation a sign test would be appropriate to see whether
this frequency requirement is being met. We give in Section 9.4 a
method applicable to testing whether there is evidence that digits are
not occurring with equal probability. In an ordered sequence ran-
domness implies more than compliance with frequency criteria. For
example, if the outcomes, in order, of a computer process that
purports to simulate 20 tosses of a coin were

H H H H H T T T T T T T T T T H H H H H (3.8)

we would suspect the process did not achieve its aim.  We might be
equally surprised if the ordered outcomes were

H T H T H T H T H T H T H T H T H T H T (3.9)

but reasonably happy with

H H T H T T T H T H H T H T H H H T T H (3.10)

A characteristic that reflects our reservations about (3.8) and (3.9) is
the number of runs, where a run is a sequence of one or more
heads or tails. In (3.9) there are three runs – a run of 5 heads, then
10 tails, then 5 heads. In (3.9) there are 20 runs, each consisting of a
single head or a single tail. Intuitively we feel that (3.8) and (3.9)
have respectively too few and too many runs for a truly random
sequence.  The sequence (3.10) has an intermediate number of runs,
namely 13.  Both numbers of runs and lengths of runs are relevant
to tests for randomness. The distribution theory for runs was
developed by Whitworth (1886) and a detailed treatment of runs
tests is given by Bradley (1968, Chapters 11, 12) and a concise
account by Gibbons and Chakraborti (1992, Chapter 3). We
consider only a test based on the number of runs, r, in a sequence of
N ordered observations of which m are of one kind (e.g. H) and n =
N – m are of another kind (e.g. T). We reject the hypothesis that the
outcomes are independent or random if we observe too few or too
many runs. Computation of the probability of observing any given
number of runs under the hypothesis of randomness is a subtle
application of combinatorial mathematics and we only quote the
outcome. The random variable R specifies the number of runs. We
consider separately the cases r odd and r even. For r odd we set r =
2s + 1 and
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The test for randomness is based on the relevant tail probabilities
associated with small and large numbers of runs. These were
tabulated for n, m ≤ 20 by Swed and Eisenhart (1943) and tables
based on theirs are given by Siegel and Castellan (1988, Table G).
StatXact computes exact P-values. Sprent (1998, Example 6.16)
shows how to compute the distribution of R for a small sample for
given m, n. An asymptotic test is also available and is based on
available results for the mean and variance of R. These are shown
after some tedious algebra (see e.g. Gibbons and Chakriborti, 1992,
Section 3.2) to be

E(R) = 1 + 2nm/N

and

Var(R) = 2nm(2nm – N)/[N2(N – 1)].

Asymptotically

Z =  [R – E(R)]/[√Var(R)]

has a standard normal distribution. The approximation is improved
by the usual numerator continuity correction, i.e. adding 1/2 if  R  <
E(R) and subtracting 1/2 if R > E(R).  

In practice a two-tail test is most often relevant, a significant
result implying nonrandomness, but one-tail tests are meaningful in
the sense that few runs imply clustering of like values while many
runs imply an alternating pattern.  

Example 3.16

The problem. Apply a runs test for randomness to each of the sequences of
heads and tails in (3.8), (3.9) and (3.10).

Formulation and assumptions.  In each of (3.8) and (3.9) N = 20 and m = n =
10 while r = 3 for the former and r = 20 for the latter.  In (3.10) N = 20, m = 11,
n = 9 and r = 13.  Small or large numbers of runs indicate nonrandomness.
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Procedure.  Tables for N = 20 and various values of m, n such as those
referenced above indicate that in both these cases a nominal P = 0.05 is
associated with r ≤ 6 or r ≥ 16.  It is more satisfactory to compute exact P-
values for the observed R.  For these examples StatXact gives the following exact
and asymptotic two-tail  P-values:

  Exact Asymptotic

Data set (3.8)    0.0002     0.0006
Data set (3.9)             <0.0001     0.0001
Data set (3.10)    0.4538     0.4575

Conclusion.  There is strong evidence of nonrandomness in data sets (3.8) and
(3.9) but no evidence in set (3.10). The low value of the statistic R for (3.8)
reflects clustering while the high value in (3.9) suggests alternation. These are
clear data characteristics in the respective cases.

Comment.  The above test is not so restrictive as it might seem. For example,
in sequences of supposedly random digits between 0 and 9 we may count the
numbers of runs above and below the median value of 4.5 and apply the test. It
might also be applied in this case to runs of odd and even digits.

3.6   FIELDS OF APPLICATION

Some examples given in Section 2.7 for tests of centrality may be
relevant to more general tests about distributions such as
Kolmogorov’s, Lilliefors’ or the Shapiro–Wilk tests. We give here
other examples where tests about distributions may be relevant.

Biology

Heart weights are observed for a number of rats used in a drug-
testing experiment. The Kolmogorov test could be used to see
whether weights are consistent with a normal distribution of mean
11 g and standard deviation 3 g if these were established values for a
large batch of untreated rats from the same source. This approach is
appropriate if it were uncertain how the drug might affect heart
weight, especially if it were felt that it might affect characteristics
such as spread or symmetry.

Forestry

The volume of usable timber per tree is obtained for 50 randomly
selected trees from a mature forest.  If we want to know if it is
reasonable to assume volumes are normally distributed with
unspecified mean and variance Lilliefors’ or the Shapiro–Wilk test
would be appropriate.
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Time-dependent responses
Sometimes tests or observations on individuals have to be performed
one at a time and those tested or observed may be able to discuss the
test with other subjects due to be tested later. This might influence
the performance of later candidates. For example, in medical and
other schools, borderline candidates in an examination are some-
times given a viva voce examination. Individuals tested earlier may
pass hints to those due for later testing that improve their
performance. The marks for candidates (taken in the order in which
they were tested) may be used in a runs test to detect any trend from
independent responses. With a range of scores, the values can be
divided into two groups using the median (see Exercise 3.11).

Pollution levels

It is widely believed that many pollution levels are increasing with
time. Annual observations over many years at a particular point on
the earth’s surface or in the atmosphere of levels of ozone or other
pollutants might provide data for a Cox–Stuart trend test.

Genetics

Certain laws of simple Mendelian inheritance imply that progeny of
plant crosses should occur in the ratio 3:1 with respect to some
characteristics, e.g. three-quarters may produced crinkled seed and
one-quarter smooth seed, or three-quarters may be tall plants and
one-quarter short plants. If, in a sample of n progeny, r show the
less frequent characteristic, for which in theory p = 1/4 this
information may be used to test the strength of the evidence that the
data are consistent with the hypothesis of a B(n, 1/4) distribution for
the characteristic.

Tasting Experiments

To test whether people can detect differences in taste between, say,
two different wines A and B a set of n tasters are each asked to taste
three different samples two of which are of one type of wine and the
remaining one of the other and to state which of the three samples is
the odd one. If they cannot discriminate on a basis of taste and are
just guessing, the number of correct guesses will have a B(n, 1/3)
distribution and a test of this hypothesis may be based on a 1/3 quan-
tile ‘sign test’ along the lines developed in Section 3.2.2.
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Multiple choice examinations
In a multiple choice examination each candidate is given n questions
each containing 4 statements, one of which is true and the rest of
which are false. Candidates must select the statement they believe is
true. If a candidate always guesses the probability of correct selec-
tion for each question is p = 1/4 and this hypothesis may be tested
using a binomial quartile-based sign test where the distribution of
correct choices under the hypothesis of guessing is B(n, 1/4).

Geology

The directions of fractures or fault lines in rock structures may
appear to show a preferred orientation. Tests to assess the strength
of evidence that this is so may be based on those described in
Section 3.4.

Movement of animals

Birds or animals are often believed to have preferred directions of
movement under certain circumstances. For example, there have
been many studies of the behaviour of homing pigeons when
released to ascertain whether they show an immediate inclination to
head towards home or whether they fly at random for some time
before aligning to the correct flight path home. Studies have also
been made to determine whether birds on a known flight path (e.g.
during migration) become disoriented when passing close to
electro–magnetic radiation sources and tend then to fly at random.
Angular distribution tests then become appropriate.

Other one-sample problems

Many one-sample problems have not been covered in detail in this
or the previous chapter. One interesting one is that where ordered
observations taken before a fixed time τ have one distribution, while
after that time they have a distribution differing only in centrality
parameter. One problem of interest then is to determine τ. This
problem is discussed by Pettit (1979, 1981) and for the case of
several change-over times by Lombard (1987).  

3.7   SUMMARY

Inferences based on the binomial distribution.   Data consisting
of the number of occurrences of one from two possible outcomes in
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a series of trials often give rise to a binomial distribution and
inferences are often required about the parameter p associated with
that outcome. Inferences about quantiles of data from continuous or
other measurement distributions may also be based on the value of p
associated with that quantile.  Studies of power and the sample sizes
needed to obtain a given power against a single specified alternative
are relatively straightforward when the binomial distribution is
relevant to primary data.  Appropriate software and extensive tables
are available for binomial inference. When p is close to 0 or 1
asymptotic results may be reliable only for very large samples.

Distribution tests. The Kolmogorov test (Section 3.3.1) tests
whether data are an acceptable fit to a completely specified
continuous distribution. Often several distributions may give an
adequate fit.  In this case graphical methods (Section 3.3.2) are
useful to get an eye comparison of the relative goodness of fit.
Lilliefors’ test for ‘normality’ with unspecified mean and variance
(Section 3.3.3) uses the Kolmogorov statistic, but separate tables or
relevant software are needed to test for significance or to estimate
P-values. The Shapiro–Wilk test is theoretically more complicated
than Lilliefors’ test but is often more powerful.

Angular data. Directional data (Section 3.4) are often best
represented by points on the circumference of a circle. Some
standard general parametric and nonparametric test procedures are
directly applicable to angular data but more commonly
modifications are needed. Care is needed when defining concepts
such as mean and median for angular data.  

Runs test. The simplest runs test (Section 3.5) applies to numbers
of runs for dichotomous outcomes (e.g. heads or tails).  In a
sequence of N such ordered outcomes the hypothesis of randomness
or independence is rejected if there are too few or too many runs.  
Simple modifications to the test make possible tests for runs above
and below the median for more general data; these may provide
evidence for detecting certain types of departures from
independence.

EXERCISES

3.1 A supermarket indicates in contracts given to suppliers of oranges that not
more than 1 per cent of the fruit in any consignment should show visible
signs of damage.  Realism forces it to agree that it will use a sampling
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scheme with producer’s risk set at P = 0.10 for rejection of samples with
less than 1 per cent blemished and consumer’s risk set at 1 – P* = 0.05 of
accepting batches with 3 per cent or more blemished. The sampling scheme
used is to select a number n from a large batch of N. For each of the sample
sizes n = 100, 200, 300, 400, 500 determine the maximum number of
blemished fruit that would indicate the condition for the producer’s risk is
being met. In each case find the corresponding con-sumer’s risk. What is
the smallest value of n and for what r, the maximum number of permissible
defectives in an acceptable batch of that size n, will the above conditions
for producer’s and consumer’s risks be met?

3.2 A commentator on the 1987 Open Golf Championship asserted that on a
good day 10 per cent of top-class players could be expected to complete a
round with a score of 68 or less. On the fourth day of the championship
weather conditions were poor and the commentator remarked before play
started that one might expect the weather to increase scores by four
strokes per round, implying that 10 per cent of players might be expected
to return scores of 72 or less. In the event 26 of the 77 players competing
returned scores of 72 or less.  Regarding the players as a sample of 77 top-
class players and assuming the commentator’s assertion about scores on a
good day is correct, do these fourth-day results suggest the commentator’s
assertion about scores in the poor weather conditions prevailing was
(i) perhaps correct, (ii) optimistic or (iii) pessimistic?

3.3 In a pilot opinion poll 18 voters from one electorate selected at random
were asked if they thought the British Prime Minister was doing a good
job.  Six (one-third) said ‘yes’ and twelve (two-thirds) said ‘no’. Is this
sufficient evidence to reject the hypothesis that 50 per cent of the
electorate think the Prime Minister is doing a good job? The pilot results
were checked by taking a larger sample of 225 voters. By coincidence 75
(one-third) answered ‘yes’ and 150 (two-thirds) answered ‘no’. Do we
draw the same conclusion about the hypothesis that 50 per cent of the
electorate think the Prime Minister is doing a good job? If not, why not?

3.4 The journal Biometrics 1985, 41, p. 830, gives data on numbers of medical
papers published annually in that journal for the period 1971–81. These
data are extended below to cover (in order) the period 1969–85. Is there
evidence of a monotonic trend in numbers of medical papers published?

11   6   14   13   18   14   11   22   19   19   25   24   38   19   25   31   19

 3.5 The UK Meteorological Office monthly weather summaries published
by HMSO give the following annual rainfalls in mm for 15 stations in the
UK during 1978. The stations are listed in order of increasing latitude. Is
there evidence of a monotonic trend in rainfall from South to North?

Margate, 443; Kew, 598; Cheltenham, 738; Cambridge, 556; Birmingham,
729; Cromer, 646; York, 654; Carlisle, 739; Newcastle, 742; Edinburgh,
699; Callander, 1596; Dundee, 867; Aberdeen, 877; Nairn, 642;
Baltasound, 1142.

3.6 Rogerson (1987) gave the following annual mobility rates (percentage of
population living in different houses at the end of the year than at the
beginning) for people of all ages in the USA for 28 consecutive post-war
years. Is there evidence of a monotonic trend?
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18.8    18.7    21.0    19.8    20.1    18.6    19.9    20.5    19.4    19.8    19.9
19.4    20.0    19.1    19.4    19.6    20.1    19.3    18.3    18.8    18.3    18.4
17.9    17.1    16.6    16.6    16.1    16.8

3.7 Are the insurance claim data in Exercise 2.18 likely to have come from a
normal distribution?  Test using Lilliefors’ test and the Shapiro–Wilk test.

3.8 Test whether the data in Exercise 2.18 may have come from a uniform
distribution over the interval (400, 7000).

3.9 The negative exponential distribution with mean 20 has the cumulative
distribution function F(x) =1 –  e–x/20,  0 ≤ x ≤ ∞.  Use a Kolmogorov test
to determine if it is reasonable to assume the excess parking times in
Exercise 2.21 are a sample from this distribution.

3.10 In the data sets in the appendix we give the ages of death for 21 members
of the McGamma clan.  Perform an appropriate test to determine whether
it is reasonable to assume age at death is normally distributed for that clan.

3.11 A psychologist is testing 16 applicants for a job one at a time. Each has to
perform a series of tests and the psychologist awards an overall point
score to each applicant. As each applicant may discuss the tests with later
app-licants before the latter are tested it is suggested that those tested later
may have an unfair advantage. Do the applicants’ scores (in order of
testing) below support this assertion?

     62   69   55   71   64   68   72   75   49   74   81   83   77   79   89   42

Use an appropriate runs test. Do you consider the Cox–Stuart test
(Section 3.2.3) may also be appropriate?  Give reasons for your decision.

3.12  A circular ring road is constructed around a town. A map of the local area
shows the town hall is situated at the centre of the circle. The positions of
road accidents along the ring road are measured as bearings from the town
hall. During a period of road works to the east of the town, the accidents
that occur have bearings 10°, 35°, 82°, 87°, 94°, 108°, 125°. Is there any
evidence that the accidents are linked to the road works?

3.13  For a children’s television quiz show, a circular board with a stationary
vertical pointer attached to the centre is divided into quadrants. The board
is spun and contestants are asked questions on sport, popular music,
current affairs and science according to the quadrant indicated when the
board comes to rest. Angles are marked around the edge of the board. For
ten consecutive questions, the angles indicated at rest are 15°, 46°, 114°,
137°, 165°, 183°, 195°, 215°, 271°, and 328°. Do you think that on
average all types of question are equally likely?

3.14 The Office for National Statistics (1998) gives the numbers of deaths from
railway accidents in England and Wales for 1981 to 1996 as 76, 92, 105,
86, 91, 81, 103, 92, 71, 132, 71, 57, 48, 63, 43, 60. Use an appropriate
form (or forms) of the runs test to examine nonrandomness.

3.15 An archer fires arrows at a target that is on a bearing of 145° to him. The
angles of fire for ten arrows are 139°, 141°, 146°, 148°, 150°, 152°, 153°,
155°, 158°, 160°. There is concern that the arrows are tending to fall right
of target so one wants to test the hypothesis H0: θ  = 145 against the
alternative H1: θ ≠ 145. Use the sign test and the Wilcoxon test to do this.   
Would you question the validity of using the latter test for these data?

©2001 CRC Press LLC



 

4
Methods for paired samples

4.1   COMPARISONS IN PAIRS

Single-sample methods illustrate basic ideas, but have limited 
applications. Practical problems usually involve two or more
samples that may or may not be independent. We consider paired
samples in this chapter, a dependent-sample situation where many
problems reduce to a single-sample equivalent.

4.1.1   Studies using pairing

To compare two stimuli when it is practicable it is sometimes
appropriate and advantageous to apply both to each of, say, n
individuals. The main reason for this is that responses to any
stimulus often vary markedly between individuals. However, some
important issues must be addressed before proceeding this way. 

Suppose that a dentist wishes to compare two mouthwashes for
the treatment of ulcerative gingivitis in the mouth. The dentist could
use the number and size of the mouth ulcers in a patient to assess the
severity of the problem. The patients could also indicate their
perceived level of pain due to these ulcers. One way of comparing
the two mouthwashes, known as a cross-over trial, is to treat a
patient first with one mouthwash for a certain period, conduct an
assessment of the patient’s response and then transfer the patient to
the other mouthwash. Following the second course of treatment the
patient is again assessed. At the end of the study the two treatments
are compared on the basis of findings from the patient assessments.

An advantage of this design is that patients act as their own
control. In an ideal world the only difference between the two time
periods would be the type of mouthwash used, which would make a
comparison straightforward. Unfortunately, there may be a
‘carryover’ effect of the first treatment into the second period if the
second mouthwash is administered before the effects of the first
have completely worn off. Sometimes an interval or ‘wash out’
period is allowed between the two treatments in an attempt to reduce
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this effect. Also, response to either mouthwash may be affected by
the prior or subsequent administration of the other (interaction is the
technical statistical term). In an extreme case administration of one
mouthwash after the other might make a patient’s condition worse,
whereas if either were given separately, both may be beneficial. In
passing we note that certain mouthwashes contain alcohol so the
consumption of alcoholic drinks during any such treatment period
may be unwise or may influence the outcome.

We do not consider cross-over trials in detail but analysis of a
simple experiment of this kind is described by Koch (1972) and a
more general account of such designs is given by Senn (1992).
 In addition, this type of study can only be performed with chronic
conditions where the first treatment received is unlikely to lead to
complete recovery or death. Ulcerative gingivitis is such a condition
(asthma and eczema are others) in which for many patients,
improvement under treatment is swift but the condition deteriorates
once the treatment is withdrawn. The assessment of ulceration by a
dentist is notoriously subjective, however, as is patient assessment of
pain. To allow for this a double blind procedure should be
employed in which neither the patient nor the dentist making the
assessments knows the order of presentation (which should be
random). Mouthwashes can be made to have identical appearance
and taste. The solutions are identified by codes available only to
research workers or administrators who have no direct contact with
the patient (if tablets are used they should be of the same size,
colour and taste). Double blinding can also be used to allow for the
placebo effect which is a psychological response shown by some
patients to the knowledge that treatment is being received even
though the solution or tablet (known as a placebo) does not contain
an active ingredient. These aspects of a study should be carefully
explained in the patient information sheet if applicable.

Ethical problems may preclude the use of the same patients to
compare two treatments. For instance, in a comparison of two
methods of treating oral cancer, both of which involve radiation, the
estimated dose of radiation from the combined treatments may be
considered unacceptably high for the patient.

If it is undesirable for ethical or practical reasons to give patients
both treatments, we might use pairs of individuals chosen so that the
members of each pair are as like as possible in all relevant
characteristics. This process is known as matching. For example, a
woman aged 30 years might be matched with a similarly aged
woman of the same ethnic group, each showing a similar relevant
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morbidity status. In each pair one of the women chosen at random
receives the first treatment and the other the second. In this case we
look at the assessment differences between members of each pair.

As mentioned in Section 1.5, patients should be free to withdraw
from a study at any stage. The consequence of this is that some 
patients may not be taking their allocated treatment by the close of
the study and some may have withdrawn from the study altogether.
It is recommended that the results of studies that compare two or
more groups of patients be analyzed on an intention to treat basis
in which the groups are compared as they were originally chosen.
An attractive alternative might be to analyze the patients by their
actual treatment at the end of the study. This would introduce bias
however, as those who are unwilling or unable to continue in the
study are likely to have different characteristics (e.g. greater health
problems) compared with the other patients. ‘Intention to treat’
analysis also gives a fairer assessment of the impact of these
strategies in the real world. These comments are relevant to planning
an experiment, no matter whether we use a parametric or
nonparametric method of analysis.

Returning to the study of mouth ulcer treatment, a patient’s
assessment of pain may involve no more than indicating which
mouthwash, if either, gave the greater relief (e.g. first mouthwash
gave most relief, second mouthwash gave most relief, both equally
good or both ineffective). One may score mouthwash A gave more
relief as a plus, mouthwash B gave more relief as a minus and no
difference as a zero or ‘no score’. Individual patient scores – plus,
minus, or zero – provide the basis of a sign test of H0 : drugs are
equally effective against an appropriate one- or two-tail alternative.

4.1.2   Further examples

We give four specific examples.
I. Geffen, Bradshaw and Nettleton (1973) wanted to know

whether certain numbers presented in random order were perceived
more rapidly in the right (RVF) or left visual fields (LVF), or
whether there was no consistent difference, it being a matter of
chance whether an individual responded more quickly in one field or
the other. For each of 12 subjects the mean response times to digital
information in each field was measured. Response times varied
much more between individuals than they did between fields for
any individual. The data and the differences LVF – RVF for each
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Table 4.1  Mean response time (ms) to digital information.
________________________________________________________________

Subject      1      2      3      4      5      6      7      8     9    10     11     12
________________________________________________________________

LVF (1)   564   521   495   564   560   481   545   478   580   484   539   467
RVF (2)   557   505   465   562   544   448   531   458   560   485   520   445

(1) – (2)       7     16     30       2     16     33     14     20     20     –1     19     22 

________________________________________________________________

individual are given in Table 4.1. This table shows quicker response
times in the RVF for all but subject 10. No difference exceeds 33ms,
whereas in either field differences between some individuals exceed
100ms. For example, it is 580 – 467 = 113 between subjects 9 and
12 in the LVF. Without matched pairs these differences might
swamp the smaller but relatively consistent differences between
fields for individuals. We explore this further in Exercise 5.11.

II.  A course organizer might compare two teaching methods such
as lectures and computer assisted learning (CAL) by pairing students
so that, if possible, each member of a pair is of the same gender and
has the same previous knowledge of the subject. For each pair, one
member is allocated to lecture classes and the other to the CAL
material. At the end of the course the students take the same tests
and the results are interpreted in terms of pairwise differences.

III.  Using double blind marking (a method favoured by some
institutions) one can compare consistency between two examiners.
The two examiners mark the same series of essays without disclosing
their assessments to one another. The differences between the marks
awarded by each examiner for each essay are then compared to see
whether one examiner consistently awards a higher mark, or whether
differences have some other pattern or whether they appear to be
purely random.
 IV.  To compare two animal diets using pairs of twin lambs the
diets are fed one to each twin, and growth is measured over a
period: attention is focused on growth differences between twins
within each pair. Because of genetic similarity each of a pair of twin
lambs fed on identical diets tends to grow at a similar rate; when fed
different diets any consistent differences in growth may be attributed
to the effects of diet.

In summary, the aim of pairing is to make conditions, other than
the treatment or factor under investigation, as like as possible within
each pair; the differences within pairs provide a measure of any
treatment effect that takes the form of a ‘shift’ in the distribution.
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4.1.3   Single-sample analysis of matched pairs

Differences between paired observations provide a single sample that
can be analyzed by methods developed in Chapters 2 and 3. We
must, however, consider the assumptions about observations on each
member of the pair and what precautions in experimental procedure
are needed to validate analyses. These points are best brought out by
examples.

Example 4.1

The problem.  Using the LVF, RVF data in Table 4.1, assess the strength of
the evidence for a consistent response difference between the two fields for
individuals. Obtain 95 per cent confidence intervals for that difference.

Formulation and assumptions.  We denote the observation on subject i in the
RVF by xi and that in the LVF by yi and analyze the differences di = yi – xi, i = 1,
2, . . . , n.  The di are independent since each refers to a different individual. 
Under H0: the median of the differences is zero the di are equally likely to be
positive or negative and a sign test is justified. If we assume a symmetric
distribution of the di under H0 we may use a Wilcoxon signed-rank (or a normal
scores) test. There are several different response patterns in the two visual fields
that could result in a symmetric distribution of the differences under H0. In
particular, if we assume response times are identically and independently (but
not necessarily symmetrically) distributed in the two fields for any individual
(but this distribution need not be the same for every individual) the difference for
each individual will be symmetric about zero (since if X and Y have the same
independent distributions, then X – Y and Y – X will each have the same
distribution and therefore must be symmetrically distributed about zero). We
also get a symmetric distribution of differences if the LVF and RVF for any
individual have different symmetric distributions providing each has the same
mean. It is well to be aware of such subtleties, but a Wilcoxon test is clearly
justified when we assume identical distributions for LVF and RVF for any one
individual under the null hypothesis; the alternative hypothesis of interest is
usually that there is a shift in centrality only, as indicated by a shift in one field
or the other in the median of otherwise identical distributions. Often the di values
themselves indicate whether there is serious asymmetry that suggests this
condition may not hold.

If we assume also that the differences are approximately normally distributed,
a t-test is appropriate. We may test whether normality is a reasonable
assumption for the di by Lilliefors’ test or by the Shapiro–Wilk test, but these
tests may have low power for small samples.

Procedure.  We work with the single sample composed of the differences di

and use procedures developed in Chapter 2, so we only sketch details.  Denoting
the centrality parameter or measure of treatment effect (assuming this to be only
a ‘centrality’ or ‘location’ shift) by θ, the null hypothesis is H0: θ = 0, so the
ordered signed deviations are simply the ordered differences obtainable from
Table 4.1 i.e.:
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–1    2    7    14   16   16   19   20   20   22   30   33

and the corresponding signed ranks are

–1    2    3   4    5.5   5.5    7    8.5   8.5   10   11   12

Using the sign test for zero median difference we have 1 minus and 11 plus signs.
Appropriate tables or software immediately give P = 0.0063, providing very
strong evidence that responses differ between fields. The nominal 95 per cent
confidence interval based on the sign test is (7, 22) since we reject H0 at a
nominal P = 0.05 level only for 2 or fewer or 10 or more minus signs. For the
Wilcoxon test S– = 1, corresponding to a two-tail P < 0.001. Indeed, you should
only need a pocket calculator to show that P ≈ 0.00098 in this example!

For a confidence interval with coverage of at least 95 per cent tables indicate
we require the 14 greatest and least Walsh averages. These averages may be
obtained using Minitab, else StatXact may be used to find the interval. Many
other software packages include a program giving at least an asymptotic
approximation.  The interval turns out to be (9.5, 23.5). The Hodges–Lehmann
point estimator of the median (i.e. the median of the Walsh averages) is 17.25.

If we assume normality, a two-tail t-test gives P < 0.001 and a 95 per cent
confidence interval (10.1, 22.9) centred about the mean 16.5. Normal theory
gives the shortest confidence interval and the fact that the interval is only slightly
displaced for the sign test implies reasonable symmetry.  Lilliefors’ test statistic,
0.152, is well below the value required for significance and for that test StatXact
gave a Monte Carlo estimate for the exact P = 0.617.  For the Shapiro– Wilk test
StatXact gave P = 0.685, so there is no evidence of nonnormality.

Conclusion.  The sign, Wilcoxon and t-tests all point to strong evidence
against the null hypothesis and we conclude that response times in the RVF are
faster. Consistency of the confidence intervals given by these approaches
suggests the mean difference is between about 10 and 22 ms. 

Comments.  1. The set of differences we compare are independent (a
necessary condition for validity of our centrality tests) because each difference is
calculated for a different individual.

2. If the response rate in the LVF had been measured before that in the RVF
for all subjects a difficulty in interpretation would arise. The result might then
imply a learning process, people responding more quickly in the RVF because
they were learning to react more rapidly; or there could be a mixture of a learning
effect and an inherent faster response in the RVF. We avoid this difficulty if we
decide at random which field – left or right – is to be tested first for each
individual; that was done in this experiment. This should balance out and largely
annul any learning factor. Another approach is to achieve balance by selecting six
subjects (preferably at random) to be tested first in the LVF. The remaining six
are tested first in the RVF. Such balanced designs provide a basis for separating a
learning effect from an inherent difference between field responses, although a
somewhat larger experiment would be needed to do this by appropriate
parametric or nonparametric methods.

Computational aspects.  Most statistical packages that have programs for the
procedures discussed in this example allow one to enter either the data for each
field for each individual and then computes differences automatically or else to
enter the differences themselves as the raw data.
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A modification to the above procedure lets us test the hypothesis
that a centrality difference has a prespecified value θ. As in Chapters
2 and 3, we simply consider deviations from that value. This 
effectively shifts the origin to the hypothetical median, so that for
our revised data (the deviations) we test the hypothesis that the
centrality parameter for that population takes the value zero.

Example 4.2

The problem.  Eleven children are given an arithmetic test; after 3 weeks’
special tuition they are given a further test of equal difficulty (we say more about
this in the Comments). Their marks in each test (out of 90) and the individual
differences are given in Table 4.2. Do these support a claim that the average
improvement due to extra tuition is 10 marks?     

Formulation and assumptions.  The question essentially is whether, if we
assume these children are a random sample from some hypothetical population
(perhaps children of the same age trained in the same educational system or
studying the same syllabus), it is reasonable to suppose the mean mark
difference is 10?

Procedure.  We consider deviations from 10 for the mark differences in the
last line of Table 4.2. These deviations are:

–2   –4    4   –5    0   –8   –1    9    1   –6   –5

The differences arranged in order of magnitude with appropriate signs are

0   –1    1   –2   –4    4   –5   –5   –6   –8    9

and the ranks without signs are

1   2.5   2.5   4   5.5   5.5   7.5   7.5   9   10   11

Using the rules given in Section 2.2.3 for mid-ranks with ties together with the
convention mentioned at the end of that section for replacing the rank 1
associated with the zero difference by 0, we get signed ranks:

0   –2.5   2.5   –4   –5.5   5.5   –7.5   –7.5   –9   –10   11      

Our statistic is the sum of the positive ranks S+ = 0 + 2.5 + 5.5 + 11 =19. For
the exact permutation test StatXact gives Pr(S+ ≤ 19.0) = 0.124. Doubling this
value for a two-tail test we immediately see there is no strong evidence against
H0, since P = 0.248.

Table 4.2  Marks (out of 90) in two arithmetic tests.
                                                                                                                                

Pupil  A  B  C  D  E  F  G  H  I  J      K
                                                                                                                                

First test 45 61 33 29 21 47 53 32 37 25     81
Second test 53 67 47 34 31 49 62 51 48 29     86

Second – First   8   6 14   5 10   2   9 19 11   4       5
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While the sample is too small to give confidence in an asymptotic procedure
for this example this gives a two-tail P = 0.229,  comparing reasonably well with
the exact P = 0.248.  Also S+ = 19 exceeds the nominal P = 0.05 value, S = 10,
given in published tables for n = 11 in the no-tie situation. 

Conclusion.  There is no firm evidence against the hypothesis that the mean
improvement may be 10.

Comments.  1. How does one decide if two arithmetic tests are equally
difficult? Might not the improved marks in the second test imply it was easier? 
The statistician should seek the assurance of the educationalist conducting the
test that reasonable precautions have been taken to ensure equal difficulty. 
Sometimes standard tests that have been tried on large groups of students with
results that show convincingly that they are for all practical purposes of equal
difficulty, are used in such situations.

2. Confidence intervals for the mean or median difference may be obtained in
the usual way. The nominal 95 per cent confidence interval for these data given
by StatXact is (5, 12), in close agreement with the normal theory t-test interval
(5.14, 11.76).

3. It may not be realistic to test simply for a centrality shift. Sometimes
pupils who perform well initially benefit little from extra tuition; in this example
Pupil K cannot possibly improve by more than 9 marks. Likewise very poor
pupils may find the concepts of arithmetic difficult to grasp and gain little from
extra tuition. Often only those in the mid-ability range show appreciable benefit.
A statistician may find evidence of this simply by looking at the data – and there
are indeed tests for such tendencies. Deciding what should be tested or estim-
ated may be a topic for fruitful discussion between statistician and experimenter.

Example 4.3 is based on data for a group of 77 first-year medical
students available to one of us (NCS).

Example 4.3

The problem.  The data below are differences in systolic blood pressure after
exercise – systolic blood pressure before exercise measured in mm Hg for a
random sample of 24 from the group of 77 students. Obtain 95 per cent
confidence limits for the population difference based on (i) the sign test, (ii) the
Wilcoxon signed-rank test and (iii) the t-test, and comment on the approp-
riateness of each. For convenience we have arranged the differences in increasing
order. 

–5  –5  0  2  10 15  15  15  18  20  20  20  20  22  30  30  34  40  40  40  41  47 
80  85

Formulation and assumptions. We use standard methods developed in
Chapter 2 and in this chapter. 

Procedure. We omit computational details (see Exercise 4.16) since examples
of similar calculations have already been given. The intervals quoted below were
obtained using relevant statistical software.

Conclusion.  The nominal 95 per cent confidence intervals are:
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Sign test (15, 40)
Wilcoxon (17.5, 35)
t-test (16.87, 35.96)

Comments.  1. Not surprisingly, the sign test interval is the longest.
There is slight evidence of skewness, but none of the intervals is seriously
displaced relative to the others. The Wilcoxon interval being shorter than that
based on normal theory may be attributed to a slightly heavier ‘upper tail’
(especially the values 80, 85) than one would expect with a sample from a
normal distribution.  Lilliefors’ test for normality gives a test statistic value
0.162, and an estimated P = 0.1071 based on 10 000 simulations using StatXact.
 For the Shapiro–Wilk test there is stronger evidence against normality, the
statistic 0.8999 corresponding to P = 0.0205.

2. The only reason for taking a random sample of 24 from 77
observations was to provide a convenient illustrative example. Almost certainly
one would use all observations in any detailed studies of the effects of exercise
on blood pressure (and interest would be in the distribution of the differences
and not just in the mean or median difference).

3. The variation in the size of the differences is unsurprising with blood
pressure measurements taken by inexperienced first-year medical students.
Readings are usually recorded to the nearest mm Hg but in practice they may
only be recorded to the nearest 5 mm Hg by those unfamiliar with the technique.
The student exercises would be performed with a range of enthusiasm. A few
extremely high differences and a few small negative changes are therefore
understandable.

4. Notwithstanding Comment 3, there was clearly an error on the original
computer print-out we used. For one student the systolic blood pressure
measurement after exercise was recorded as 15 mm Hg and gave a difference of 15
– 118 = –103. A systolic blood pressure reading of less than 80 mm Hg is
unlikely (unpublished data from South London). The value of 15 mm Hg for
systolic blood pressure after exercise is clearly incorrect! There is a strong
suspicion that the final digit has been omitted and that the true reading should be
between 150 and 159. It is easy to spot such a discrepancy on a print-out and in
practice one would then attempt to track down the source of error (and if
possible make the needed correction). Possible sources of error are failure of a
printer to reproduce a character, a mistake in entering the original data or in initial
reading or recording of the data by an inattentive student. The original purpose
and manner of the data collection could affect the likely accuracy of the recorded
results. With increasing use of computer packages to process data such an error
might go undetected.  Had this value, –103, been included in our sample of 24 in
place of the entry –5 we would have obtained the following 95 per cent
confidence intervals:

Sign test (15, 40)
Wilcoxon (17.5, 34.5)
t-test (7.83, 36.83)

The reader who has difficulty explaining the differences between these results
and those recorded above in terms of the effect of an ‘outlier’ should refer to
Section 2.3.2. In particular it is worth noting the Wilcoxon interval is little
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changed because the introduction of a value –103 has a tendency to make the
sample distribution, if anything, a little more symmetric than the original sample.
However, the tails become rather longer than one would expect for a normal
distribution and this has the effect of elongating the t-based interval.  For these
amended data Lilliefors’ test gave a Monte Carlo estimated P =  0.0083 and a
Shapiro–Wilk test gave P = 0.0001, both hinting strongly at nonnormality
implicit in the tail values.

   Practical experience in handling data highlights the crucial
importance of detecting data errors. Many computer programs
include output to help detect outliers; e.g. a print-out of maximum
and minimum values often (but by no means always) highlights a
glaring data error.

4.2   A LESS OBVIOUS USE OF THE SIGN TEST

The way the data are presented in Example 4.4 does not make it
obvious that a sign test is relevant.

Example 4.4

The problem.  Members of a mountaineering club have long argued about
which of two rock climbs is the more difficult. Hoping to settle the argument one
member checks the club log book. This records for any climb by a member
whether it is successfully completed. The log shows that 108 members have
attempted both climbs with the outcomes summarized in Table 4.3. Is there
evidence that one climb is more difficult?

Formulation and assumptions.  A moment’s reflection shows that a climber
succeeding in both climbs, or failing in both, provides no information about
relative difficulty; such cases are ties so far as comparing difficulty is concerned.
If we had additional information, for instance about each climber’s personal
assessment of the difficulty, the situation would be different. As it is, our only
meaningful comparators of difficulty are numbers who succeed at one climb, but
fail at the other. From Table 4.3 we see that 9 succeed at the first climb but fail at
the second; we may think of this as a ‘plus’ for the first climb. Also 14 fail on
the first climb but succeed at the second; we may think of this as a ‘minus’ for
the first climb. 

Table 4.3  Outcomes of two rock climbs.
________________________________________________

First climb
Succeeded       Failed
                                    

Succeeded     73          14
Failed       9          12

________________________________________________

Second climb
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This is a sign test situation. If the climbs are of equal difficulty a ‘plus’ or
‘minus’ is equally likely for each climber. Thus under H0: climbs are equally
difficult the number of  ‘plus’ signs has a B(n, 2 ) distribution where n is the total
number of plus and minus signs.

Procedure.  There are 9 plus and 14 minus signs so n = 23. StatXact gives an
exact test P = 0.4049. Alternatively, using the normal approximation to the
binomial distribution we find, using (2.2), that Z = (9.5 – 11.5)/√(23/4) = – 0.83
giving a two-tail P = 0.4065, so there is no evidence that one climb is easier. 

Conclusion.  We retain H0: climbs are equally difficult.

Comments.  1. Because 73 + 12 = 85 from 108 pairs provide no information
on the relative difficulty of the climbs this may seem wasted data, but such
‘wasted’ data give an indication of how big or small any difference might be. In
some situations we need many observations because we are looking for a small
difference which may not be clearly distinguishable when the only relevant
criteria are success/failure or failure/success categories. In the context of these
data it is likely that most of those who failed at both were less experienced or
less enthusiastic than those who achieved one success and also that those who
succeeded at both were the more experienced or the more enthusiastic.

2. The continuity correction of replacing 9 by 9.5 in the numerator of the
asymptotic approximation has a marked effect in this example. If it is omitted
the two-tail P is reduced from 0.4065 to 0.2971. Our conclusion, however, in this
case would not be altered by this appreciable numerical change. 

3.  It would be interesting to know whether club members generally attempted
the climbs in a particular order as a learning effect might then be involved.

Computational aspects.  StatXact and also many general packages include
programs for this simple test that may be used to obtain the relevant P-value for
any sign test.

The test is called McNemar’s test, having been proposed by
McNemar (1947). Conover (1999, Section 3.5) presents it more
formally, but it is effectively a paired-sample sign test.

4.3    POWER AND SAMPLE SIZE

In Section 3.1.3 we explored the power of some tests for binomial
probabilities of the form H0: p = p0 against single-valued alternatives
such as H1: p = p1 where choice of  p0,  p1 was determined by their
relevance to producer’s and consumer’s risks associated with a
sampling scheme. Exact power calculations were relatively
straightforward and we illustrated their use in finding sample sizes
to meet specified producer’s and consumer’s risks. We now consider
relationships between power and sample size for single-sample
centrality tests relevant both to basic single-sample situations or to
differences between matched pairs. Exact results are only available
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in a limited number of cases and in this context the power for a
specified alternative is in general not distribution-free even when the
test itself is. This restricts the overall value of exact power
computations. Nevertheless, providing one exercises care in
interpretation, computing approximate power for given sample sizes
before beginning an experiment helps one make efficient use of
resources. We first highlight some key features and limitations using
simple examples for the sign test, where only relatively
straightforward computations are needed. We then consider briefly
the Wilcoxon signed-rank test where power and sample size
determinations introduce greater difficulties both in theory and
practice.

4.3.1   Power and sample size for the sign test

Examples 4.5 to 4.7 cover three situations where we use a sign test
for a median θ of the form H0: θ = θ0 against H1: θ > θ0 where a
specific alternative H1: θ = θ0 + 1 reflects a minimal departure from
H0 of  interest, i.e. only a positive shift in median of at least one
unit is of practical importance. Without loss of generality (see, e.g.
Example 4.2) we set θ0 = 0. We confine attention to a one-tail test,
but modifications for a two-tail test are straightforward if one uses
the principle of doubling one-tail P-values for a two-tail equivalent.
 If we compute the power of a test for the alternative H1: θ = 1 then
if the true shift exceeds one unit the power will in general be
greater. From these examples it will emerge that for three different
population distributions all having the same variance the power of
the equivalent tests is different for each, confirming the statement
above that power is not a distribution-free property. This should
cause no surprise in the light of the well-known result that the
Pitman efficiency of tests depends upon the underlying population
distribution.

Example 4.5

The problem.  For a sample of 10 from a normal distribution with unknown
mean θ and standard deviation 2 what is the power of the sign test for H0: θ = 0
against H1: θ = 1 when the probability of a type I error is α = 0.05?  What
sample size would ensure a test with power 0.9? 

Formulation and assumptions.  Under H0 the number of positive sample
values (pluses) has a B(10, 2 ) distribution. If the number of plus signs is the test
statistic then under H1 these will still have a binomial distribution, but the value
of p is now given by Pr(X > 0) = p1, say, where X has a N(1, 4) distribution. 
Thus the test is equivalent to testing H0: p = 2  against H1: p = p1 and once p1 is
calculated the power study when n = 10 and that for determining the sample size
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required for any specified power proceed in the way described in Section 3.1.3.

Procedure.  Since X is N(1, 4) if H1 holds it follows that Z = (X – 1)/2 has a
standard normal distribution, whence p1 = Pr(X > 0) = Pr(Z > –

2
) = 0.6915, a

value obtainable from tables or appropriate software. The power may then be
obtained from tables or software in the way described in Example 3.3, where here
we test H0: p = 0.5 against H1: p = 0.6915. Using computer software is
preferable, for it is unlikely that tables will be readily available for precisely the
latter value of p and an approximation such as p = 0.7 may then have to be used.
With these values of p, StatXact gives the power as 0.1365 for sample size 10. 
However, discontinuities are influential here as the smallest possible exact one-
tail P-values under H0 are P = 0.001, P = 0.011 and P = 0.055. Had we replaced
α  = 0. 05  by  α  =  0. 01 1 th e  p ow er  wo ul d st i ll  b e 0 .1 36 5 wh e re as  i f  w e se t 
α = 0.055 the power becomes 0.3604.  Minitab uses an asymptotic approx-
imation for power, giving this as 0.3914 when    = 0.05. One has reservations
about asymptotic results for so small a sample, but 0.3914 is broadly in line with
the exact values obtained for possible type I errors slightly above a nominal 0.05.
 The asymptotic result should be more satisfactory for finding the larger n
needed to ensure a power of, say, at least 0.90. The Minitab program gives this
as n = 55.  Finer tuning using exact results from StatXact gives n = 58 as the
minimum required sample size corresponding to an exact P = 0.0435 and an exact
power  0.9031. 

Conclusion.  For a sample of n = 10 the power is only 0.1365 but this low
power in part reflects the large gap between the possible P values 0.011 and
0.055. For power at least 0.90 for the one-tail test the sample size should be at
least 58.

Comments.  1.  The Pitman efficiency of the sign test relative to the t-test for
samples from a normal population is 0.64. This implies that for large n the
relative efficiency is less than two-thirds, suggesting that a sample of about two-
thirds the size should have the same power if we apply a t-test. Many statistical
packages allow power calculations for the t-test when it is optimal, and in this
case these indicate that for a N(θ, 4) distribution the necessary sample size with
power 0.90 with our chosen values of θ in H0 and H1 is n = 36, broadly in line
with that suggested by the Pitman efficiency.

2.  Our computed p1 = 0.6915 was based on the strong assumption that our
sample was from a N(θ, 4) distribution. We seldom know the population
variance but not the mean and if we had such information (or could only assume
normality with the variance unknown) clearly one should prefer the normal
theory-based inference to that using the sign test. However, the results obtained
here are illuminating for comparisons with the situations covered in Examples 4.6
and 4.7 where a nonnormal population again with a variance of 4 is assumed.     

Example 4.6

The problem. Given a sample of 10 from a double-exponential distribution
with unknown mean    and standard deviation 2 find the power of the sign test
for H0:    = 0 against H1:    = 1 if the probability of a type I error is α = 0.05.  
What sample size would ensure a power at least 0.9?
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Formulation and assumptions.  The double-exponential distribution, also
known as the Laplace distribution, with mean θ and standard deviation 2
(variance 4) has probability density function

f(x) = [1/(2√2)]exp[–|(x –   )|/√2]. (4.1)

The distribution is symmetric about the mean θ. Probabilities associated with the
tails are greater than those for the normal distribution with the same mean and
variance and this is a classic example of a long-tail symmetric distribution.  

Under H0 the number of positive sample values (pluses) again has a B(10, 2 )
distribution. If the number of plus signs is the test statistic these will also have a
binomial distribution under H1 but the parameter p is now given by Pr(X > 0) = p1,
say, where X has the double-exponential distribution (4.1) with θ = 1. Thus the
original test is equivalent to testing H0: p = 2  against H1: p = p1 and the power
study for the given sample size and for determining the sample size required for
any specified power proceed as described in Section 3.1.3.

Procedure.  The value of p1 is given by setting θ = 1 in (4.1) and integrating
over the interval (0, ∞). Integration is straightforward (Exercise 4.17) and gives p1

= 0.7534. For testing H0: p = 2  against H1: p = 0.7534 when α = 0.05 StatXact
gives the exact power 0.2518. Discontinuities in possible p-values are the same
as those in Example 4.5 and replacing α = 0.05 by α = 0.011 does not alter the
power, whereas replacing it by α = 0.055 gives power 0.5358. The asymptotic
power computation given by Minitab when α = 0.05 is 0.4805.  Again, here the
asymptotic result is likely to be more satisfactory when seeking the larger n
needed to ensure a power of at least 0.90. Minitab in this case gives n = 30. Finer
tuning using exact results confirms this minimum required sample size
corresponding to an exact P = 0.0494 and gives an exact power 0.9023.

Conclusion.  For a sample of n = 10 the power is now 0.2518 but this low
power in part reflects the large gap between the possible P-values 0.011 and
0.055. A sample of 30 gives a power at least 0.90 for the one-tail test.

Comments.  1. The sample size 30 is approximately half the size (58) needed
for the same power when using the sign test with a normal distribution with the
same variance. This is in line with the Pitman efficiency of the sign test relative
to the t-test which is 2 when sampling from a double-exponential distribution.
We must remember, however, that the t-test itself has lower efficiency for a
sample from a double-exponential distribution than it has for a normal
distribution with the same mean and variance.   

2. The reason the sign test is appreciably more powerful for testing the same
basic hypotheses about θ in this test than it was for an equivalent test in the
previous example is that although the same values of θ are specified in both
examples and that for H0 translates to p = 0.5 in each case, that for H1 transforms
to p = 0.6915 and p = 0.7634 respectively, so that for the second example we
have a more marked departure from the value of p under H0.  That this produces
a more powerful test is in line with our notion of a good test being one where its
power increases as the difference between the values specified in H1 increases
relative to a fixed value specified in H0.
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Examples 4.5 and 4.6 featured samples from symmetric dis-
tributions. We now consider a skew distribution with a similar one-
unit shift to the right. The case here is unusual in practice but it
provides a direct comparison with Examples 4.5 and 4.6 because we
again take a case where we sample from a distribution with a
variance of 4.

Example 4.7.

The problem. Given a sample of 10 from a population with an exponential
distribution having probability density function

f(x) = 
1
2

exp[–
1
2

 (x + 1.3862 – θ)],   x ≥ θ – 1.3862  (4.2)

which has median θ and standard deviation 2 what is the power of the sign test
of H0: θ = 0 against H1: θ = 1 if the probability of a type I error is α = 0.05. Find
also the sample size that will ensure a test with power at least 0.9.  

Formulation and assumptions. The distribution specified by (4.2) is skew
with a long right tail. As in the preceding example under H0 the number of
positive sample values (pluses) has a B(10, 2 ) distribution. Using the number of
plus signs as the test statistic this also has a binomial distribution under H1 but
now  p1 = Pr(X > 0). Thus the original test is equivalent to testing H0: p = 2
against H1: p = Pr(X > 0) and the power study for the given sample size and for
determining the sample size required for any specified power again proceed as
described in Section 3.1.3.

 Procedure. It is easily shown by straightforward integration of the probability
density function over (0, ∞) that under H1  Pr(X > 0) = 0.8244 (Exercise 4.18).
For testing H0: p = 2  against H1: p = 0.8244 when α = 0.05 StatXact gives the
exact power 0.4539. Discontinuities in possible P-values described in Example
4.5 are again relevant and if we replace α = 0.05 by α = 0.011 the test still has
power 0.4539 whereas if we replace it by α = 0.055 the power becomes 0.7499.
  The asymptotic power computation given by Minitab when α = 0.05 is
0.6970.  Again, here the asymptotic result is likely to be more satisfactory for
finding the larger n needed to ensure a power of at least 0.90. The Minitab
program in this case gives n = 17. Finer tuning using exact results in StatXact
shows n = 18 is the minimum required sample size corresponding to an exact P =
0.0481 and giving an exact power 0.9194.

Conclusion. For a sample of n = 10 the power is 0.4539 but this is again
influenced by the large gap between the possible P-values 0.011 and 0.055. To
give a power at least 0.90 for the one-tail test a sample of size 18 suffices.

Comments.  1. The sign test is particularly useful for skew distributions and
in this example where we have a long right tail the test has moderate power for
quite small samples for the alternatives considered. The combination of skewness
and a long tail reduces the power of a t-test appreciably as a consequence of the
breakdown of normality assumptions.

2.  As indicated above the example is unrealistic from the practical viewpoint
because we seldom meet exponential distributions where we are interested in
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simple shifts of the complete distribution that affect the mean or median alone. 
We are more often interested in whether a sample is from one or other of a set of
exponential distributions where all positive values of X are possible but where
the scale parameter λ is unknown. Changes in λ lead to changes in not only the
mean or median but also in the variance and higher moments. This is more
complicated than a simple centrality shift. Nevertheless the sign test is still valid
for studying such changes providing we base our test on allocation of signs to
observations depending upon whether they are above or below the median
specified in H0. Exercise 4.19 is intended for readers interested in exploring the
power and sample-size relationship for this case.

Finding an adequate sample size to give a good chance of
detecting median shifts of interest is a useful exercise but one with
practical limitations. Examples 4.5 to 4.7 confirm that even if a test
is distribution-free the power computations associated with specific
hypotheses about a population mean or median are no longer
distribution-free. Further, exact power calculations can only be
made easily if we assume all observations are from a population
with a specific distribution, whereas we have seen that one strength
of the sign test is its applicability to situations where each
observation may come from a different distribution providing only
that all these distributions have a common median. There is also a
certain irony in that we may choose a nonparametric or distribution-
free test because we are uncertain about the distribution that
provides our sample, yet computation of a sample size to guarantee a
desired power requires knowledge of the distribution! Nevertheless
reasonable approx-imations are often obtainable if we can make a
few rational assumptions about symmetry, length of tails or other
prominent characteristics. 

A further limitation to the usefulness of power and sample size
calculations applies both to parametric and nonparametric inference.
Using a test with good power for rejection of H0 for differences of
importance does not imply that if H0 is rejected then the difference
is important. A confidence interval is more informative about this.
To illustrate this point, consider the situations in Examples 4.5 to
4.7.  In each we assumed a zero median, θ, under H0 and that only a
value θ ≥ 1 represented a departure of interest. If we reject H0 and
calculate a 95 per cent confidence interval for θ and this turns out to
be (0.2, 1.3) there is considerable doubt about whether   ≥ 1, so the
departure from H0 may still be unimportant. We emphasize again
the distinction made in Section 1.4.2 between statistical significance
and practical importance. 

Despite their limitations approximate power computations are a
useful first step in many experimental situations. They may indicate
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that a proposed experiment is too small to have a realistic chance of
picking up interesting departures from H0, or more rarely may
suggest we are needlessly squandering resources when a smaller
experiment would give us all the information we need. Power and
sample size studies provide target sizes for experiments likely to be
of value, or if we have limited resources indicate whether using all
of these will be enough to achieve an experimenter’s aims.

Even though the power of a simple test like the sign test is not
distribution-free, power studies are still useful if we can make broad
assumptions about the type of population distribution we have, e.g.
is it symmetric and long tailed, or something more like a uniform
distribution? Is it skewed to the right or to the left? Unless it is very
small the sample itself will often give some hint as to whether it
comes from a distribution with one or more such characteristics. If
there is evidence that the distribution is fairly symmetric and has
longer tails than those associated with the normal distribution power
studies that are optimal for the double-exponential distribution may
provide good approximations. Example 4.7 showed that for a
particular skew distribution with one long tail the sign test performs
well compared to the t-test and more general studies have shown that
this is broadly true for most skew distributions with a long tail.  
Very often a quick eye inspection of sample values aided perhaps by
some exploratory data analysis involving tools like a box and
whisker plot will indicate that a sample appears to have come from,
say, a fairly symmetric long-tail distribution not unlike the double
exponential. We might ‘estimate’ its variance by the sample variance
and for a null hypothesis about the median, θ, H0: θ = θ0 and a
specific alternative H1: θ = θ1 compute the value p1= Pr(X >   0)
assuming the distribution of X is really a double-exponential with
variance equal to the sample variance. In a situation like this, had we
known the true population distribution we are effectively assuming
that the correct p1 is likely to differ little from that for the double-
exponential distribution assumption. Suppose that for the alternative
hypothesis of interest p1 = 0.82 for a double-exponential
distribution, then we might be conservative and work out the power
for this situation and also that for a slightly lower p1, say p1 = 0.78.
It is likely that the true power will lie somewhere near the values
given by these approximations. 

If there are problems in working out exact sample sizes to ensure
a certain power for a sign test because suitable software is
unavailable a good asymptotic approximation due to Noether
(1987a) may be used.  Denoting the probability of a type I error by α
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and that of a type II error by β, so that the power is 1 – β then the
sample size required to obtain that power with a sign test is

    

n
z z

p
=

+

−

( )

( )

α β
2

1
24

1
2

  (4.3)

where p1 has the meaning assigned to it throughout this section and
zα is the value of a standard normal variable that must be exceeded
corresponding to a P-value α when H0  holds.  For example, in a
one-tail test with    = 0.05, zα = 1.645. A similar meaning is attached
to zβ. 

Example 4.8

The problem. Apply the Noether approximate formula to compute the sample
size n for the test considered in Example 4.6 to give a power of at least 0.9 when
α = 0.05 in a one-tail test.

Formulation and assumptions.  The appropriate value of p1 was shown in
Example 4.6 to be p1 = 0.7534 and clearly zα = 1.645 and zβ = 1.282.

Procedure.  Substitution of the above values in the Noether formula gives n
≈ 33.4.

Conclusion.  Conservative rounding up suggests a sample size of 34 is
appropriate.

Comments. 1.  This asymptotic result is close to the size n = 30 found in
Example 4.6. Bearing in mind that we may frequently use such calculations when
there is some uncertainty about the precise population distribution, calculations
using the Noether formula will often be adequate in practice.

2.  For the problem in Example 4.5 the Noether formula gives n = 56.4 in
c l os e ag r ee me nt  wi th  t h e ex ac t  v al ue  n = 58 , a nd  i n E xa mp le  4. 7 it  gi ve s n
= 22.9 (exact value n = 18) suggesting the approximation is not unreasonable
even when observations are from a highly skewed distribution.   

4.3.2   Power and sample size for the Wilcoxon signed-rank test

We consider this topic in less detail than we did for the sign test
partly because of additional difficulties in performing exact tests but
also because the limitations of the approach indicated in our
discussion for the sign test mean that approximate results are often
all we can get in practice.

A simple property of the sign test under the alternatives H1

considered in Section 4.3.1 is that no matter from what distribution
we are sampling the test statistic, the number of plus signs, has a
binomial distribution. For this statistic, for any given value of θ in
H1 all that differs between samples from different distributions is the
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value of the binomial parameter p1. This simplicity is a feature of
the statistic used, the number of plus signs.
   Although the corresponding statistic for the Wilcoxon signed-rank
test, the sum of the positive signed ranks, has a relatively simple
symmetric distribution under H0 it has generally got a rather
intractable distribution under any H1 for all but a few simple
population distributions. Exact power calculations have only been
made for small sample sizes and for a limited number of population
distributions such as the normal and a few t-distributions with small
numbers of degrees of freedom, see e.g. Klotz (1963) and Arnold
(1965). Even approximations are limited in their usefulness. An
approximate formula for power for a given sample size against
alternatives close to that in H0 is discussed in detail by Lehmann
(1975, Section 4.2) and an example of its use is given by Hollander
and Wolfe (1999, Section 3.1). The result is applicable only if all
observations are from the same distribution. In addition, one needs
to know the value of the population frequency function at the
median or mean specified in H0 (which without loss of generality
may be set at θ = 0) and also the value at this median of the
frequency function for the sum of two independent variables having
this same distribution. Except for a few distributions such as the
normal where the sum also has a normal distribution, computation
of the latter requires a good understanding of distribution theory and
calculus. 

The reason the distribution of the sum of two independent
observations comes into the calculation is closely allied to the
relevance of the Walsh averages in test and estimation procedures
associated with signed ranks. This sum for any two sample values
has the same sign as the corresponding Walsh average (which is
simply that sum divided by 2) and under H0: θ = 0 the sign is
equally likely to be positive or negative, i.e. Pr(xi + xj > 0) = 2
whereas under H1: θ = θ1, if θ1 is positive then  Pr(xi + xj > 0) = p1

where  p1 > 2 . The value of  p1 depends upon the population
distribution and is not always easy to calculate.

Although the signed-rank statistic no longer has a binomial
distribution the approximation due to Noether given in (4.3) may
still be used to estimate the sample size having a given power. 
However, for a given θ1 this may be difficult to calculate except for
some simple distributions and it may also be sensitive to an incorrect
choice of population distribution, again illustrating the dilemma that
goes with power calculations when using nonparametric methods
due to uncertainty about the population distribution. 
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Example 4.9

The problem. Using the approximation based on (4.3) determine the
approximate sample size needed to guarantee a power of 0.80 using a Wilcoxon
test  when sampling from a normal N(θ, 4) distribution and we wish to use a one-
tail test for H0: θ = 0 against H1: θ = 1 with probability of a type I error not
exceeding α = 0.05.

Formulation and assumptions.  We require p1 = Pr(X1 + X2 > 0) where X1,  X2

are independently N(1, 4) and this together with appropriate values of zα , zβ are
substituted in (4.3) to estimate n.

Procedure.  Using conventional normal distribution theory we know that U =
X1 + X2 is distributed N(2, 8) under H1.  Thus Z = (U –  2)/(2√2) has a standard
normal distribution and it follows that Pr(U > 0) implies  p1 = Pr(Z > –1/√2) =
Pr(Z > –0.7071) = 0.7601.  Clearly zα = 1.645 when    = 0.05 and for power 0.8
we have β = 0.2 and zβ = 0.842. Substitution of these values in (4.3) gives n ≈ 23.

Conclusion.  A sample size of 23 should nearly meet requirements.

Comments.  Minitab, like many other packages, provides a program to
determine the sample size to give required power when the optimum normal
theory t-test is used in these circumstances and indicates a sample size n = 25. 
This suggests the asymptotic test size of 23 for the Wilcoxon test may be an
underestimate since the Pitman efficiency of the Wilcoxon test relative to the
optimal test in this case is 3/π, which is slightly less than 1. However, the result
is of the right order of magnitude.

     

4.4   FIELDS OF APPLICATION

In most applications if a numerical value of the difference for each
matched pair is available and these do not appear too skew, the
Wilcoxon test (or an analogous test using normal scores) is likely to
be appropriate. The matched pairs t-test is appropriate if the
differences di = yi – xi are approximately normally distributed;
sometimes this may be the case even when the distributions of X, Y
are each far from normal. If there is evidence of skewness in the
differences a sign test is preferable.

Laboratory instrument calibration

Two different brands of instrument reputedly measure the same
thing (e.g. blood pressure, hormone level, sugar content of urine,
bacterial content of sputum), but each is subject to some error. 
Samples from, say, each of 15 patients might be divided into two
subsamples, the first being analyzed with one kind of instrument,
the second with the other. A Wilcoxon test is appropriate to test for
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any systematic difference between instruments. When purporting to
measure the same thing a systematic difference from the true values
in means or medians is often described as mean or median bias.  
The term ‘bias’ alone is usually taken to imply mean bias. 

Biology

The heartbeat rate of rabbits might be measured before and after
they are fed a hormone-rich diet. The Wilcoxon test is appropriate
to investigate a shift in mean. ‘Before’ and ‘after’ measurements are
common in medical and biological contexts, including experiments
on drugs and other stimuli, which may be either physical or
biological (e.g. a rabbit’s blood pressure may be measured when on
its own and again after it has shared a cage for half an hour with a
rabbit of the opposite sex). Confidence intervals for the mean
difference are useful both as an indication of the precision of the
experiment (Section 1.4.2) and to help in reaching a decision as to
whether any statistically significant difference is of practical
importance.

Occupational medicine

An instrument called a Vitalograph is used to measure lung capacity.
Readings might be taken on workers at the beginning and end of a
shift to study any effect on lung capacity of fumes inhaled in some
industrial process, or on athletes before and after competing in a
100-metre sprint.

Agriculture

In a pest control experiment each of 10 plots may contain 40 lettuce
plants. Each plot is divided into two halves: one half chosen at
random is sprayed with one insecticide, the second with another. 
Differences in numbers of uninfested plants in each plot can be used
in a Wilcoxon test to compare effects of insecticides. Incidentally,
pest control experiments are a situation where a normality
assumption is often suspect.

Psychology

Given sets of identical twins, it being known for each pair which
was the first-born, for each individual in a pair the times to carry
out a manual task are observed to see if there is any indication that
the first-born tends to be quicker. The choice may lie between a
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Wilcoxon test and a t-test. Confidence intervals for the mean
difference will indicate the precision with which any difference is
measured and whether it is of practical importance.

Road safety

Drivers’ reaction times in dangerous situations may be compared
before and after each has consumed 2 pints of beer, using equipment
that simulates driving conditions on the road. (This is a response to
stimulus situation of the type mentioned above under the heading
Biology.)

Space research

Potential astronauts may have the enzyme content of their saliva
determined before and after they are subjected to a zero gravitational
field in a simulator. Such biochemical evidence is important in
determining physiological reactions to space travel.

Education

To decide which of two examination questions is perceived by
students to be the harder, both questions could be included in a test
paper in which candidates are free to choose neither, one or both of
the two questions. Records are taken of the numbers who complete
both, neither, only the first, only the second. Numbers in the latter
two categories can be used in a McNemar sign test for evidence of
unequal perceived difficulty.

Social policy

An association of government employees wishing to find evidence to
support their case that salaries in the public sector were generally
below those paid for equivalent work in the private sector might
obtain data for the average salaries paid in each sector for each of a
number, n, of employment categories matched with respect to
working conditions, responsibility, security of employment, etc. and
use differences to assess evidence for their case.

4.5   SUMMARY

The matched pair sample tests for centrality differences considered
in this chapter reduce to the analogous single-sample tests
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considered in Chapter 2. See in particular the sign test (Section 2.3),
the Wilcoxon signed-rank test (Section 2.2), raw data scores
(Section 2.1), normal, or modified van der Waerden scores (Section
2.4).  General tests for the distributions of the paired differences
include the Kolmogorov test (Section 3.3.1) and Lilliefors’ test and
the Shapiro–Wilk test for normality (Section 3.3.3).

McNemar’s test (Section 4.2) is relevant to paired observations to
assess changes in attitude or for assessments of relative difficulty.  It
is equivalent to the sign test (Section 2.3).    

Power and sample size calculations for the single sample or
matched pair differences are in general not distribution-free and
reasonably good approximations depend upon assumptions about the
population distribution. Some power computations are relatively
easy for the sign test because the statistic still has a binomial
distribution under the alternative hypothesis, whereas the
distribution of the signed-rank statistic often proves intractable
under alternative hypotheses.

EXERCISES

4.1 Verify the confidence intervals given in Comment 2 on Example 4.2.
4.2 The blood pressures of 11 patients are measured before and after

administration of a drug. The differences in systolic blood pressure 
(pressure before – pressure after) for each patient are:

7   5   12   –3   –5   2   14   18   19   21   –1

Use an appropriate nonparametric test to see if the sample (assumed
random) contradicts the hypothesis of no systematic change in blood
pressure.

4.3 Samples of cream from each of 10 dairies (A to J) are each divided into two
portions. One portion from each is sent to Laboratory I, the other to
Laboratory II, for bacterium counts. The counts (thousands bacteria ml–1)
are:

   __________________________________________________________

Dairy     A    B    C     D     E     F      G        H        I         J
      _________________________________________________________

Lab I  11.7   12.1   13.3   15.1  15.9   15.3   11.9    16.2   15.1   13.6
Lab II  10.9   11.9   13.4   15.4  14.8   14.8   12.3    15.0   14.2   13.1
__________________________________________________________

Use the Wilcoxon signed-rank test to assess the evidence for any consistent
difference between laboratories for subsamples from the same dairy. 
Obtain also nominal 95 and 99 per cent confidence intervals for the mean
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difference and compare these with the intervals using the optimal method
when normality is assumed.

4.4 A hormone is added to one of otherwise identical diets given to each of 40
pairs of twin lambs. Growth differences over a 3-week period are recorded
for each pair and signed ranks are allocated to the 40 differences. The lower
rank sum was S1 = 242. There was only one rank tie. Investigate the
evidence that the hormone may be affecting (increasing or decreasing)
growth rate.

4.5 A psychologist interviews both father and mother of each of 17 unrelated
children with learning difficulties, asking each individually a series of
questions designed to test how well they understand the problems their
child is likely to face in adult life. The psychologist records whether the
father (F) or mother (M) shows the better understanding of these potential
problems.  For the 17 families the findings are

F   M   M   F   F   F   F   F   F   F   M   F   F   F   M   F   F

Is the psychologist justified in concluding that fathers show better
understanding?

4.6 For each of nine matched pairs of students, one student is allocated to a
series of lectures and the other to appropriate computer assisted learning
(CAL) material. At the end of the course the students are given the same
examination paper. The marks achieved (out of 100) are:

    _____________________________________________________
   Pair  1  2  3  4  5  6  7 8  9
    _____________________________________________________

    CAL 50 56 51 46 88 79 81 95 73
     Lectures 25 58 65 38 91 32 31 13 49

    ____________________________________________________

Analyze these results by what you consider the most appropriate para-
metric or nonparametric methods to determine whether or not they provide
acceptable evidence that CAL material leads to better examination results.

4.7  One hundred general practitioners attend a health promotion workshop. At
the start of the workshop they are asked to indicate whether they are in
favour of routinely asking patients about alcohol consumption. They are
then shown a video on the health and social problems caused by the
excessive consumption of alcoholic drinks. The video is followed by
discussion in small groups. After the video and discussion they are asked
the original question again. Do the results given below indicate a signif-
icant change in attitudes as a result of the video and group discussion?

                                                                                                    

             Before video and discussion
     In favour     Against

                                                                  

       After video       In favour           41          27
       and discussion    Against     16          58
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4.8 A canned-soup manufacturer is experimenting with a new-formula tomato
soup. A tasting panel of 70 each taste samples of the current product and
the new one (without being told which is which). Of the 70, 32 prefer the
new-formula product, 25 the current product and the remainder cannot
distinguish between the two. Is there enough evidence to reject the
hypothesis that consumer preference is equally divided?

4.9 Do the data in Exercise 4.8 support a claim that as many as 75 per cent of
those who have a preference may prefer the new formula?

4.10 To produce high-quality steel one of two hardening agents A, B may be
added to the molten metal. Hardness of steel varies from batch to batch, so
to test the two agents batches are sub-divided into two portions, for each
batch agent A being added to one portion, agent B to the other. To compare
hardness, sharpened specimens for each pair are used to make scratches on
each other; that making the deeper scratch on the other is the harder
specimen. For 40 pairs, B is adjudged harder in 24 cases and A in 16. Is
this sufficient evidence to reject the hypothesis of equal hardness?

4.11 For a subsample of 10 pairs from the steel batches in Exercise 4.10 a more
expensive test is used to produce a hardness index. The higher the value of
the index, the harder the steel. The indices recorded were:

____________________________________________________________

Batch no.  1  2  3  4  5  6  7  8  9 10
____________________________________________________________

Additive A 22 26 29 22 31 34 31 20 33 34
Additive B  27 25 31 27 29 41 32 27 32 34
____________________________________________________________

Use an appropriate test to determine whether these data support the con-
clusion reached in Exercise 4.10.

4.12 On the day of the third round of the Open Golf Championship in 1987
before play started a television commentator said that conditions were
such that the average scores of players were likely to be at least three
higher than those for the second round. For a random sample of 10 of the
77 players participating in both rounds the scores were:

__________________________________________________________

Player  A  B  C  D  E  F  G  H  I  J
__________________________________________________________ 

Round 2 73 73 74 66 71 73 68 72 73 72
Round 3    72 79 79 77 83 78 70 78 78 77
_________________________________________________________

Do these data support the commentator’s claim? Consider carefully
whether a one- or two-tail test is appropriate.

4.13 Pearson and Sprent (1968) gave data for hearing loss (in decibels below
prescribed norms) at various frequencies. The data below show these
losses for 10 individuals aged between 46 and 54 at frequencies of 0.125
and 0.25 kc s–1.  A negative loss indicates hearing above the norm. Is there
an indication of a different loss at the two frequencies?
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____________________________________________________________

Subject  A   B   C    D    E   F   G   H   I      J

____________________________________________________________

0.125 kc s–1 2.5 –7.5 11.25   7.5  10.0  5.0  7.5  2.5 5.0  8.75
0.25 kc s–1 2.5 –5.0   6.35   6.25   7.5   3.75  1.25  0.0 2.5   5.0
____________________________________________________________

4.14  Apply a normal scores test to the data in Example 4.2.
4.15  Scott, Smith and Jones (1977) give a table of estimates of the percentages

of UK electors predicted to vote Conservative by two opinion polling
organizations, A and B, in each month in the years 1965–70.  For a random
sample of 15 months during that period the paired percentages were:

 A    43.5  51.2  46.8  55.5  45.5  42.0  36.0  49.8  42.5  50.8  36.6  47.6  41.9  48.4 
53.5
 B    45.5  44.5  45.0  54.5  49.5  43.5  41.0  53.0  48.0  52.5  41.0  47.5  42.5  45.0 
52.5

Do these results indicate a significant tendency for one of the organizations
to return higher percentages than the other? Obtain an appropriate 95 per
cent confidence interval for any mean or median difference between
predictions during the period covered.

4.16 Verify the correctness of the confidence intervals and the result for
Lilliefors’ test quoted in Example 4.3.

4.17 Confirm the value given in Example 4.6 for Pr(X > 0|θ = 1) for the
distribution given in (4.1). What is the corresponding probability
conditional upon θ = 2?

4.18 Confirm the value given in Example 4.7 for Pr(X > 0|θ = 1) for the
distribution given in (4.2). What is the corresponding probability
conditional upon θ = 1.2?

4.19. Determine the sample size needed to have power at least 0.80 for the sign
test that the median θ is H0: θ = 1 against the alternative H1: θ = 2 with the
one-tail P = 0.05 if the observations are known to be a random sample
from an exponential distribution with frequency function f(x) =   e–_x

, x ≥ 0.
(Hint: You will need to find values of λ that give medians corresponding to
those specified in the null and alternative hypotheses.)
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5
Methods for two independent samples

5.1   CENTRALITY  TESTS AND ESTIMATES

5.1.1   Extensions from single samples

We often have two independent random samples (i.e. the members
of the first sample or group are independent of those in the second)
and wish to make inferences about the two populations which they
represent. We denote the members of the samples by x1, x2, . . . , xm

and y1, y2, . . . , yn where for convenience and without loss of
generality we assume n ≥ m, i.e. that the second sample is at least as
large as the first. In Chapters 2–4 we saw that several distribution-
free tests and estimation procedures based on permutations differed
only in the scores assigned, e.g. ranks, signs, van der Waerden
scores. Relevant assumptions and practical computational matters
governed the choice of an appropriate procedure. These consid-
erations extend with modifications and additions to the two-sample
situation. We consider first centrality tests in the same order as we
covered the single sample analogues in Chapter 2.

5.1.2   The Pitman permutation test

 The Pitman permutation test for two independent samples has
similar disadvantages to its one-sample counterpart. Like the t-test,
it is not robust against certain departures from assumptions needed
for its validity and there are difficulties in computing confidence
intervals. Further, the conditional nature of the test makes it
virtually impossible to obtain exact P-values without specialist
software. For these reasons it is seldom used in practice so we omit
details here although both StatXact and Testimate provide programs
for exact hypothesis tests, the former using the program option for
permutation tests with any chosen scores. Readers interested in this
test will find an account of its application together with an example
in Sprent (1998, Section 4.1).  
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5.2   RANK BASED TESTS

5.2.1   The Wilcoxon–Mann–Whitney test

For two independent samples, the analogue of the one sample
Wilcoxon signed-rank test is the Wilcoxon rank-sum test proposed
by Wilcoxon (1945). An equivalent test widely referred to partic-
ularly, but not only, in the medical literature, as the
Mann–Whitney U test was developed independently by Mann and
Whitney (1947).  It is convenient, though not universal practice, to
refer to the tests jointly as the Wilcoxon–Mann–Whitney test, or
for brevity as the WMW test.   

The data in Example 1.4 can be viewed as two independent
samples, those patients who received the new drug forming the first
sample and those who did not forming the second. Information
recorded on the condition of each patient is already in the form of
ranks so the Wilcoxon–Mann–Whitney approach can be applied
immediately. This was effectively what we did in that example.

5.2.2   The Wilcoxon formulation

In this form of the test, the two samples are combined and the data
are ranked overall. The original two samples are then separated out
with each rank being attached to the corresponding observation. The
usual null hypothesis is that the two samples are from identical
populations and a common alternative hypothesis is that the
population distributions differ only in the mean or median. As
indicated in Example 1.4, if both samples come from the same
population (which may be of any continuous form and need not be
symmetric) we expect a mix of low, medium and high ranks in each
sample. Under the alternative hypothesis we expect lower ranks to
dominate in one population and higher ranks in the other. Such a
shift in centrality is often referred to as an ‘additive’ treatment
effect, i.e. there is a ‘constant’ difference between two treatments.

The sum of the ranks in the first sample, Sm, can be used to
determine the strength of evidence against the null hypothesis (the
other, perhaps larger group, could be taken instead). Taking
Example 1.4 as a case in point, the smaller group consists of the
four patients receiving the new treatment.  If their ranks are 1, 2, 3
and 5 (say), low ranks predominate and the rank-sum of 11 is small.
If the ranks are 6, 7, 8 and 9, high ranks predominate and Sm = 30 is
relatively large. Ranks of 2, 3, 6 and 8 indicate not very different
values in the two groups. The rank sum is now 19. Values of the
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rank sum close to the minimum possible (10) or maximum possible
(30) provide strong evidence against the null hypothesis; for
intermediate values of Sm the evidence is weaker.

The test may also be used when samples are from two
distributions with identical cumulative distribution functions under
H0, but under H1, one cumulative distribution curve (see Comment 1
on Example 3.10) lies beneath the other apart from some points
where the curves touch. A moment’s reflection shows that under H1

low or high ranks should dominate in one sample, as opposed to a
fairly even distribution of ranks under H0. These are sometimes
referred to as ‘dominance’ alternatives. Given the permutation
distribution of rank sums under H0, P-values may be determined in
the way described for the particular case in Example 1.4.  

Example 5.1

The problem.  For some models of pocket calculator the trigonometric
function values are obtained by entering the number before pressing the function
button (Type A models, say). Other models require the function to be selected
before the number is entered (Type B models). A mathematics teacher wished to
determine whether a particular Type A model of calculator allows calculations to
be performed with greater speed compared with a certain Type B model. A class
of 21 pupils was randomly divided into groups A (using the Type A model), and
B (using the Type B model) with 10 and 11 pupils in the respective groups. The
pupils were asked to carry out the same set of trigonometric calculations. The
total times in minutes for each member of each group to complete the
calculations were

Group A 23    18    17    25    22    19    31    26    29    33
Group B 21    28    32    30    41    24    35    34    27    39    36

Do the data indicate that one model of calculator is superior (i.e. leads to more
rapid computations)?

    Formulation and assumptions.  A two-tail test is appropriate. We require the
sum of ranks associated with the smaller sample, Group A, in a joint ranking of
all data, or alternatively the rank sum for Group B could be used. The P-value
associated with this sum lets us assess the strength of evidence against H0: the
population medians are identical, where the alternative is that one sample is from
a population with greater median. We prefer to think in terms of medians rather
than means because there is no need to make an assumption of symmetry.  The
test will also be valid for a dominance alternative, i.e. for a tendency for the
computations to be done more quickly with one model of calculator, although the
time difference may vary appreciably between pupils.   

Procedure.  The sample sizes are m = 10 and n = 11. Most software programs
for the Wilcoxon test will calculate the ranks automatically, but to obtain them
manually it helps to arrange data in ascending order within each sample and then
allocate ranks. We leave it as an exercise for the reader to show that if this is
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done the ranks assigned to Group A are 1, 2, 3, 5, 6, 8, 9, 12, 14, 16 with a rank
sum of Sm = 76. The rank sum for Group B is Sn = 155.

If software to give exact P-values is not available some relevant values for Sm

are given in many tables. For this example we used the program in StatXact
which indicates that for a two-tail test the relevant exact P = 0.0159. The output
also confirms the value of Sm given above.

Conclusion.  The low P-value provides fairly strong evidence against H0. On
average, pupils appear to perform calculations more speedily with the Type A
model, for which the trigonometric functions are entered after the number.

Comments.   1. Tables for the Wilcoxon–Mann–Whitney statistic are given by
Neave (1981, p. 30). Conover (1999, Table A7) and others give various quantiles
for Sm, Sn. Actual, rather than nominal, significance levels may be obtained from
computer programs giving the exact permutation distribution.

2. This study is a comparison of two particular models of calculator. It would
be unreasonable for the teacher to recommend that pupils purchase any Type A
calculator on the basis of just this study. Further, calculators that are particularly
useful for operating with trigonometric functions may not perform so well with
other problems such as calculating a mean or standard deviation.

3. Suppose that this investigation had been conducted in a mathematics lesson
of 40 minutes. The fifth pupil in Group B would then have been unable to
complete all of the calculations and this observation would have been censored.
In the ranking of the data, however, since this observation is the only one with  a
time in excess of 40 minutes a rank of 21 would still be given. A t-test could not
have been validly used since an exact value is required for each observation.

Computational aspects. StatXact and Testimate give exact P-values
corresponding to observed S providing m, n are not too large. Many general
statistical packages compute Sm but leave the user to consult tables or give an
asymptotic result which may be unsatisfactory if, for example, one sample is
large but the other small, or if there are many tied ranks.

5.2.3   The Mann–Whitney formulation

A statistic U, which is a function of the rank sum S, can be
calculated for either group in order to determine the strength of the
evidence against the null hypothesis. For the first of the two samples
this statistic is given by Um = Sm –1/2m(m + 1), with the equivalent
statistic for the (perhaps larger) sample being Un = Sn –  1/2n(n+1).
We only need to compute one of Sm or Sn, for the sum of all the
ranks from 1 to m + n is 1/2 (m + n)(m + n + 1) = Sm  + Sn.  Using the
relations Um  = Sm – 1/2m(m+1) and Un = Sn – 1/2n(n+1) one easily
deduces that each has minimum value zero and that

Um = mn – Un (5.1)

so that again only one of Um, Un need be computed.  Either may be
used in a test, although Um is generally given in tables.
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In the Mann–Whitney approach, either Um or Un is calculated
directly. To obtain Um or Un we count the number of observations in
one sample exceeding each member of the other sample. Ranks are
not needed, and the procedure eases calculation if no computer
program is available for the test. It also forms the basis for
determining a confidence interval for a difference in centrality.  

Example 5.2

The problem.  Recalculate the test statistic for the data in Example 5.1 using
the Mann–Whitney approach.

Formulation and assumptions.  We inspect the observations in each sample;
they need not be ordered, but counting is easier when they are. It is visually
easier to count the number of times each observation in Group A is exceeded by
an observation in Group B. This gives Un, from which Um can be determined.

Procedure.  The data from Example 5.1, arranged for convenience in ascending
order in each group, are:

Group A 17    18    19    22    23    25    26    29    31    33    
Group B 21    24    27    28    30    32    34    35    36    39    41

Clearly the first observation 17 in Group A is exceeded by all 11 observations in
Group B. Similarly, the observations 18, 19 are also exceeded by all observations
in Group B. The observation 22 is exceeded by 10 observations in Group B.
Proceeding in this way we find the numbers of observations in Group B
exceeding each observation in Group A and then add these, viz. Un = 11 + 11 +
11 +10 + 10 + 9 + 9 + 7 + 6 + 5 = 89. Using (5.1) gives Um = 110 – 89 = 21,
easily shown to be consistent with the value of Sm found in Example 5.1.  

Conclusion.  As in Example 5.1.

Comment.  Equivalence of the Wilcoxon and Mann–Whitney formulations is
general.

Computational aspects. StatXact and Testimate give exact tail probabilities
corresponding to the value of U (in this case P = 0.0159). As with the statistic S,
many general statistical packages compute U but leave the user to consult tables
or give an asymptotic result based on the normal distribution (see Section 5.6).
For this example, Stata or StatXact give an asymptotic P = 0.0167, which leads
to the same conclusions; in other situations the asymptotic result may be
unsatisfactory. Many tables only give values of the statistic that correspond to
nominal conventional significance levels rather than exact P-values, but most
explain what is given and how to use the tables. For instance, Neave (1981)
indicates that if either Um or Un do not exceed 26, the two-tailed P-value for
Example 5.2 is less than 0.05.

5.2.4   Ties

We use mid-ranks for ties as we did for the Wilcoxon signed-rank
test (Section 2.2.3). If software to compute exact P-values is not
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available and there are only a few ties, basing significance tests on
the appropriate critical values for the ‘no-tie’ case is unlikely to be
seriously misleading. If m, n are both reasonably large (say 15 or
greater), a normal approximation we develop in Section 5.6 may be
used with reasonable confidence, adjustment being essential only
when there are a moderate to large number of ties. Example 5.4
illustrates a situation where ties dominate.

In the Mann–Whitney formulation, if an observation in the second
sample equals an observation in the first sample it is scored as 1/2 in
counting the number of observations in the second sample exceeding
that observation in the first.   

For small to medium-sized samples ties present no difficulty if a
computer program is available to generate exact probabilities for the
WMW test based on the appropriate permutation distribution.   

Example 5.3

The problem.  We consider a set of data from a second experiment similar to
that in Examples 5.1 and 5.2 but where there are now some ties in the times
taken by different participants.  For convenience the data are given in ascending
order but this is not essential, especially if suitable software is used.

Group A    16   18   19   22   22   25   28   28  28   31   33
Group B     22   23   25   27   27   28   30   32  33   35   36   38   38

Do the data indicate that one model of calculator is superior (i.e. leads to more
rapid computations)?

Formulation and assumptions.  We use the WMW test with mid-ranks for
ties.  

Procedure.  We have m = 11 and n = 13. Computer programs usually assign
ranks or mid-ranks automatically, but this is easily done manually since the data
are ordered. The reader should verify that these are

Group A 1   2   3       5       5      8.5   13.5  13.5  13.5   17   19.5
Group B 5   7   8.5  10.5  10.5 13.5   16     18     19.5   21   22     23.5   23.5

Unless we need Sm specifically and have no software to compute it there is no
need to allocate ranks. It is easier to obtain Un by simply counting for each first
sample value the number of observations exceeding it in the second sample
(scoring one half for ties) and summing these. For example, for each value 22 in
Group A there is one tied value, scored as 1/2 and 12 values exceeding 22 in
Group B giving a contribution of 12.5 to Un.  Proceeding in this way we find

Un = 13 + 13 +13 + 12.5 + 12.5 + 10.5 + 7.5  + 7.5 + 7.5 + 6 + 4.5 = 107.5

From (5.1 ), Um  = 11 × 13 – 107.5 = 35.5.  StatXact confirms this value for Um

requiring only the original data to do so, and for a two-tail test gives the exact
P = 0.0359.
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Conclusion. There is some evidence against H0 and the results suggest
computations are completed more rapidly with the model tested by Group A.  

Comments.  1.  Tables such as those in Neave (1981) indicate that values of
Um ≤ 37 imply P < 0.05 for a two-tail test. This one example suggests that a few
ties do not seriously upset conclusions based on ‘no-tie’ critical values for
moderate sample sizes.   

2.  The situation using conventional ‘no-tie’ tables is less satisfactory when
there are many ties or for ties in unbalanced samples.  For example, if we had a
sample of 3 with values 1, 2, 2, and a sample of 13 with values 1, 1, 4, 5, 5, 5, 7,
8, 9, 9, 9, 9, 10 it is easy to show that Um = 5. In a no-tie situation two-tail test
Pr(Um ≤ 5) = 0.0571 whereas the exact permutation test allowing for ties gives
Pr(Um ≤ 5) = 0.0464 as the true P-value for this specific tie pattern. Although the
strength of evidence against the null hypothesis is not markedly different, use of
a rigid 5 per cent significance level would lead to differing conclusions.

3.  As we demonstrated in Example 2.5, if ties result from rounding and
greater accuracy allows us to break ties, the way the ties break may alter
appreciably conclusions regarding significance.

Computational aspects. Software to determine exact permutation probabilities
associated with the test statistics U or S is particularly valuable when there are
ties.  StatXact and Testimate allow this. Some general programs take ties into
account by using mid-ranks but provide only an asymptotic test (which may be
unreliable for small m + n or when one of m, n, is small). Alternatively, one may
resort to tables appropriate to the no-tie situation but nominal significant levels
can no longer be guaranteed.

A common ‘tie’ situation is one where we are not given precise
measurements, but only grouped data. For example, instead of the
complete sample values in Example 5.3 we may be given only
numbers of participants taking between 10 and 19 minutes, 20 and
29 minutes, 30 and 39 minutes. We may still calculate the U or S
statistics making allowances for ties, but it may now be misleading
to use tabulated critical values for these statistics.

Example 5.4

The problem.  Instead of the data in Example 5.3 suppose we are given only
the numbers taking 10–19, 20–29, 30–39 minutes leading to the data given below.  
Perform the test in Example 5.3 using this reduced information.

                                                                                                
No. of minutes 10–19 20–19 30–39
                                                                                                

Group A 3 6 2
Group B 0 6 7

                                                                                                

Formulation and assumptions. We carry out a WMW test based on mid-ranks
using, if available, a program giving exact permutation probabilities.
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Procedure.  If no suitable program is available calculating the required value of
Un is reasonably straightforward but needs care. For each of the three ties in
10–19 for Group A there are 6 + 7 = 13 greater values in Group B. Thus
between them these three ties contribute a total of 3 × 13 = 39 to Un. Similarly
each of the six Group A ties in 20–29 corresponds to six ties and seven greater
values in Group B, thus each contribute a score of  1/2 × 6 + 7 = 10 so that
together they contribute a score of 6 × 10 = 60. Finally by a similar argument
the two group A ties in 30–39 each contribute 3.5 whence it is easily seen that
Un = 39 + 60 + 7 = 106 and now from (5.1) Um = 143 – 106 = 37. In Comment 2
on Example 5.3 we noted that Um = 37 is the minimum value that implies P ≤
0.05 in a two-tail test if there are no ties. The exact permutation probability that
Um = 37 for these tied data in a two-tail test given by StatXact is P = 0.0442.

Conclusion.  There is reasonably strong evidence against the hypothesis of
equal medians.

Comments.  1.  In this specific example the use of conventional no-tie tables is
not seriously misleading; however this is not always so. In particular, heavy
tying often leads to major discontinuities in possible P-values since the tying
may reduce appreciably the number of possible values that Um may take.

2. By pooling the data into groups we use less information in this test than we
did in that in Example 5.3 so it is not surprising that there is a reduction in the
strength of evidence against H0 that is reflected by the slightly higher P-value.
 

5.2.5   Wilcoxon–Mann–Whitney confidence intervals

The Mann–Whitney statistic compares all differences dij = xi – yj

between sample values.  In computing Um we allocate a score of 1 if
dij is positive, zero if dij is negative and 1/2 if dij is zero. To calculate
Un we reverse these scores, i.e. score 1 if dij is negative, zero if dij is
positive and 1/2 if dij is zero. To calculate a confidence interval for
the difference in centrality we need the actual values of some or all
dij. If c is the value of the Mann–Whitney statistic U that we would
regard as providing sufficient evidence to indicate significance at the
100α per cent significance level, the 100(1 – α) per cent confidence
limits are given by the c + 1 smallest and c + 1 largest dij. The
reasoning here is not unlike that used in establishing a confidence
interval using Walsh averages in the one-sample situation based on
the Wilcoxon signed rank approach.
 
Example 5.5

The problem.  Obtain nominal 95 per cent confidence limits for a population
median shift based on the WMW method using the data in Example 5.1.

Formulation and assumptions.  If computer software that calculates a confid-
ence interval directly is not available tables such as those in Neave (1981)
indicate that for sample sizes of 10, 11 the critical value is Um = 26 for
significance at a nominal 5 per cent level. Denoting the sample values by
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x1,  x2,  . . . ,  x10 and y1,  y2, . . . ,  y11 we require the 27 largest and smallest dij = xi

– yj.  It is not essential to compute all dij, but for completeness we give these in
Table 5.1. These need not be computed manually if suitable software is available
either to determine the confidence limits directly, or even if only to compute the
required differences.

Procedure.  It is easier to compute differences manually if the sample values
are ordered. We write those for the first sample in the top row and those for the
second sample in the first (left) column. The entries in the body of Table 5.1 are
the differences between the data entries at the top of that column and at the left
of that row, e.g. the first entry –4 is 17 – 21 = –4. Note that the difference
between each entry in any pair of rows is a constant equal to the difference
between the corresponding entries in the left-hand data column; there is an
analogous constant difference between entries in pairs of columns. The largest
entries appear in the top right of the table and entries decrease and eventually
change sign as we move towards the bottom left.

A count shows 21 positive and 89 negative values whence Un = 89 and Um = 21
as found in Example 5.1. The critical value is Um = 26 for significance at least at a
5 per cent level so the lower limit for a 95 per cent confidence interval for the
median difference θ1 – θ2 is obtained by eliminating the 26 largest negative
differences; the next largest negative difference is the required lower limit. Using
Table 5.1 gives this lower limit as –13.  Similarly, elimination of the 26 largest
differences gives the upper limit –2. StatXact provides a program to perform
these computations given only the original data and quickly gives these limits.
Minitab will also compute the relevant differences.

Conclusion.  A nominal 95 per cent confidence interval for the difference θ1
– θ2 is (–13, –2) or equivalently, for θ2 – θ1 the interval is (2, 13).

Comments. 1.   If we assume normality the 95 per cent confidence interval
based on the relevant t-distribution is (–12.6, –1.9). The close agreement
between  this and  the  Wilcoxon  interval  is  heartening  because  there  is  little to  

Table 5.1  Paired differences for times taken to complete calculations.

  17   18   19   22   23   25   26   29   31   33

21   –4   –3   –2     1     2     4     5     8   10   12
24   –7   –6   –5   –2   –1     1       2     5     7     9
27 –10   –9   –8   –5   –4   –2   –1     2     4     6
28 –11 –10   –9   –6   –5   –3   –2     1        3     5
30 –13 –12 –11   –8   –7   –5   –4   –1     1     3
32 –15 –14 –13 –10   –9   –7   –6   –3   –1     1
34 –17 –16 –15 –12 –11   –9   –8   –5   –3   –1
35 –18 –17 –16 –13 –12 –10   –9   –6   –4   –2
36 –19 –18 –17 –14 –13 –11 –10   –7   –5   –3
39 –22 –21 –20 –17 –16 –14 –13 –10   –8   –6
41 –24 –23 –22 –19 –18 –16 –15 –12 –10   –8
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indicate serious nonnormality or a difference between population variances in
these data apart from a small indication that the Group B data might have a
slightly greater spread.

2.  Confidence intervals at other levels can be obtained. For example, a 99 per
cent interval is obtained by rejecting the 18 extreme differences and using Table
5.1 is easily seen to be  (–16, 1) a result confirmed by StatXact.

3. The computational process is reminiscent of that with Walsh averages given
in Section 2.2.4.

Computational aspects.   If one wishes to explore further the exact confidence
level one may examine results of hypothesis testing situations at or near the end
points of the interval, much as we did for the Wilcoxon signed rank test. This is
achieved in the case of a 95 per cent confidence interval by an appropriate
addition or subtraction to all observations in one sample and then obtaining exact
P-values for the corresponding test of zero median difference.  While StatXact
computes exact intervals some software packages may use asymptotic
approximations based on the asymptotic theory we give for hypothesis testing
in Section 5.6. For both samples moderate or large in size asymptotic
approximations are usually quite good but they may be unreliable if the samples
differ greatly in size especially when one is small.   

The appropriate point estimator of the median difference based on
the WMW procedure used above, known as the Hodges–Lehmann
estimator is the median of the differences in Table 5.1. It is easily
verified that in the above example this is –7.5.   

5.3   THE MEDIAN TEST

5.3.1   The basic test

If each population has the same median, whether or not they differ
in other respects, for each sample the number of values above (or
below) that common median has a binomial distribution with p = 2.
The median test we develop here, that proposed by Mood (1954),
does not test whether that common median, θ, say, has a particular
value, but as is also the situation in the two-sample t-test or the
WMW test, only whether it is reasonable to suppose both
populations have the same unknown median. Formally, if the sample
of m all come from populations (they need not all be the same) each
with unknown common median θ1 and the sample of n from
populations each with unknown median θ2, we test H0: θ1 = θ2

against alternatives like H1: θ1 ≠ θ2 (two-tail) or H1: θ1 > θ2  (one-
tail).

If all populations have the same median θ, then the combined
sample median, M, say, provides a point estimate of θ. The median
test examines, for each sample, how  many values are above and how
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many are below M.  If the samples are from populations with the
same median the distributions of the numbers in each above M will
be approximately binomial B(m, 1/2) and B(n, 1/2), where the relevant
probabilities are now conditional upon the numbers above M in each
sample adding to the number above M in the combined sample.
When m + n is even and no sample value equals M, in the combined
sample the numbers of values above and below M will each be
1/2(m + n).  If m + n is odd at least one sample value equals M.  In
all cases where some values equal M we suggest omitting these and
proceeding with a reduced sample.  Unless many values equal M this
is usually satisfactory.  Conditioning on the total numbers above or
below M in the combined sample leads to permutation tests that have
much in common with some procedures we develop more generally
in Chapter 9.  However, our extensive treatment of this test is
largely to illustrate principles, because there is mounting evidence
that is well summarized in Freidlin and Gastwirth (2001) that,
especially for small or unbalanced samples, the test often has low
power relative to more appropriate alternatives, so we do not
recommend its use when tests such as the WMW or other tests are
valid.

Example 5.6

The problem.  Suppose it is claimed that on average the salivary flow rate
when chewing an unflavoured gum is greater for males than for females.  To
investigate this assertion, the rate of saliva production (ml/min) was ascertained
for 7 female and 21 male adults. The rates for the two groups in ascending order
were:

    Females  0.45 0.60 0.80 0.85 0.95 1.00 1.75
    Males       0.40 0.50 0.55 0.65 0.70 0.75 0.90 1.05 1.15 1.25 1.30

        1.35 1.45 1.50 1.85 1.90 2.30 2.55 2.70 2.85 3.85

To apply the median test, the samples are pooled and the median salivary flow
rate, M, for the combined sample is determined. This can be shown to be 1.1
ml/min. None of the observed values is exactly equal to the median so there are
14 values greater and 14 less than M. For the females, there is one value greater
than M, whereas for the males there are 13 such observations. If the unknown
population medians are θ1 and θ2 respectively, an appropriate test is H0: θ1 = θ2
against H1: θ1< θ2.

Formulation and assumptions. In Sample 1, there are 6 values less than M and
only 1 greater than M. This suggests that if H0 is not true it is likely that this
sample is from a population with a lesser median than that suggested by the
pooled sample. Similarly, the fact that Sample 2 has more values above M than it
has below suggests that if H0 is not true then this sample is likely to have come
from a population with a greater median than that suggested by the pooled
sample. This suggests any departure from equality is in the direction specified in
H1. It is convenient to set out the information as in Table 5.2.
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Table 5.2   Numbers of observations above and below M in Example 5.6.
                                                                                                            

Above M Below M Total

 Sample 1 1 6 7
Sample 2 13 8 21

14 14 28
                                                                                                            

An important feature of this table is that the row and column totals and the
grand total are fixed. There are two rows and two columns of data, so such a
table is called a 2 ×××× 2 contingency table. The four data positions are often
referred to as cells. That at the intersection of the ith row and jth column is called
cell (i, j). In Table 5.2, cell (2, 1) contains the entry 13. 

The row totals are determined by the sample sizes m, n and the column totals
by the rule that M is the combined sample median. The test is based on the
permutation distribution of all possible cell entries in Table 5.2 consistent with
the marginal totals.  Since the marginal totals are fixed, knowledge of one cell
value means that all the other cell values can be determined by subtraction. It is
convenient to concentrate on the possible values in cell (1, 1) (i.e. the number of
values above M in sample 1). Suppose that a value of 3 is considered. To give the
correct marginal totals, by subtraction we find the cell entries in the body of a
table like Table 5.2 must then be

  3    4

11  10

Such an outcome is clearly more favourable to H0 than the one observed in this
example, as the proportions of observations greater than M for each sex are more
similar. Indeed, the only outcome less favourable to H0 than that observed is

   0   7 (5.2)

 14   7

This allocation and that in Table 5.2 form an appropriate ‘tail’ critical region for
assessing the evidence for H1 against H0. We need the probability associated with
this tail when H0 is true. We assume temporarily that if H0 is true then M is the
value of the common median for the two populations. This may not be true, but
it is intuitively the ‘best’ estimate of the common median to be obtained from
our data. We see below that this assumption is not critical to our argument. As in
the sign test, under H0 the probability of getting one observation above the
median in a sample of 7 is the binomial probability p1 = ( 7

1 ) (
1/2)

7; that of getting
13 above the median in a sample of 21 is p2 = ( 21

1
3   ) (

1/2)
21. These are independent

as they refer to different samples. Turning now to the column margin, in the
combined sample of 28 the probability of observing 14 out of 28 observations
above M is pc= ( 21

8
4   ) (

1/2)
28. We require the probability of observing respectively

1 and 13 observations above the median in Samples 1 and 2, conditional upon
observing 14 above the median in the combined sample. From the definition of
conditional probability this is P* = p1p2/pc.  Thus, for the data in Table 5.2,
P* = [( 71 )(

 1/2)
7 ( 21

1
3   )(

 1/2)
21]/( 21

8
4   )( 1/2)28.  The binomial probability p = 1/2 cancels out

(5.2)
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in the expression for P*. This will still happen if the binomial analogues of
p1, p2, pc are written down for any probability p; i.e. P* is independent of p.
Thus if H0 is true, we do not need to assume that M is the population median.
That P* is independent of the binomial parameter p when row and column
marginal totals are fixed has far-reaching implications in nonparametric inference.
In Chapter 9 we use this result and extensions to it in a variety of situations. To
determine a relevant tail probability we calculate P* for the configuration in
Table 5.2 and for the more extreme configuration (5.2) and add the results.

Procedure.  Evaluation of P* is tedious.  It is commonly written in an
equivalent form.  For a general 2 × 2 contingency table with cell entries

a    b

c    d

this form is  

  
P

a b c d a c b d

a b c d a b c d
*

( )!( )!( )!( )!
( )! ! ! ! !

=
+ + + +

+ + +
  (5.3)

where a! (known as factorial a) = a × (a – 1) × (a– 2) × . . . × 3 × 2 × 1 and so on.
Also 0! = 1. The factorials in the numerator of (5.3) are for the marginal totals
and those in the denominator for the grand total and the individual cell entries. For
Table 5.2, (5.3) gives P* = [7! × 21! × 14! × 14!]/[28! × 1!6! × 13! × 8!].  There is
appreciable cancellation between numerator and denominator and using a pocket
calculator it is easy to verify that P* = 0.0355. Computing P* for (5.2) gives
P* = 0.0029 (Exercise 5.3). Thus the exact P-value for assessing the evidence for
H0 against that for H1 is P = 0.0029 + 0.0355 = 0.0384.

Conclusion.  There is reasonably strong evidence against H0. In other words,
when chewing unflavoured gum females have on average a lower salivary flow
rate compared with males.

Comments  1. For a two-tail test of H0: θ1 = θ2 against H1: θ1 ≠ θ2 the
permutation distribution is symmetric; the upper tail is associated with the two
extreme outcomes

6     1 7     0

8   13 7   14

and these have the same four cell entries (in different order) and marginal totals as
those in Table 5.2 and in (5.2).  It follows they have the same associated prob-
abilities. Doubling the one-tail probability for a two-tail test, the size of the
critical region is 2 × 0.0384 = 0.0768, so there is no strong evidence against H0 at
a conventional 5 per cent significance level in a two-tail test, but the evidence
against H0 could nevertheless be used to argue a case for further experiments.

2. Clearly there are marked discontinuities in the permutation distribution,
despite there being 28 observations. Discontinuities arise partly because the
observations are split into a relatively large (21) and a relatively small (7) sample.
Because fixing the entry in one cell determines all others (to give correct
marginal totals) we say the table has one degree of freedom.  If we

and
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 Table 5.3  Exact permutation distribution for median test in 
Example 5.6.

                                                                                                            

X Probability

0    0.0029
1    0.0355
2    0.1539
3    0.3077
4    0.3077
5    0.1539
6    0.0355
7    0.0029

                                                                                                            

denote the number in the first cell by X, then X is a random variable which, in this
example, can take only the values 0, 1, 2, 3, 4, 5, 6, 7.

3. There may be a simple biological explanation for the results in the above
study.  Observations during the investigation might show that males chew more
vigorously than females and hence produce saliva more quickly.

  Computational aspects.  StatXact and Testimate and many general software
packages have specific programs to carry out this test, which is usually referred
to as the Fisher (exact) test, a test we discuss more fully in Section 9.2.1.
StatXact generates the complete permutation distribution for all possible X
values. This is given in Table 5.3, which confirms symmetry of the distribution
and illustrates the marked probability discontinuities between successive X
values. In Chapters 2 and 3 we saw that discontinuity decreased rapidly with
increasing sample size. Because we have 28 observations the level of
discontinuity here may surprise. With two or more samples discontinuities are
often quite marked if one sample is small relative to the other(s). This may make
some asymptotic results we discuss in Section 5.6 unreliable in such
circumstances.

Markedly different sample sizes (in Example 5.6 one is three times
the other) often occur in clinical trials where there may be only a
few patients with a rare illness. Then comparison is often between
responses for these patients and a much larger available ‘control’
group without that illness.

5.3.2  Confidence intervals for a median difference

Given full measurement data we may establish a confidence interval
for the difference between population medians based on the median
test permutation distribution.  Writing the true difference δ = θ2 –
θ1, a nominal 95 per cent confidence interval for δ is (d1, d2) where the
end points d1, d2 are chosen so that if we change each observation in
sample 2 (or sample 1) by more than these amounts we would reject
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H0: the medians are equal for population 1 and the amended
population 2. This is relevant because increasing or decreasing all
sample (or population) values by a constant k increases or decreases
the median by k. For given sample sizes m, n it is not difficult to
work out, especially if one has the appropriate computer software,
the numbers above the median in the amended sample 2 that will
just give significance.  We explain the procedure by an example.  

Example 5.7

The problem.  To determine whether books on management tended to be
longer or shorter than books on biology, random samples of 10 books on biology
and 12 on management were selected in Dundee University library and the
number of pages recorded for each book sampled. The numbers (arranged in order
of magnitude within each sample) were

     Biology     143  173 226  233 250  287 291  303 634  637
     Management   50  164 198  221 225  302 328  335 426  534 586  618

Determine a nominal 95 per cent confidence interval for the difference between
population medians based on the median (Fisher exact) test procedure.

Formulation and assumptions. The contingency table in this example has row
totals of 10 and 12 (the sample sizes) and column totals of 11 and 11 (numbers
above and below the combined sample median). The null hypothesis is that the
population medians for the two types of book are equal. With two tails, the median
test will indicate strong evidence against this null hypothesis at the 5 per cent
significance level if the entry in row 1 column 1 (the number above the median in
sample 1) is in a tail region of nominal size 0.025. Using a suitable computer
program it can be shown that this is the case if the number above the median in the
first sample is either less than or equal to 2 or at least 8. The actual P-value for a
cell value of 2 or 8 is 2 × 0.0150 = 0.0300 (3 per cent). If a computer program is not
available this can be shown using formula (5.3) for the contingency tables with cell
(1, 1) entries 0, 1, 2 respectively. Having established this we determine what
constant adjustment is needed to each observation in sample 2 in order to just avoid
rejecting H0 in a median test based on sample 1 and the adjusted sample 2 but
rejecting H0 for any greater adjustment.

Procedure.  Since we reject H0 if only 2 values in sample 1 exceed the joint
sample median this implies we  reject H0 if the joint sample median exceeds 303.
Since the number above the median in both samples must total 11, this implies
that for the adjusted sample 2 if we are not to reject H0, it must have 8 values
above the adjusted median. If the adjusted median is not to exceed 303 this means
the adjustment must ensure that there are 8 values at or above 303 in the adjusted
second sample, i.e. the eight largest values in the second sample must exceed 303.
Clearly this occurs if we add to all values the difference between 303 and the
eighth largest sample value in Sample 2. That value is 225, so we must add 303 –
225 = 78 to all second sample values to achieve this. This implies that if θ2 – θ1
> –78 we would reject H0. Similarly, since we reject H0 if 8 or more values
exceed the combined sample median, this implies we reject H0 if
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the joint sample median is less than 226. This means that for the adjusted
second sample, if we are not to reject H0 we must have at least 3 values at or
above 226 in that adjusted second sample. Clearly this occurs if we subtract 426
– 226 = 200 from all second sample values. This implies that if θ2 – θ1 > 200 we
reject H0.  

Conclusion.  A nominal 95 per cent confidence interval for the median
difference θ2 – θ1 is (–78, 200).

Comments.  1. As usual, at the ends of this interval we have ties at the
combined sample medians for the first sample and the adjusted second sample.
To check that we would accept H0 at the end points we must in effect perform a
test with allowance for ties at the joint median. Exercise 5.4 asks the reader to
check that we would accept H0 in such a test.

2.  The actual confidence level of the above interval is 97 per cent since the
exact P = 0.03 (see formulation and assumptions above).

3.  Assuming normality, the t-based 95 per cent confidence interval for the
mean difference is (–142.94, 172.04). This is a wider interval than that based on
median test theory. Indeed, normal theory is not appropriate for these data
because the distribution of numbers of pages is skew. The WMW based interval
is (–103, 185). While a majority of books (as on most subjects) are between 150
and 350 pages in length there are a few works of 600 or more pages and a
relatively small number below 150 pages – in practice books are rarely less than
50 pages if we exclude pamphlets and a few special tracts. Because only minimal
restrictions about the nature of the populations are needed, the median test is
reasonable when the precise population distributions are seriously in doubt. It
may however have low power for small samples.

Computational aspects. Given a program for the Fisher exact test for a 2 × 2
contingency table one can easily determine for any given m, n the number above
the median in the first sample which just gives significance, and, because there is
only one degree of freedom, all other entries in the 2 × 2 table follow
automatically. It is then, as indicated in the above example, relatively simple to
determine confidence limits by appropriate additions or subtractions from all
second-sample observations.

A modification of the median test proposed by Mathisen (1943) is
called the control median test. This is described by Sprent (1998,
Section 4.6) who also refers to an interesting application proposed
by Gastwirth (1968) of this or the median test described above that
may save resources if observations are obtained sequentially as is
often the case in studies of survival times or times to failure, a topic
we cover in another context in Section 5.5.

5.4   NORMAL SCORES

As in the one-sample case transforming ranks to give scores with
something like the characteristics of samples from a normal
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distribution is intuitively appealing. In Section 2.4.1 we referred
briefly to van der Waerden and expected normal scores. For the two
independent samples scenario corresponding to the WMW test van
der Waerden scores replace the rank r by the r/(m + n + 1)th
quantile of the standard normal distribution (r = 1, 2, . . . , m + n).
Expected normal scores may also be used but there is usually little
difference between results using these and van der Waerden scores
so we consider here only van der Waerden scores. Symmetry implies
that the mean of the m + n van der Waerden scores is zero if there
are no ties. The mean of all van der Waerden scores is not exactly
zero with ties if we use quantiles based on mid-ranks; for a few ties
the effect is negligible as adjacent quantile scores are replaced by
scores close to their mean. For ties an alternative to the mid-rank
quantile (which is the mean of the tied ranks) is to take the mean of
the quantiles corresponding to each of the ranks that are tied. In
practice the difference is usually slight except for large numbers of
ties or ties in certain positions (see Exercise 5.6). If one has an exact
permutation test program that covers the Pitman test or allows
arbitrary choice of scores this program may be used to compute
exact P-values for a test using van der Waerden scores by
substituting these scores for the original data. StatXact and a few
other packages provide a program, the normal scores test, that uses
van der Waerden scores, forming these directly from the original
data with the convention that for ties the mean of the quantiles
corresponding to the ranks that are tied (the second of the options
mentioned above) is used.

Example 5.8

The problem.  For the data for computation times given in Example 5.1, viz.

Group A 23   18   17   25   22   19   31   26   29   33
Group B 21   28   32   30   41   24   35   34   27   39   36

use van der Waerden scores to assess whether the data indicate that one layout is
superior (i.e. leads to more rapid computations).  

Formulation and assumptions.  The data are ranked and van der Waerden
scores assigned to each.  Using these scores a permutation program for the
Pitman test may be used with these scores in place of the raw data to compute
exact P-values.  

Procedure.  It is easiest to use appropriate software to generate the scores,
however they may also be obtained using tables of the standard normal
distribution.  For example, for this data set m = 10, n = 11 so that the van der
Waerden score for the datum ranked 3 (which here is the observation 19 in
Group A) is the 3/22nd quantile of the standard normal distribution, i.e. the value
of x such that Φ(x) = 3/22 ≈ 0.1364. From tables of the standard normal
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distribution this is found to be x = –1.097.  StatXact gives a two-tail P = 0.0118
for this example.

Conclusion.  There is strong evidence against the null hypothesis of equal
medians.

Comment.  The P-value is less than that obtained using the WMW procedure
and almost identical to that for a t-test. This is not surprising since the data
suggest only slight departures from normality and are of a type where one would
not have serious reservations about using a t-test. In these circumstances
although one would expect on the basis of Pitman efficiency that the Wilcoxon
test may be not quite as powerful as the t-test it would be reasonable to expect
the normal scores test to perform much like the t-test as it moulds the data to a
form with the characteristics of a sample from a normal distribution. Indeed
when sampling from normal populations that differ only in mean the van der
Waerden scores test has Pitman efficiency 1.0 relative to the t-test.

Computational aspects.  If software for computing exact P-values with van der
Waerden scores is not available an asymptotic approximation valid for large
samples is given in Section 5.6. In practice this is reasonable for samples of
moderate size because of the ‘normalizing influence’ of the transformation which
enhances the rate of convergence towards the asymptotic approximation.

5.5   TESTS FOR SURVIVAL DATA

Nonparametric tests are widely used in the analysis of survival and
failure-time data. Two characteristics of such data have stimulated
development of special tests:

• Some units are often lost to a study before the response of
interest (e.g. death of a patient or complete recovery, or failure
of a machine) occurs.

• Distributions of survival times of patients in clinical trials, or
of times to failure for components in an engineering or
industrial context are typically long-tailed or skewed to the
right.

Withdrawal of a subject before the response of interest occurs is
called ‘right censoring’ to indicate that we are losing information
about an observation towards the right tail of a distribution.
Censoring may occur at a fixed time because it is decided to
terminate an experiment before all subjects have shown the response
of interest or it may occur when a predetermined proportion or
number of units subject to a particular treatment have responded. It
may also occur because subjects withdraw or are lost to a study
before the response of interest occurs. The analysis is complicated if
censoring is in some way treatment dependent  (e.g.,  if  subjects  are
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more likely to withdraw if they are given a treatment which
produces unpleasant side-effects).

The characteristic long-tailed distribution reduces the role of the
normal distribution compared to the part it plays in many
applications. Parametric tests for survival data often assume data are
samples from exponential, Weibull or other long-tailed distributions.

In this section we discuss only briefly how these factors influence
a nonparametric approach, for analysis of survival data is a subject
that would itself quickly fill a book. Introductory surveys that
include references to more detailed work are given by Sprent (1998,
Sections 4.7–4.9) and by Hollander and Wolfe (1999, Chapter 11).

The examples in this section indicate two simple approaches used
in practice. More sophisticated methods are needed for most
advanced studies.

5.5.1   The Gehan–Wilcoxon Test

We met a sample with censored data in Example 1.2. Censoring  is
common in medical studies that involve long-term follow up of
patients after treatment as well as in some industrial contexts. Davis
and Lawrance (1989) give an example involving tyre failures. Tyres
that had not failed at the end of an experimental period were
regarded as censored observations. In a medical context censoring
may arise for one or more of the reasons discussed above. Gehan
(1965a, 1965b) proposed generalized Wilcoxon-type tests for both
one- and two-sample problems with various types of censoring. We
consider one two-sample case.

A censored observation clearly has a longer survival time than any
unit that has failed at or before the time of censoring. However,
Gehan regarded any two censored observations as giving no definite
information on survival times relative to each other. Nor did he
regard a censored observation as providing information on whether
that subject does or does not have a greater survival time than that of
a later failure.  He scored these no definite information cases as ties.  

Example 5.9.  

The problem.  We mentioned in Example 1.2 that Dinse (1982) gave survival
data for 28 asymptomatic cases as well as for the 10 symptomatic cases given in
that example. The complete data, an asterisk denoting censoring, are:

Symptomatic   49      58     75   110   112    132   151    276   281   362*
Asymptomatic   50      58     96   139   152    159   189    225   239   242

257    262   292   294   300*  301   306*  329* 342* 346*
 349*  354* 359   360* 365*  378* 381*  388*
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Test H0: survival times distributions are identical against H1: G(x) ≤ F(x) with
strict inequality for some x, where F(u), G(v) are survival time cumulative
distribution functions for symptomatic and asymptomatic cases.

Formulation and assumptions.  A one-tail test is appropriate since H1 is one-
sided.  Because of censoring we use Gehan–Wilcoxon scores.

Procedure.  The test is easily explained and carried out using analogues of the
WMW statistics Um or Un. To obtain the modified form of Un for each
observation in the first sample (symptomatic) that is a definite failure time (not a
censored observation) we count the number that survive longer in the second
sample (i.e. that fail or are censored at a later time) scoring 1 for each such case as
in the WMW test; we also score 1/2 for each unit in the second sample that is
censored earlier. For any censored unit in the first sample we count the number
of second sample units that fail after the time that item was censored and add to
this count the number of second sample items that have been censored at either
an earlier, the same or a later time, regarding each as a tie and scoring it as 1/2. The
statistic Un is the sum of all such scores taken over all first sample observations.
For the first observation 49 the score is 28 for clearly all second sample
observations represent later failures. For the second entry 58 the score is 26.5
since there are 26 later failures and one tied value. For the final entry 362* the
score is 6 since there are no second sample values that definitely have a longer
survival time but there are 12 censored units in the second sample that are each
regarded as a tie and scored as 1/2. Carrying out the process for all units in the
first sample it is easily confirmed that

Un = 28 + 26.5 + 26 + 25 + 25 + 25 +  24 + 16 + 16 + 6 = 217.5

Testimate, using an equivalent but different scoring system described in the
manual, gives the exact one-tail P = 0.0040.  

Conclusion.  There is fairly strong evidence against H0.

Comments.  1. We express H1 in terms of one distribution dominating the
other rather than as a median shift because an efficient treatment is likely to
increase life expectancy not by a constant amount for all subjects, but by
amounts which vary from subject to subject depending upon whether there is
slow or rapid recovery or perhaps just an arrest of the development of a disease.

2. All censored values in this example are at least 300; for the asymptomatic
cases survival times are sufficiently long for many patients to survive this time,
whereas only one symptomatic case does.  

3. The treatment of censored data in the Gehan–Wilcoxon test is conservative.
Peto and Peto (1972) and others have suggested stronger but realistic
assumptions about the life expectancy of units that provide only censored
observations. These often lead to more powerful tests, especially if there is
substantial censoring. One such test is described in Sprent (1998, Section 4.8)
where it is called the Peto–Wilcoxon test.

Computational aspects. StatXact includes a program for a generalized
Gehan–Wilcoxon test which differs slightly from that given here, but it usually
gives similar results. For this example it gives P = 0.0041 for a one-tail test.
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5.5.2   Savage scores and the log-rank transformation

The prevalence of long-tail distributions, often not unlike an
exponential distribution, has given that distribution a role in survival
and failure time studies almost as central as that of the normal
distribution in many other types of problem. While methods of
analysis based on the normal distribution are often moderately
robust against many minor (and even some major) departures from
assumptions, tests based on the exponential distribution are often
sensitive to even small departures from that distribution. This has
led to the development of distribution-free methods to overcome
such problems. Savage (1956) introduced a transformation – now
often referred to as the log-rank transformation –  in which ranks
are replaced by what are often known as Savage or exponential
scores.  The transformation is essentially one to expected values of
the order statistics of an exponential distribution with parameter λ =
1 (the ‘unit’ exponential distribution). If there are no ties and no
censoring in two samples of m, n observations then the Savage score
corresponding to the combined sample rank r, ( r = 1, 2, . . ., N) is

sr′ = 1/N + 1/(N – 1) + . . . +  1/(N – r + 1)

where N = m + n.   
   It is easily verified that the sum of all sr′ is N and an equivalent
score commonly used is

sr = 1 – sr′

and these latter scores sum to zero. The sums of these scores for
either sample are appropriate statistics in an exact permutation test
which may be carried out using either specific tests for these scores
or they may be substituted for the original data in a Pitman or
arbitrary score permutation test program. StatXact includes a
program that calculates scores automatically for a given data set
making appropriate modifications for ties or censored data. We do
not discuss these aspects here but they are covered in some detail in
Sprent (1998, Section 4.9).

Dinse (1982) and Dinse and Lagakos (1982) have discussed
estimation problems for incomplete survival data. Emerson (1982)
and Brookmeyer and Cowley (1982) discuss confidence intervals for
the median when data are censored. Woolson and Lachenbruch
(1983) consider analysis of covariance with censored data and
Hanley and Parnes (1983) consider censoring in multivariate
distributions from a nonparametric viewpoint.
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Other papers dealing with various refinements in analysis of
censored data include Woolson and Lachenbruch (1980, 1981),
Woolson (1981), Dinse (1986), Albers and Akritas (1987), Davis
and Lawrance (1989), O’Quigley and Prentice (1991) and Babu,
Rao and Rao (1992), a list that is indicative rather than exhaustive.

When there is uncertainty about which of several tests ranging
from WMW tests to those using Savage scores is most appropriate
Gastwirth (1985) proposed a test that is robust over a family of
models and called them maximum efficiency robust tests (MERT).
This and a related test are further considered by Freidlin, Podgor
and Gastwirth (1999). StatXact has an option for MERT tests.   

When we wish to test equality of centrality but make no
assumption of equal spreads the situation is analogous to that of the
classic Behrens–Fisher problem of testing for equality of means
given samples from two normal distributions with different
unknown variances. This more general problem has been considered
by Pothoff (1963), Fligner and Rust (1982) and others.

5.6   ASYMPTOTIC APPROXIMATIONS

There are simplified formulae for asymptotic results for the WMW
test without ties, but it is convenient to first introduce asymptotic
results valid for more general scoring systems. These cover not only
mid-ranks for ties but also apply to the rank transformations
introduced in Sections 5.4 and 5.5, including cases where data are
censored.  In all cases we denote the score (rank, tied rank, Savage
score or whatever) for the ith ordered observation in the joint
sample by si. If the sample sizes are m, n and T denotes the sum-of-
scores statistic based on the sample of m, then the general theory for
the relevant permutation distribution gives, after some
straightforward but tedious applications of standard results, the mean
value E(T) and the variance Var(T) of T to be

( ) ( )E T
m

m n
s j=

+ (5.4)

( ) ( )Var  =  T
mn

m n m n
s

m n
s

j j
( )( )+ + −

−
+1

12 2

(5.5)

where summations are over all j from 1 to m + n.  For large m, n
( )

Z
T T

=
− E

 Var (T)
(5.6)
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has approximately a standard normal distribution. For the WMW
test with no ties setting T = Sm (5.6) reduces to

Z
 mn(m+n+1)/12
Sm

_1
/2 m(m+n+1)= (5.7)

A continuity correction in the ‘no-tie’ case has little practical effect
for large m and n, but if used the correction is to add 1/2 to Sm if Z is
negative and to subtract 1/2 if Z is positive. If one prefers to use Sn

the only alteration needed in (5.7) is to interchange m and n
throughout (which does not alter the denominator). If one uses the
Mann–Whitney statistic the numerator of (5.7) is modified giving

Z
U mn

mn m n
m=

−

+ +

1/ 2

1 12( ) /
(5.8)

If there are ties and we use mid-rank scores the numerators, but not
the denominators, of (5.7) and (5.8) are unaltered. Some writers
(e.g. Daniel, 1990, p. 94) give rules for modifying the denominator,
but with modern calculators or computers it is easy to use (5.6)
directly where the sj are mid-rank scores. Unless there are many ties
the effect of these is small.  As mentioned above, we may also use
(5.6) with appropriate scores for large-sample tests with van der
Waerden scores, Gehan–Wilcoxon scores or Savage scores. StatXact
and other packages provide such asymptotic approximations for use
when samples are too large for exact tests.

Example 5.10

The problem.  Ages at death for members of two clans (see appendix) in the
Badenscallie burial ground (arranged in ascending order) are:

McGamma 13 13 22 26 33 33 59 72 72 72 77
78   78 80 81 82 85 85 85 86 88

McBeta   0 19 22 30 31 37 55 56
66 66 67 67 68 71 73 75
75 78        79 82 83 83 88 96

Use the WMW large-sample approximation to test H0: the populations are
identical against H1: the population medians differ.  

Formulation and assumptions. With sample sizes 21, 24 a large-sample
approximation should suffice. To adjust for ties we require mid-ranks.

Procedure.  The appropriate mid-ranks are:
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McGamma   2.5   2.5   5.5   7 10.5 10.5 15 23 23
23 28 30 30 33 34 35.5 40 40

  40 42 43.5

McBeta  1   4   5.5   8  9 12 13 14 16.5
16.5 18.5 18.5 20 21 25 26.5 26.5 30
32 35.5 37.5 37.5 43.5 45

While one may use either S or U, once the ranks are recorded it is probably as
easy to use S. For the McGamma’s we easily find Sm = 518.5. Ignoring the effect
of ties and using (5.7) gives

Z = (518.5 – 483)/√1932 = 35.5/43.95 =  0.81.

We leave it as an exercise to show that using (5.5) to compute the variance in
formula (5.6) reduces the denominator 43.95 given above only to 43.92,
demonstrating the trivial effect of just a few ties.

Conclusion.  Since P = Pr(|Z| > 0.81) = 0.418 there is no plausible evidence
against the hypothesis of identical population medians.

 Comments.  1. For both m, n greater than 20 one expects asymptotic results
to agree closely with those for the exact WMW permutation test.  Here the exact
two-tail probability is P = 0.426.

2.  As in Example 5.9 we might argue that rather than H1 specifying a median
shift a hypothesis of dominance of one distribution over the other may be more
appropriate on genetic grounds. Inspection of the data gives a slight hint that we
may have a generalized Behrens–Fisher type situation of the type described at
the end of the previous section; this will reduce the power of the WMW test.

Computational aspects.  With efficient algorithms computation of the exact
permutation distribution tail probability in this case takes only seconds on most
PCs but as we have pointed out above the asymptotic results are nearly as good
for samples of this size and there may seem little point in calculating exact
probabilities when an asymptotic result suffices. Of particular interest when
using an asymptotic result is whether a reasonable fit in the tails is obtained.  For
the case m = 21, n = 24, if Sm = 641 the exact test one-tail probability is 0.0001
and the asymptotic probability is 0.0002; if Sm = 557 the corresponding
probabilities are 0.0317 and 0.0311.   

If an approximate 95 per cent confidence interval is required for
large m, n the value of U giving the relevant number of extreme
differences xi – yj in a table similar to Table 5.3 is obtained by
setting Z = –1.96 and substituting the values of m, n in (5.8). In
practice, for large m, n this value of U will be large and a computer
program will be needed to get the required limits. Minitab and
several other packages provide a program to give all differences.  

Asymptotic approximations for the median test are not required if
software for the Fisher exact test is available. If such software is not
available an asymptotic form of the Fisher exact test may be based
on the chi-squared test in a way described in Section 9.2.2.
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5.7   POWER AND SAMPLE SIZE

In the light of the discussion in Section 4.3 for single samples it is
not surprising that power and sample size results for the median test
and the WMW test are not distribution-free.  Not unexpectedly, the
situation for the WMW test is more complicated than that for the
median test because the latter is an extension from the sign test and
therefore essentially only involves binomial distributions whereas
the WMW test involves the distribution of ranks which may be
complicated under H1.  We consider the median test first.

5.7.1  Power and sample size for the median test

The hypotheses only involve possible differences between unspec-
ified population medians θ1 and θ2.  If we denote this difference by
δ = θ2 – θ1  then the null-hypothesis is H0:δ = 0 and the median test
is equivalent to testing whether the samples support a hypothesis that
the probability that a sample value is above the common median is
p = 1/2 for each sample.  If we use the combined sample median as
our estimate of the common median then under H0 the probability is
only approximately p = 1/2 for reasons indicated in Section 5.3.
Under an alternative hypothesis H1 specifying some value δ ≠ 0 the
probabilities p1, p2 for sample values to lie above the combined
s a m p l e  m ed i a n  w i ll  b e  u n e qu a l  b u t  e s t i m a t i on  o f  p 1 ,  p 2  a n d 
t h e  interpretation of the relationship between the combined sample
median and the two population medians depends on both the nature
of those populations and the relative sample sizes.  

The combined sample median is only easy to interpret if samples
are from populations that differ, if at all, only by a median shift.
The interpretation is simplest when m = n. Then if H1 specifies a
fixed difference δ between the medians, i.e. H1: θ2 – θ1 = δ it is
easily seen that the combined sample median is an intuitively
reasonable estimator of a constant midway between _2 and _1, i.e. an
estimator of  θ1 + 1/2δ = θ2 – 1/2 δ. Figure 5.1 shows probability
density functions for two arbitrary distributions that differ only in
their medians θ1, θ2. The dotted vertical line PM meets the x-axis at
the point M where θ1 + 1/2δ = θ2 – 1/2δ.  If we now assume that under
H0 the common value of the median is θ1 and the common
probability d e n s i t y  fu n c t i o n  f ( x)  i s  c o m p le t e l y  d e f in e d  w e  a r e 
n o w  a b l e  t o 
calculate the approximate power of the median test under these
restrictive assumptions by computing a probability p1 that under H1 a
sample value from the specified distribution with median θ1 takes a
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Figure 5.1  Probability density functions for two distributions that differ only by
a shift in median or mean. The point M lies midway between the population
medians θ1, θ2 and is the median of a population consisting of an equal mixture
of the two populations. The combined sample median provides an estimate of
this point if both samples are of equal size m = n.  

value greater than θ1 + 1/2δ.  Similarly, p2 is computed for a similar
distribution with the median shifted to  θ1 + δ. Programs are now
fairly readily available for power calculations for this situation when
we have assigned median shifts for completely specified dis-
tributions. We illustrate the method in Examples 5.11 and 5.12.
However this approach is unrealistic in many practical situations
where we are likely to use the median test, for these are conditions
where a WMW test may in general be more powerful.  

In more complicated situations where a median shift is the only
hypothesized difference a more general approach based on order
statistics may be used. However, here again some knowledge of the
precise form of the distribution is required. The method is outlined
by Gibbons and Chakraborti (1992, Section 7.4) who also give an
asymptotic approximation available for unequal sample sizes.  

An alternative approach to obtaining the sample size required to
obtain a given power that is probably a reasonable approximation if
m = n is to use any available program to work out the sample size
for a corresponding t-test with the required power and to adjust on
the basis of the Pitman efficiency relative to the t-test where this is
known. This is discussed briefly in the comments on Examples 5.11
and 5.12.  

Example 5.11

The problem.  For samples of size 20 from each of two normal distributions
with  standard deviation 2 and unknown medians θ   1,  θ2  find  the  power  of  the

Y

X
_20 M_1

P
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median test of H0:θ2 = θ1 against H1:θ2 = θ1 + 1 when the probability of a type I
error is α  = 0.05.   What equal sample sizes would be needed to ensure power of
at least 0.80?

Formulation and assumptions.  Under H0 the rows in the 2 × 2 table for the
Fisher exact test in Section 5.3 may be considered as the number of positive and
negative outcomes in independent samples each of size 20 when sampling from
binomial distributions for which the p are equal with approximately the value
p = 1/2. Under H1 the probability that any value in the sample from the first
population has a value greater than θ1 + 1/2 is given by p1 = Pr(X > θ1 + 1/2) where
X has a N(  1, 4) distribution and this is approximately the probability that a
sample value from this distribution takes a value greater than the combined
sample median. Similarly, under H1 the probability that any value in the sample
f r o m  t h e  s e c on d  po p u l at i o n h a s a  va l u e  g r e at e r  t h a n θ 1  + 1/2 i s  g i v en  b y 
p2 = Pr(X > θ1 + 1/2) where X has a N(θ1 + 1, 4) distribution and this is
approximately the probability that a sample value from this distribution takes a
value greater than the combined sample median. As a consequence of the
symmetry assumptions it is easily verified that p2 = 1 – p1. Approximate power
and sample size determinations now reduce to considering those for the problem
o f  t e s t i n g  H 0 :  p 1  =  p 2 =  1/2 ag a i n s t  H 1 :  p 1 , p 2  t a k e  t h e  va l u e s  c o m p u t e d 
w h e n   H1: θ2 = θ1 + 1 holds. Computer software exists for the latter test giving
either exact or asymptotic approximations.

Procedure. Clearly, for the first population, since X is N(θ1, 4) it follows that
Z = (X – θ1)/2 has a standard normal distribution.  Thus p1 = Pr(X > θ1 + 1/2)
= Pr(Z > 0.25) = 0.4013.  Since p2 = 1 – p1 this implies p2 = 0.5987, which may
be verified directly. We used the program in StatXact for power calculations for
the Fisher exact test for comparing two binomials. This provides both an
asymptotic estimate of power or an option for exact computation. For n = m =
20 for the test considered here the program gives an exact power 0.22. Larger
samples are required to achieve power 0.80. If software is not available to
estimate the sample size a trial and error approach is needed. For m = n = 100
StatXact gives a power 0.85.  For n = m = 90 the required power 0.80 is
achieved.  

Conclusion.  For m = n = 20 the power is 0.22. Samples of size m = n = 90
are required for power 0.80.  

Comments.  1.  Since the samples are from normal distributions differing only
in mean the optimal test is a t-test and for the situation in this example the
relevant computations (available in many statistical packages) indicate m = n = 51
are the sample sizes needed to attain a power 0.8. This is broadly in line with the
expected size based on the Pitman efficiency of 0.64 for the median test when
the t-test is optimal. If we assume the Pitman efficiency is reasonable for the test
under consideration this would suggest the sample size 51/0.64 = 80
approximately. However it should be kept in mind that this is only a limiting
result concerning the power for small departures independent of the choice of α,
β and that appreciable variations from this estimate are possible for finite
samples, specific alternatives and particular choices of α, β. However, using a
sample size based on the relevant Pitman efficiency will usually give an
indication of the size needed to give reasonable power in a practical context
unless samples are small or unbalanced.
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2. The theory behind power and sample size computations for the Fisher
exact test on which the results obtainable from StatXact are based is described
by Mehta and Patel (1999, Chapter 25).   StatXact computes an unconditional
power that ignores the restriction implicit in the median test that numbers of
observations above and below the combined sample median are fixed.  In practice
this unconditionality may tend to overestimate the power of this particular test
but in our experience this overestimation is only slight in the context here.

3. The restriction to m = n is not essential to the binomial comparison
problem but it is needed to induce the property that the sample median is a
reasonable estimate of θ1 + 1/2  . This in turn depends on the assumption that
samples come from identical distributions apart from possible differences
between medians. Relaxation of these assumptions changes the function of θ1 and
θ2 that is estimated by M.

4. In the light of common uncertainty about the exact nature of the
populations being sampled asymptotic power calculations for comparing two
binomials available in many software packages will often suffice for obtaining
sample sizes needed to give substantial power since these sample sizes are often
fairly large and an approximate sample size is often all that is required.  

Example 5.12

The problem.  For samples of size 20 from each of two double exponential
distributions with standard deviation 2 and unknown medians θ1, θ2 find the
power of the median test of H0: θ2 = θ1 against H1: θ2 = θ1 + 1 when the
probability of a type I error is α = 0.05. What equal sample sizes would be
needed to ensure power of at least 0.80?

Formulation and assumptions. As in Example 4.6 a double exponential
distribution with mean _ and standard deviation 2 has frequency function

f(x) = [1/(2√2)]exp[–|(x – _)|/√2]   (5.9)

Using arguments similar to those in Example 5.11 under H0 the rows in the 2 × 2
table for the Fisher exact test in Section 5.4 may be considered as the number of
positive and negative outcomes in independent samples each of size 20 when
sampling from binomial distributions for which the p are equal with
approximately the value p = 1/2. Under H1 the probability that any value in the
sample from the first population has a value greater than θ1 + 1/2 is given by
p1 = Pr(X > θ1 + 1/2) where X has a double exponential distribution given by (5.9)
with mean θ1 and this is approximately the probability that a sample value from
this distribution takes a value greater than the combined sample median.
Similarly, under H1 the probability that any value in the sample from the second
population has a value greater than θ1 + 1/2 is given by p2 = Pr(X > θ1 + 1/2) where
X has a double exponential distribution with mean θ1 + 1 and this is
approximately the probability that a sample value from this distribution takes a
value greater than the combined sample median. Because of symmetry it is easily
verified that as in the previous example p2 = 1 – p1. Approximate power and
sample size determinations now reduce to a consideration of those for the
problem of testing H0: p1 = p2 = 1/2 against H1: p1, p2 take the values computed
when θ2 = θ1 + 1.
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Procedure.  For the first population sampled p1 under H1 is easily computed
by integrating (5.9) over the interval (θ + 1/2, ∞) where θ = θ1 (see Exercise 5.12).
This gives  p1 = 0.3511. Since p2 = 1 – p1 this implies p2 = 0.6489, which may be
verified directly by integrating (5.9) over the interval  (θ + 1/2, ∞) where now
θ = θ1 + 1. The StatXact program used in Example 5.11 gives for n = m = 20 for
the test considered here an exact power 0.45. Larger samples will be needed to
achieve power 0.80. If no software is available to estimate the sample size
directly a trial and error approach is needed. For m = n = 40, StatXact gives a
power 0.79.  For n = m = 41 the required power 0.80 is achieved.  

Conclusion.  For m = n = 20 the power is 0.45. Samples of size m = n = 41
are required for power 0.80.  

Comments.  1. The t-test is no longer optimal so a direct comparison is
inappropriate. However, in view of its non-optimality the t-test would require a
larger sample size to achieve the same power as it would have for the
corresponding normal test, where, as indicated in Comment 1 on Example 5.11
we require m = n = 51 to attain a power 0.8, indicating, in line with the Pitman
efficiency of 2.0 relative to the t-test that the median test is preferable here.  

2.  Comments 2, 3 and 4 on Example 5.11 are also relevant here.
3.  Although the median test has higher Pitman efficiency than the WMW test

for double exponential distributions differing if at all only in medians several
authors have indicated that for small or unbalanced samples (i.e., samples of very
different sizes) the median test may not have as high a power as the WMW test
for some alternatives specified in H1.

5.7.2 Power and sample size for the WMW test

The added complexities of power and sample size computations for
the Wilcoxon signed-rank test relative to the sign test carry over to
the WMW text relative to the median test.  We consider here only an
approximation due to Noether (1987a) similar to that given for the
signed-rank test in (4.3) for determining the equal sample sizes to
ensure a given power when testing for a median shift only in
otherwise identical distributions (which need not be symmetric).

The analogous formula to (4.3) is

( )
( )

n
z z

p
∪

+

−
α β

2

1

2
6  1

2
       (5.10)

where p1 = Pr[(Y – X) > 0] where we sample from populations of
random variables X, Y that differ only in medians and n = m is the
common sample size. The other terms have the same meaning as in
(4.3). The distribution of Y – X is of course dependent on the nature
of the distributions of X and Y and is in general obtained by standard
distribution theory for change of variables. In simple situations like
that when X, Y are both normally distributed p1 is easily computed as
we see in the next example.
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Example 5.13

The problem. Samples of equal size n are to be taken from two normal
distributions each with standard deviation 2 and unknown medians θ1, θ2. Use
(5.10) to estimate n so that the power of the WMW test of H0: θ2 = θ1 against
H1: θ2 = θ1 + 1 is at least 0.80 when the probability of a type I error is α = 0.05.  

Formulation and assumptions. Relevant values of zα, zβ are obtained from
tables or using appropriate software. Standard normal distribution theory tells us
that Y – X is in this case distributed N(1, 8) whence p1 is easily obtained.
Relevant values are substituted in (5.10).

Procedure.  We leave it to the reader (Exercise 5.13) to show that zα = 1.645,
zβ = 0.842 and p1 = 0.6381, whence substitution in (5.10) gives n ≈ 54.05.

Conclusion.  Rounding up the result suggests samples of size 55 are needed to
attain the required power.

Comment.  These results for the normal distribution are consistent with the
known Pitman efficiency of 0.95 relative to the t-test in this case because we
noted in Example 5.11 that the t-test sample sizes needed for this power
are n = 51, giving a relative efficiency for the WMW test of 51/55 ≈ 0.93, in
close agreement with the Pitman efficiency 3/=.

Hollander and Wolfe (1999, Section 4.1) generalize (5.10) to
unequal sample sizes and discuss some further results for asymptotic
approximate power calculations.  

5.8   TESTS FOR EQUALITY OF VARIANCE

Historically, tests about differences between medians or means have
dominated inference for two sample problems, but there is
increasing interest in differences in variation or spread which may or
may not be associated with differences in means or medians. In the
field of quality control, for example, this reflects consumer demand
that not only should all products of a particular kind perform well
on average but that they should also be consistently reliable.

Care is needed in testing these characteristics when we drop an  
assumption of normality. In the two independent sample situation
when we assume normality the appropriate statistic to test equality
of population variances, irrespective of whether the means are equal,
when we have samples x1, x2, . . . , xm and y1, y2, . . . , yn is the well-
known

F
x x m

y y n
i

j
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which has an F distribution with m – 1, n – 1 degrees of freedom
under the hypothesis that the population variances are equal,
irrespective of whether the means are equal.

The normal distribution family is the best-known example of
what are called location-scale parameter families. These are
families of distributions of random variables X, Y having location
parameters θ1, θ2 and scale parameters ϕ1, ϕ2 that imply that U  =
(X – θ1)/ϕ1 and V = (Y – θ2)/ϕ2 are identically distributed. For the
normal distribution in conventional notation we have θi = µi, and ϕi =
σi (i = 1, 2) and U, V each have a standard normal distribution. We
shall see below not only that we may be interested in spread
differences between members of families of distributions that are not
of the location-scale parameter form, but also that even when we
have such families many of our tests for differences in dispersion
assume either that θ1 = θ2 or that we know the value of the
difference δ = θ2 – θ1.  The conventional F statistic relevant to
normal distributions is almost unique in that it provides a test for
differences between the population spreads or dispersions without
needing to know the values of the population location parameters.  

So far in this chapter we have considered tests basically designed
for shifts in means or medians, but we have pointed out that several
of the tests are also relevant to tests of dominance where the
alternative hypothesis is of the form H1:G(x) ≤ F(x) with strict
inequality for at least some x.

This is important in the context of dispersion because for many
distributions even when they belong to the same family it is
impossible to have a shift in mean or median without altering other
distribution characteristics such as variance. A simple example is the
exponential distribution with parameter λ. The probability density
function is f(x) = λe–λx, x ≥ 0, and E(X) = 1/λ, Var(X) = 1/λ2 and
med(X) = ln(2/λ), thus a change in λ changes the mean, median and
variance reflecting a dominance situation.   The parameter λ is often
referred to as a scale parameter.

Where both centrality and spread are influenced by parameter
changes there are difficulties in developing completely distribution-
free tests for differences in variance or more general measures of
spread. As already indicated tests for differences in variance require
an assumption that the means or medians are equal or that we know
the difference between them. These points are discussed more fully
in Sprent (1998, Section 6.5), Hollander and Wolfe (1999, Sections
5.1 and 5.2) and by Gibbons and Chakraborti (1992, Chapter 10).
Most tests for a difference in spread either implicitly or explicitly
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assume samples are from populations with identical medians, or that
the difference between medians is known and that an adjustment has
been made to align the samples by addition or subtraction of that
difference to the data for one of the samples.

If the sample values, or if a test, indicate equality of medians is
untenable it is often suggested that one should adjust sample values
to align the sample medians. This has intuitive appeal, and is often a
sensible thing to do, but examples exist to show that it may
sometimes be counter-productive and in general it will tend to give
rather too many small P-values.  

Here we concentrate mainly on tests that assume population
means or medians are identical or can be made so by an addition to
or subtraction from one set of sample values, but in practice such
assumptions are often at best approximations.

5.8.1   The Siegel–Tukey test

This test proposed by Siegel and Tukey (1960) is easy to carry out
but like many nonparametric tests for spread or dispersion, is not
very powerful. The Pitman efficiency relative to the F-test when
samples are from normal distributions is only 0.61. The basic idea
behind it is that if two samples come from populations differing only
in variance, the sample from the population with greater variance
will be more spread out. If there is a known centrality difference as
well we first align the samples by subtracting the median difference
from all values in one sample, but in practice this difference is
seldom known. If an unknown centrality difference is assumed a
common practice is to align the populations by shifting the median
(or mean) of one sample to coincide with that of the other sample.
This requires an appropriate addition to or subtraction of a constant
for all observations in one sample. The sample variances are
unaltered by this change, but as indicated above the procedure is not
optimal unless the difference between sample medians happens to
equal that between the population location parameters in a location-
scale model situation. However, the change usually works
reasonably for this test if there is no strong sample evidence of
differences in skewness.  If we now arrange the combined samples
in order and allocate the rank 1 to the smallest observation, 2 to the
largest, 3 to the next largest, 4 and 5 to the next two smallest, 6 and
7 to the next two largest, and so on, the sum of the ranks for the
sample from the population having the greater variance should be
smaller than if there were no difference in variance.
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Example 5.14

The problem. Davis and Lawrance (1989) give (as part of a larger data set
collected for different purposes) the time in hours to two different types of tyre
failure under similar test conditions. Failure type A is rubber chunking on
shoulder and failure type B is cracking of the side wall. Do the following data
suggest the population variances may differ?

  Type A   177  200  227  230  232  268  272  297
Type B     47  105  126  142  158  172  197  220  225  230  262  270  

    Formulation and assumptions. We align the medians of the two samples, then
allocate ranks as described above. The lesser sum of ranks associated with one
sample is calculated and tested for significance as in the WMW test. Our null
hypothesis is that the variances are identical.  Without further information a two-
tail test is appropriate.

Procedure.  The first sample median is 1/2 (230 + 232) = 231 and the second
sample median is 184.5. We align for location by subtracting 231 – 184.5 = 46.5
from all first-sample values and work with the adjusted samples

Type A (adjusted)   130.5  153.5  180.5  183.5  185.5  221.5  225.5  250.5
Type B                      47      105     126     142     158    172  

                   197      220     225     230     262    270

Assigning ranks using the scheme outlined above is easier if we arrange all sample
values in ascending order before allocation. The result of this operation is given in
Table 5.4 where type A (adjusted) values are indicated in bold. The sum of the
ranks for type A faults is Sm = 106, giving Um = Sm – _1/2m(m + 1) = 70 and Un =
mn – Um = 26. Tables for the WMW test gives U = 22 as the critical value for
significance at a nominal 5 per cent level in a two-tail test for samples of 8 and
12 observations. StatXact provides a program for an exact Siegel–Tukey test and
this indicates that the exact two-tail P-value corresponding to Sm = 106 is P =
0.0979.

Conclusion.  There is only weak evidence against the hypothesis of equal
variance; not sufficient to reject H0 at a nominal 5 per cent significance level.

Comments.  1. For these data the WMW test two-tail P = 0.0268. The
Siegel–Tukey program in StatXact does not adjust the sample medians to be
equal.  This must be done manually or by means of the program editing facility.  

2.  We ‘relocated’ the type A data by equating sample medians. Since variance
is based on squared deviations from the mean, equating means has intuitive
appeal. In practice, which of these alternatives we choose usually makes little
difference.   The median is easier to calculate – hardly a justification with

Table 5.4   Allocation of ranks for Siegel–Tukey test; type A (adjusted) in bold.
________________________________________________________________

Value     47 105 126 130.5 142 153.5 158 172 180.5 183.5
Rank     1     4     5     8     9   12   13   16   17   20

Value 185.5 197 220 221.5 225 225.5 230 250.5 262 270
Rank   19   18   15   14   11   10     7     6     3     2
________________________________________________________________
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modern computing methods — but it may also be more robust if there is some
skewness. Lehmann (1975) recommends an alignment based on the
Hodges—Lehmann estimator of the median difference.

Computational aspects.  After ranks are allocated any program that computes
exact probabilities associated with the permutation distribution for the WMW
test may be used if a dedicated program such as that in StatXact is not available.

5.8.2   Ansari—Bradley type tests

Several almost equivalent tests based on dispersion of ranks in each
sample about the combined sample mean rank were formulated
about the same time. If there are N = m + n observations and these
are ranked 1 to N in ascending order as in the WMW test procedure
the mean rank is 1/2(N + 1) and the deviation of rank i from this
mean is di = i — 1/2(N + 1). Clearly the sum of these deviations over
all N ranks is zero.  If the spread in one sample is greater than that
in the other low and high ranks tend to dominate in that sample.
Since the di corresponding to low and high ranks have opposite signs
the magnitude of the di in each sample are relevant and these are
reflected by taking either absolute values of the di or the squares of
the di as scores.  The sum of these for one sample is an appropriate
score to use in a Pitman type permutation test for a difference in
spread under an assumption that the population medians are
identical.

Tests that are in essence equivalent and use the sum of the |di|
were proposed with minor variations by Freund and Ansari (1957),
David and Barton (1958) and by Ansari and Bradley (1960).
Gibbons and Chakraborti (1992) refer to them collectively as the
Freund—Ansari—Bradley—David—Barton test.  While any test program 
for the Pitman test may be used with the appropriate scores StatXact
has a program that calculates scores given the original data and uses
the name Ansari—Bradley test. Mid-ranks are widely used for ties.
This does not alter the mean rank but affects some of the scores.   

Table 5.5  Ranks and scores for an Ansari—Bradley test in Example  5.15; type A
(adjusted) in bold.
_________________________________________________________________

Value     47 105 126 130.5 142 153.5 158 172 180.5 183.5
Rank      1     2     3     4     5     6     7     8     9   10
Score        9.5     8.5     7.5     6.5     5.5     4.5     3.5     2.5     1.5     0.5

Value 185.5 197 220 221.5 225 225.5 230 250.5 262 270
Rank   11   12   13   14   15   16   17   18   19   20
Score       0.5       1.5       2.5       3.5       4.5       5.5       6.5       7.5       8.5       9.5
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Example 5.15

The problem.  Apply the Ansari—Bradley test to the data in Example 5.14. 

Formulation and assumptions. The test assumes the medians of both
populations are equal. We align the data as we did in Example 5.14 by
subtracting 46.5 from all first sample values and work with the adjusted sample
values. The combined sample data are ranked and the |di| are summed over one
sample for use in a Pitman type permutation test or a dedicated Ansari—Bradley
test program.

Procedure. The original data after adjustment and the ranks and the scores |di|
are given in Table 5.5. The type A data are shown in bold.   

The sum of the scores  |di| for type A is S = 6.5 + 4.5 + 1.5 + 0.5 + 0.5 + 3.5
+ 5.5 + 7.5 = 30. Using either a program for a Pitman test with these scores or a
dedicated Ansari—Bradley program gives a two-tail P = 0.1437.

Conclusion.  There is little evidence of a difference between variances.

Comments.  1.  The P-value here is slightly greater than that for the
Siegel—Tukey test.

2. The effect of lining up the samples on the basis of sample medians means
that the test is not exact in the sense that there is a tendency to give too many
small P-values. Simulation studies have confirmed this tendency although the
exact P-values are approached for very large samples.  

3.  For ties it is usual to use mid-ranks.

The alternative to using the |di| as scores is to use the squared di

in a test proposed by Mood (1954) otherwise analogous to the
Ansari—Bradley test and called the Mood test. StatXact provides a
program for this test and for the data considered in Examples 5.14
and 5.15 the exact test indicates P = 0.1293. Asymptotic approx-
imations valid for large samples are available for the Ansari—Bradley
test and for the Mood test.  

5.8.3  The Conover squared-rank test for variance

If the means of X, Y are respectively µx, µy then equality of variance
implies E[(X — µx)

2] = E[(Y — µy)
2], where E[X] is the expectation

of X.
Conover (1980) proposed a test for equality of variance based on

the joint squared ranks of squared deviations from the means, i.e.
the latter are (xi — µx)

2, (yi — µy)
2. The population means are seldom

known but again we assume it is reasonable to replace them by their
sample estimates mx, my. We do not need to square the deviations to
obtain the required rankings because the same order is achieved by
ranking the absolute deviations |xi  — mx|, |yi — my|. We rank these
deviations and use as scores squares of the ranks. Our test statistic T
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is the sum of the scores for one of the samples. For large samples Z
given by (5.6) has a standard normal distribution. Conover (1980)
gives quantiles of T for a range of sample sizes in a ‘no-tie’
situation. Programs generating the permutation distribution for
arbitrary scores may also be used if exact tail probabilities are
required and StatXact provides a specific program for the test.

Example 5.16

The problem.  For the data in Example 5.14 use the squared-rank test for
equality of variance.

Formulation and assumptions.  We require deviations of each observation
from its sample mean. The absolute deviations are then ranked, the ranks squared
and the statistic T is calculated.

Procedure.  Denoting type A sample values by xi and type B sample values
by yi we find mx = 238 and my = 180 (it suffices to express these to the same
order of accuracy as the data, here to the nearest integer). We compute the
absolute deviations for each sample value, e.g. for the type A observation 227,
the deviation is 227 – 238 = –11, giving an absolute deviation of 11. Table 5.6
gives the ordered absolute deviations for the combined samples together with
squared ranks (squared mid-ranks for ties). Type A deviations are in bold.

The sum of the bold squared ranks is T = 706.5. With squared ranks as scores
we find from (5.6) that Var(T) = 78 522.49. Also (5.4) gives E(T) = 1147.6,
whence from (5.6), Z = (706.5 – 1147.6)/280.219 = –1.574, but using an exact
program such as that in StatXact, if available, is preferable to an asymptotic
result.  For these data StatXact gives a two-tail P = 0.1267.

Conclusion.  The evidence against H0 is not strong.

Comments.  1. Calculating sample means to one decimal place would avoid
data ties, but this makes little practical difference to the calculated P-value
although the value of T may be somewhat different especially if high ranks are
involved in ties.  For example if ranks 17 and 18 are replaced by a tied value 17.5
and only one of these tied values is included in T it contributes 306.25 whereas if
17 replaces that tied value it contributes only 289.  StatXact avoids ties in this
example and gives a T = 720 (compared to our 706.5).   If ties occur StatXact in
this and some other programs deals with them slightly differently from

Table 5.6  Absolute deviations (Adev) and squared ranks (Sqr), Example 5.16;
type A in bold.
                                                                                                                                    

Adev 6 8 8 11 17 22 30 34 38 38
Sqr 1 6.25 6.25 16 25 36 49 64 90.25 90.25

Adev 40 45 50 54 59 61 75 82 90 133
Sqr 121 144 169 196 225 256 289 324 361 400
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the way we do when we use mid-ranks. The method is given in the StatXact
manual, but in practice the two methods usually lead to similar results.

2.  Whereas the Siegel–Tukey test with median alignment would establish
significance at the formal 5 per cent level in a one-tail test if that were
appropriate, the Conover squared-rank test just fails to do so. While the test
appears in this case to be less powerful than the Siegel–Tukey test, it is
reasonably robust. The results are broadly in line with those for the
Ansari–Bradley test which in fact uses a scoring system not very different from
that for the Siegel–Tukey test.

3.  We could have used ranks of absolute deviations rather than squared ranks.
In that case we essentially have a WMW test (see Exercise 5.8). Conover (1999,
Section 5.3) reports that this leads to a less powerful test than the squared-rank
test.

  Computational aspects. The Conover scores may be used in any permutation
test program for a Pitman-type test if a dedicated program is not available.

5.8.4   The Moses test of extreme reactions

The tests we have described so far have basically considered spread
or dispersion as a ‘variance’ type of characteristic. Suppose that we
have two samples, A and B, and that Sample A has a smaller range
of values than Sample B. One might then wish to investigate
whether extreme values (e.g. for reaction or response times) are
more likely to occur in the population from which Sample B was
drawn.

Moses (1952) proposed a test of extreme reactions. The medians
of the two associated populations are assumed to be equal. The null
hypothesis is that extreme values are equally likely to occur in both
populations, the alternative hypothesis being that extreme values are
more likely to occur in the population from which the sample with
the larger range was drawn. The two samples are combined, ranked
overall and the observations put into rank order. Each observation is
labelled either A or B according to the sample from which it
originally came.

If both samples come from the same population then each will
contain some high, some low and some intermediate values. For
instance, if there are seven observations in Sample A and eight in
Sample B this might be indicated by the ordering:

B  B  A  A  B  A  B  A  A  B  A  B  B  B A

Under the alternative hypothesis, values for Sample A will be
concentrated in one part of the series, for example:

B  B  B  A  A  A  A  A  B A  A  B  B  B  B
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Once the values have been ordered, the ranks of the lowest and
highest scores from Sample A are noted. The number of cases
contained within these values, including the extremes, is defined as
the span of the A scores. In the first example above, the span is
relatively large (13) whereas in the second case it is quite small (8).
The smaller the value of the span, the stronger is the evidence
against the null hypothesis. The Moses test determines the
probability of observing a span of no more than that recorded,
assuming that the null hypothesis is true.

If samples A and B have m and n observations respectively, then
the span of A must be between m and m + n inclusive.  Suppose that
the observed span is m + k. Under the null hypothesis, the prob-
ability that the span s is no more than this is given by

Pr
( )( )

( )( )s m k

i m n i

i

k

m n
≤ + =

+ − + −

=
+

    i    n-i

   m

2 1

0  (5.11)

Probabilities for the upper tail of the scan length distribution can
be calculated in a similar manner. Exact P-values for the one-tail
Moses test can be found using SPSS, although tail probabilities are
simple (if tedious) to compute using tabulated values of binomial
coefficients.

Example 5.17

The problem.  Nineteen women who had received results from cervical cancer
screening completed a questionnaire about their interest in receiving detailed
information about cervical cancer, a high score indicating a great degree of
interest. Those women who had received a negative screening result (Group A)
were compared with those with positive result (Group B). The questionnaire
scores (out of 25) were as follows:

   Group A:    8     9    10    12    13    15    18    20    21
   Group B:    1     3      5      6    11    14    19    22    23    25

We test the null hypothesis that extreme values are equally likely to occur in the
positive test and negative test populations of women.

Formulation and assumptions. The two groups are combined and the
observations ranked. The ranks are written in ascending order. The span of
Group A is then obtained by recording the number of cases, including the
extremes, contained within the lowest and highest ranks relating to this group. A
one-tail test is appropriate, as there are grounds for believing that the scores for
women with a positive test result might be more variable (see Comment 3).

Procedure. The ranks for the combined observations are obtained. These are
shown in Table 5.7. Ranks relating to Group A are given in bold.
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Table 5.7   Allocation of ranks for Moses test; Group A in bold.
_______________________________________________________________

Value   1   3   5   6   8   9 10 11 12 13
Rank   1   2   3   4   5   6   7   8   9 10

Value 14 15 18 19 20 21 22 23 25
Rank 11 12 13 14 15 16 17 18 19
_______________________________________________________________                            

We have m = 9, n = 10.  The lowest rank for a Group A observations is 5, the
highest is 16, giving a span of 12.  The minimum possible value for the span is
m = 9, thus k = 3. Using (5.11) we find P = 0.0149.  The SPSS program confirms
this.

Conclusions.  There is considerable evidence against the null hypothesis. One
may reasonably conclude that extreme questionnaire scores occur more
frequently for patients with a positive screening result.

Comments.  1. The span of the Group A observations is often referred to as
the range, and it is a measure highly susceptible to outliers. One way of taking
this into account is to decide before the investigation to remove (or ‘trim’) one or
more Group A observations from the upper and lower extremes. The span is
then based on the values that remain. For the above data, SPSS gives a P-value of
0.128 when one observation is trimmed from each end. There is little reason to
use a trimmed span in this example, as there are no obvious outliers. Trimming
when there are outliers in other contexts is discussed briefly in Section 11.4.

2. If ties occur between two or more members of the same group the tied
values are adjacent in the ordering and the span is not affected. In addition, if ties
occur between members of the two different groups the span will generally not
be affected. In the absence of trimming, the only exception is where a tie involves
either the highest or lowest observation from Group A; the value for the span is
then unclear. In SPSS the span is calculated by assuming that the Group A value
in the tie is actually the larger. This can overestimate the value of the span and
hence the P-value. In the above example, if the highest value in Group A is
changed to 22, the resulting tie leads to a P-value  0.04.

3. The findings above are in line with the belief of many psychologists that
individuals who receive a positive diagnosis for a serious illness tend to be either
‘blunters’ whose reaction to the bad news is denial, or ‘monitors’ who wish to be
informed about every detail regarding their illness. Individuals who do not have
to face up to such bad news are assumed to have an intermediate degree of
interest in that illness. Thus the ‘blunters’ would have low scores on the cervical
cancer questionnaire with the ‘monitors’ having relatively high scores. This could
explain why Group B has more extreme values than Group A.

Computational aspects.   Since n = m +1, there is considerable simplification in
the numerator of  (5.11) for this example.  
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5.8.5   Some related procedures

Klotz (1962) proposed using van der Waerden scores in a test
analogous to the Mood test, while Capon (1961) suggested a similar
test using expected normal scores. Sukhatme (1957) proposed a test
having analogies with the Mann–Whitney formulation of the WMW
test but the scoring is more complicated and there are practical
limitations to its use. It is described by Gibbons and Chakriborti
(1992, Section 10.7) who point out that it can be adapted to
construct confidence intervals for a scale parameter.

Gastwirth (1965) proposed statistics for detecting location and
scale differences based on simple scores assigned to top and bottom
non-overlapping fractions of the combined sample ordered data,
with zero scores given to any data with intermediate ranks. The
motivation for his approach was that tests for centrality or location
based on transformation of ranks such as those using van der
Waerden scores that have high Pitman efficiency relative to optimal
normal theory tests when the latter are appropriate give greater
weights to scores associated with extreme ranks. Gastwirth was
especially interested in tests that were more efficient for dispersion
than the tests we have discussed here. A general account of his
approach is given in Sprent (1998, Section 6.6).  

5.9   TESTS FOR A COMMON DISTRIBUTION

In Section 3.3 we developed tests of the hypothesis that a single
sample was drawn from some specified distribution. For two
independent samples we may want to know if it is reasonable to
suppose each comes from the same unspecified distribution. The
Smirnov test (Smirnov, 1939, 1948) has similarities to the
Kolmogorov test developed in Section 3.3.1.

5.9.1  Smirnov test for a common distribution

The hypothesis H0: two samples come from the same distribution
may be tested against H1: the distributions have different cumulative
distribution functions (cdfs). We do not specify further the nature of
any differences: the distributions may have the same mean but
different variances; one may be skew, the other symmetric, etc. We
compare the sample cdfs; the test statistic is the difference of
greatest magnitude between these two functions.
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Example 5.18

The problem.  Use the Smirnov test to decide if it is reasonable to conclude
that the samples in Example 5.14 are from the same populations.

Formulation and assumptions. We compute the sample cumulative
distribution functions S1(x), S2(y) at each sample value and at each of these we
also compute and record the difference S1(x) – S2(y). For samples of size m, n
respectively S1(x), S2(y) are step functions with steps 1/m, 1/n respectively at
each sample value (or with  multiple steps at ties).

Procedure. Table 5.8 gives in successive columns the sample values and
corresponding values of S1(x), S2(y) and S1(x) – S2(y) at each sample point. The
difference of greatest magnitude (final column) is 0.5, occurring twice. Here a
one-tail test is essentially a test of whether the function for type B failures
is above that for type A failures for at least one common x, y value, against the
alternative that it is everywhere at or below. However, a two-tail test is
appropriate for unspecified general alternatives.  An exact test is preferable
if a suitable program is available. One is provided in StatXact and in this example
gives an exact one-tail P = 0.0748 and an exact two-tail P = 0.1496.

 
Table 5.8  Calculation of the Smirnov test statistic,
__________________________________________________________

Type A     Type B S1(x) S2(y) S1(x) – S2(y)
  xi   yj

__________________________________________________________

  47 0 0.083   –0.083
105 0 0.167   –0.167
126 0 0.250   –0.250
142 0 0.333   –0.333
158 0 0.416   –0.416
172 0 0.500  –0.500

177 0.125 0.500   –0.375
192 0.125 0.583   –0.458

200 0.250 0.583    –0.333
220 0.250 0.667   –0.417
225 0.250 0.750   –0.500

227 0.375 0.750   –0.375
230 230 0.500 0.833   –0.333
232 0.625 0.833   –0.208

262 0.625 0.917   –0.292
268 0.750 0.917   –0.167

270 0.750 1.000   –0.250
272 0.875 1.000   –0.125
297 1.000 1.000     0.000
__________________________________________________________
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 Conclusion. There is a slight indication that the cumulative distribution for
type B failures may be strictly above that for type A for at least some common x,
y.

Comments.  1. Sometimes a test for location or variance establishes a
difference whereas a Smirnov test indicates no overall distributional difference.
This is because Kolmogorov–Smirnov type tests are often less powerful than
tests for specific characteristics such as differences in location.

2.  Like the Kolmogorov test, the Smirnov test may appear not to be making
full use of the data because it uses only the maximum difference. As we pointed
out in Section 3.3.1, the statistic uses cumulative information. In Section 5.9.2
we see that power may be increased by considering all differences.  

3.  Tables of nominal significance levels may be used if no program for an
exact test is available. Asymptotic approximations are available for large
samples. Many published tables for the Smirnov test give not critical values but
quantiles which must be exceeded for significance at a given level. Neave (1981,
p. 31) gives values for the equivalent mn[max|S1(x) – S2(y)|] for significance for a
wide range of sample sizes.

4.  The rationale behind this test is sketched by Sprent (1998, Example 6.14).

Computational aspects. Several standard packages give programs for the
Smirnov test (often referred to as the Kolmogorov–Smirnov test), but care should
be taken to see whether each test uses only an asymptotic approximation or a
more appropriate approach for small samples.  

Chandra, Singpurwalla and Stephens (1981) developed a test of
the Kolmogrov–Smirnov type for the Weibull distribution, often
met with survival data. Modifications of the Smirnov test for
discrete data are discussed by Eplett (1982), while Saunders and
Laud (1980) devised a multivariate Kolmogorov goodness-of-fit
test.

5.9.2   The Cramér–von Mises test for identical populations

The differences S1(x) – S2(y) at each sample value are not
independent; this makes it difficult to work out the distribution for
statistics that take account of all differences.  However, for one such
test, the Cramér–von Mises test (Cramér, 1928; von Mises, 1931),
an approximate theory gives simple significance tests that, except for
very small samples, are virtually independent of sample size, and
these are useful if one only wants broad measures of evidence for or
against identity rather than more precise P-values.  

The test statistic is a function of the sum of squares of the
differences S1(x) – S2(y) at all sample points. Denoting this sum of
squares by Sd

2 the test statistic is T = mnSd
2/(m + n)2.  In a two-tail

test for significance at the 5 per cent level T must exceed 0.461; for
significance at the 1 per cent level T must exceed 0.743.
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Example 5.19

The problem.  Perform the Cramér–Von Mises test for the data in Example
5.18.

Formulation and assumptions.  We square and add the differences in the last
column of Table 5.8, then form the statistic T.

Procedure.  From the last column of Table 5.8 we find the sum of squares of
the differences is 2.0024, whence T = 96 × 2.0024/(20 × 20) = 0.48.

Conclusion. Since T > 0.461 we conclude that the population cumulative
distribution functions differ for at least some x.

Comment. The Cramér–Von Mises test is often more powerful than the
Smirnov test and is easy to use because of the approximation. Accurate tables
exist for some values of m, n. The only labour additional to that for the Smirnov
test is calculation of the sums of squares of differences.

5.9.3   The Wald–Wolfowitz run test

Wald and Wolfowitz (1940) proposed a test based on runs for a
population difference when we are given two independent samples.
We omit details here but the test is described briefly and an example
given in Sprent (1998, Section 6.9) and StatXact provides a
dedicated program for an exact test. Difficulties arise if there are
tied values in different samples when the test is often less
satisfactory than the Smirnov test. For the data used in Examples
5.18 and 5.19 a program in StatXact for this test gives the exact two-
sided  P = 0.8174.  Even though there are no problems with ties in
this example the result is so much at variance with that for the
Smirnov test as to reflect the often low power of this test.

5.9.4   The two sample runs test on a circle

Suppose we have two independent samples of angular data, A and B.
In this test, the points are plotted on a circle and labelled A and B
according to the sample from which they came. The number of runs
around the perimeter of the circle is noted. In proceeding around the
circle once, the final run and initial run must be from different
groups. The number of runs has therefore to be even (if the extreme
points are from the same group when arranged on a line, the number
of runs is reduced by one when the points are arranged on a circle).  
Where there is a tendency for points from the same group to cluster,
the number of runs is relatively small; for alternation the number of
runs is relatively large (see Section 3.5).
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If R and RC represent the number of runs when the data are
arranged on a line and on a circle respectively, then using the
notation of Section 3.5 the lower tail probabilities for the number of
runs on the circle, 2s, are given by:

Pr (RC ≤ 2s) = Pr(R ≤ 2s+1)

with upper tail probabilities calculated in a similar manner.

Example 5.20

The problem. The midwife in Example 3.13 also recorded the sex of the 12
home deliveries. She was interested in whether or not the times of births for boys
and girls occurred in clusters. The data were as follows (M = male, F = female)

Time 0100  0300  0420 0500  0540   0620   0640   0700  0940 1100  1200  1720
Sex    M      F     F    F     M      M       F         F       F       F        M       M

Formulation and assumptions. We test the null hypothesis H0 that for the
populations of male and female births the times of delivery are randomly ordered
with respect to gender. Since the midwife is interested only in clustering and not
in alternation, a one-tail test is appropriate. A small value for the number of runs,
2s, indicates possible clustering.

Procedure. The data are plotted on a circle. The numbers of boys and girls are
m = 5 and n = 7 respectively. The count of runs starts from the beginning of a
particular run. We therefore count runs from the female birth that occurred at
0300. The number of runs, 2s, is equal to four.  As reasoned above, we could not
have had five runs on a circle for these two groups. The relevant P-value for the
angular case is therefore given by Pr(R ≤ 5) where R is the number of runs for
such data arranged along a line. This P-value is  0.197.

Conclusion. There is no strong evidence against H0. On the basis of these data,
the times of delivery for boys and girls do not seem to cluster with respect to
gender.

Comment. Recall that if the number of runs for the data on a line is odd, the
number of runs is one fewer when the data are plotted on a circle. This implies
that low P-values are only obtained from small studies in the most extreme
situations. For instance, unless both m and n are at least eight there will only be
strong evidence against H0 ( formally P < 0.05) if the number of runs is two.

5.10   FIELDS OF APPLICATION

Little imagination is needed to think of realistic situations where one
might wish to compare medians or means of two populations (i.e.
look for centrality or ‘treatment’ differences) on the basis of two
independent samples.  Here are a few relevant situations.
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Medicine

For comparing the efficacy of two drugs for reducing hypertension,
blood cholesterol levels, relief of headaches or other conditions,
independent samples are often needed because of ‘interaction’ or
‘hangover’ effects if each drug is given to the same patients (Section
4.1); for this or ethical reasons it may be inappropriate to give both
drugs to any one person even after a considerable time lapse.  

Sociology

To explore the possibility that town and country children may attain
different levels of physical fitness, samples of each might be scored
on an appropriate scale in a fitness test and the results compared
nonparametrically.  

Mineral exploration

A mining company has options on two sites but only wishes to
develop one. Sample test borings are taken at each and the
percentage of the mineral of interest in each boring is determined;
these are the basis for a test for population differences in mean or
median levels; if there is evidence that one site is richer the company
may want to estimate the difference because development costs and
other factors may well differ between sites. This would call for
confidence intervals and power considerations may come into play
to determine whether a larger experiment is need to provide a sound
basis for a decision.  Results may need to be interpreted with caution
because borings close together may not be independent.

Manufacturing

New and cheaper production methods are often tried.  Manufacturers
may compare products using a new process or raw material with
existing ones to assess quality and durability. Interest here is often
not only in ‘average’ quality, but also in differences in variability.

Psychology

Children with learning difficulties may be given a treatment that it is
hoped will encourage them to respond to commands. Sixty
commands are given to a sample of 10 treated children and to a
further sample of 12 untreated children. The number of favourable
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responses is recorded for each child. Interest will lie in whether
there is a response level difference and a confidence interval for any
response shift is likely to be informative.

5.11   SUMMARY

Wilcoxon–Mann–Whitney test.  A rank test for differences in
centrality or domination of one distribution over the other. The test
statistic is the rank sum associated with either sample. An alternative
formulation was given by Mann and Whitney. The two formulations
are described in Sections 5.2.2 and 5.2.3. Adjustments for ties are
given in Section 5.2.4 and confidence intervals for measurement
data are obtained in Section 5.2.5. Asymptotic results are given by
(5.7) and (5.8) in Section 5.6.

The median test.  A test for centrality based on numbers in each of
two samples above and below the combined sample median. It is
equivalent (Section 5.3) to a case of the more general Fisher exact
test. Confidence intervals (Section 5.3.2) are available when we
have full measurement data. The only assumption about the
population distributions is that of identical medians under H0. The
test is not recommended if assumptions allow more powerful tests
such as the WMW test.

Van der Waerden scores.  Among tests based on transformation of
ranks that using van der Waerden scores (Section 5.4) is easy to use,
but results are often similar to those given by the WMW test
(Section 5.4).

Survival data.   The long-tail distributions associated with much
survival data, together with censoring has triggered the development
of many special methods.  These include the Gehan–Wilcoxon test
(Section 5.5.1) which is a modification of the WMW test.  Savage
scores and the log-rank transformation (Section 5.5.2) provide
another approach.

Power and sample size.  Studies of power and sample size are
reasonably straightforward only for the median test providing
samples of the same size are taken from distributions that differ only
in mean or median, a situation where that test is often not the most
appropriate!  In similar situations and some that are slightly more
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general reasonable asymptotic approximations are available for the
WMW test.  A brief introduction is given in Section 5.7.

Spread or dispersion.  The Siegel–Tukey test (Section 5.8.1) and
Ansari–Bradley type tests (Section 5.8.2) are often less powerful
and less robust than the Conover squared-rank test (Section 5.8.3)
or a similar test using absolute deviations. The Moses test (Section
5.8.4) for extreme reactions is relatively simple, but being based on
a range of ranks it is susceptible to outliers. Many dispersion tests
require for strict validity that both populations medians or means are
the same or that the difference, if any, between them is known.

Comparison of distributions.  The Smirnov test (Section 5.9.1)
has analogies with the one-sample Kolmogorov test (Section 3.3.1).
The alternative Cramér–Von Mises test (Section 5.9.2) is easy to
use in formal hypothesis tests as the significance levels are virtually
independent of sample size except for very small samples. A less
satisfactory test is the Wald–Wolfowitz run test briefly referred to
in Section 5.9.3. A two-sample runs test can be applied to angular
data (Section 5.9.4).

EXERCISES

5.1 For the data in Example 5.5 carry out the procedures suggested in the
remarks under Computational aspects using the most appropriate
computer software available to determine if the end points of the
confidence interval can validly be included in a nominal 95 per cent
confidence interval.

5.2 Use (5.5) to compute the exact variance using mid-ranks in Example 5.10
and compare it with the result given in that example.

5.3 Using (5.3) calculate P* for the data in (5.2).
5.4 In Example 5.7 verify that we accept H0 at the end points of the nominal

95 per cent confidence interval computed in that example for the
population median difference. Verify also that for any point outside that
interval we would reject H0.

5.5 An alloy is composed of zinc, copper and tin. It may be made at one of two
temperatures H (higher) or L (lower). We wish to know if one temperature
produces a harder alloy.  A sample is taken from each of 9 batches at L and
7 at H.  To arrange them in ascending order of hardness, all specimens are
scraped against one another to see which makes a deeper scratch (a deeper
scratch indicates a softer specimen).  On this basis the specimens are
ranked 1 (softest) to 16 (hardest) with the results given below.  Should we
reject the hypothesis that hardness is unaffected by temperature?  State any
assumptions needed for validity of the test you use.
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 Temperature   H   L   H   H    H    L   H    L   L   H    H    L    L    L    L    L
   Rank    1    2    3    4     5    6    7    8    9  10   11  12   13  14   15  16
   ____________________________________________________________

5.6  If we have samples of m, n where m + n = 20 and the only tie is one
between ranks 2 and 3 what would be the differences between the van der
Waerden scores if the scores for these ties are based on the mid-rank 2.5
and the van der Waerden scores if these are based on the mean of the van
der Waerden scores corresponding to rank 2 and to rank 3. Carry out a
similar comparison if there were ties for ranks 10, 11 and 12.

5.7 Perform a Siegel–Tukey test on the data in Example 5.14 after shifting one
set of sample values to align the sample means.

5.8 Using the data in Example 5.14 carry out a test analogous to the Conover
squared rank test but using absolute ranks instead of squared ranks.    

5.9 Hotpot stoves use a standard oven insulation. To test its effectiveness
they take random samples from the production line and heat the ovens
selected to 400oC, noting the time taken to cool to 350ºC after switching
off.  For a sample of 8 ovens the times in minutes are:

15.7   14.8   14.2   16.1   15.3   13.9   17.2   14.9

They decide to explore a cheaper insulation, and using this on a sample of 9
the times taken for the same temperature drop are:

13.7   14.1   14.7   15.4   15.6   14.4   12.9   15.1   14.0

Are the firm justified in asserting there is no real evidence of a different rate
of heat loss?  Obtain a 95 per cent confidence limit for the difference in
median heat loss (a) with and (b) without a normality assumption.
Comment critically on any differences between your conclusions.

5.10 A psychologist wants to know whether men or women are more upset by
delays in being admitted to hospital for routine surgery.  He devises an
anxiety index measured on patients 1 week before scheduled admission and
records it for 17 men and 23 women.  These are ranked 1 to 40 on a scale
of increasing anxiety.  The sum of the ranks for the 17 men is 428.  Is there
evidence that anxiety is sex-dependent?  If there is, which sex appears to
show the greater anxiety?

5.11 Suppose we are given the data for response times in LVF and RVF in Table
4.1, but the information that they are paired is omitted.  In these
circumstances we might analyze them as independent samples.  Would we
then conclude that responses in the two fields differed?  Does your
conclusion agree with that found in Example 4.1?  If not, why not?

5.12 Confirm the value of p1 under H1 for the double exponential distribution
introduced in Example 5.12 that is quoted in the Procedure section of that
example.

5.13 Verify the correctness of the required sample sizes given in Example 5.13
for the WMW test in the circumstances given there.

5.14 A psychologist notes total time (in seconds) needed to perform a series of
simple manual tasks for each of eight children with learning difficulties and
seven children without learning difficulties.  The times are:
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Without difficulties 204 218 197 183 227 233 191
With difficulties 243 228 261 202 343 242 220 239
                                                                                                                           

Use a Smirnov test to find whether the psychologist is justified in
asserting these samples are likely to be from different populations. Do you
consider a one- or a two-tail test appropriate? Perform also a Cramér–Von
Mises test. Does it lead you to a different conclusion? If you think the
psychologist should have tested more specific aspects of any difference,
perform the appropriate tests.

5.15 Apply the Smirnov test for different population distributions to the oven
cooling data in Exercise 5.9.

5.16 The numbers of words in the first complete sentence on each of 10 pages
selected at random is counted in each of the books by Conover (1980) and
Bradley (1968).  The results were:

  _______________________________________________________

      Conover 21 20 17 25 29 21 32 18 32 31
      Bradley 45 14 13 31 35 20 58 41 64 25

  _______________________________________________________

Perform tests to determine whether there is evidence that in these books

(i) sentence lengths show a difference in centrality;
(ii) the variances of sentence lengths differ between authors;
(iii) the distributions of sentence lengths differ in an unspecified way;
(iv) the sentence lengths for either author are not normally distributed.

5.17 Lindsey, Herzberg and Watts (1987) give data for widths of first joint of
the second tarsus for two species of the insect Chaetocnema.  Do these
indicate population differences between the width distributions for the two
species?

_______________________________________________________

Species A   131   134  137  127  128  118  134  129  131  115
Species B   107  122  144  131  108  118  122  127  125  124
_______________________________________________________

5.18 Carter and Hubert (1985) give data for percentage variation in blood sugar
over 1-hour periods for rabbits given two different dose levels of a drug,  Is
there evidence of a response difference between levels?
____________________________________________________________

Dose I    0.21 –16.20  –10.10 –8.67  –11.13   1.96 –10.19  –15.87  –12.81
Dose II    1.59    2.66     –6.27–2.32  –10.87   7.23   –3.76    3.02     15.01
____________________________________________________________

5.19 The journal Biometrics published data on the numbers of completed
months between receipt of a manuscript for publication and the first reply
to the authors for each of the years 1979 and 1983. The data are
summarized below. Is there evidence of a difference in average waiting
times between 1979 and 1983?
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            _________________________________________________________

 Completed months       0       1       2       3       4       5       ≥6
   _________________________________________________________

                   1979       26      28     34      48      21     22       34
198 1983      28      27     42      44      17        6       16

   _________________________________________________________

5.20 Hill and Padmanabhan (1984) give body weights (g) of diabetic and normal
mice.  Is there evidence of a significant difference in mean body weight?
Obtain the Hodges–Lehmann estimate of the difference together with a 95
per cent confidence interval.  Compare this interval with that based on the
t-distribution.

   ___________________________________________________________

Diabetic 42 44 38 52 48 46 34 44 38
Norm al 34 43 35 33 34 26 30 31 27 28 27 30 37 38

32 32 36 32 32 38 42 36 44 33 38
___________________________________________________________

5.21 The data below are numbers of words with various numbers of letters in
200-word sample passages from the presidential addresses to the Royal
Statistical Society by W.F. Bodmer (1985) and J. Durbin (1987).  Is there
acceptable evidence of a difference between the average lengths of words
used by the two presidents?

Number of letters  1–3 4–6 7–9 10 or more
_________________________________________________________

Bodmer   91   61   24        24
Durbin   87   49   32        32

_________________________________________________________

5.22 The following data are DMF scores for 34 male and 54 female first-year
dental students.  The DMF score is the total of the numbers of decayed +
missing + filled teeth.

   ____________________________________________________________

Males   8  6  4  2 10  5 6  6  19   4  10   4 10 12   7  2  5
 1  8  2  0   7  6 4  4  11   2  16   8   7   8   4  0  2

Females  4  7  13  4   8  8  4  14   5   6   4  12   9   9   9  8  12
  4  8    8  4 11  6  15  9   8  14   9   8   9   7  12 11   7
  4  10    7  8   8  7  9  10 16  14 15  10   4   6   3  9  3

     10  3  8
____________________________________________________________

Use an asymptotic WMW test to determine whether the DMF score
differs significantly between males and females.  Do tied ranks have much
influence on the appropriate test statistic?

5.23 Records from a maternity hospital show that during a particular year,
identical and non-identical twins were born on the following days:

Number of authors
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Identical          3 January, 17 February, 14 April, 31 May, 6 August,
2 October, 7 December

Non-identical  30 January, 28 February, 5 March, 13 April, 2 June,
            29 June, 8 July, 17 July, 4 August, 17 September,

9 October, 26 October, 17 November, 11 December

Is there evidence of possible clustering of births of identical and non-
identical twins?
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6
Three or more samples

6.1   COMPARISONS WITH PARAMETRIC METHODS

Parametric one- or two-sample analyses of continuous data using
test and estimation procedures based on normality are modified
appreciably for three or more samples. Emphasis shifts from the t-
distribution and related test and estimation procedures to the analysis
of variance (ANOVA) and tests based on the F-distribution
(although the t-distribution is related to a particular F-distribution).
The concept of experimental design becomes more important.
Readers unfamiliar with these topics need only to skim through this
section briefly, or they may prefer to proceed directly to Section
6.2.

Given k independent samples from normal distributions all with
the same (not necessarily known) variance and means µ1, µ2, . . . ,
µk, the basic overall significance test is that of H0: µ1 = µ2 =  .  .  . =
µk against H1: not all µi are equal. In analysis of variance
terminology large values of the statistic

F = (between samples mean square/within samples mean square)

indicate evidence against H0. Under H0, F has an F-distribution with
k –1 and N – k degrees of freedom, where N is the total number of
observations. When it is appropriate, H0 is sometimes expressed as
the hypothesis of no difference between treatments.  

The above F-test is usually a preliminary to more specific tests
and estimation procedures concerning possible differences within
chosen subsets, sometimes (but by no means always) pairs of the µi,
i = 1, 2, . . . , k. New concepts such as least significant differences
or multiple comparison tests are then sometimes introduced even in
the independent sample or ‘one-way classification’ situation.

The two-dependent-samples situation in Chapter 4 generalizes to
designed experiments. For the overall parametric test of H0: no
difference between treatments against H1: some treatments differ (in
centrality) testing and estimation procedures now depend on the
experimental design. A well-known design is that of randomized
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blocks. The nature of the treatment structure also influences the
analysis; factorial experiments not only allow us to study the basic
effect of two or more factors, but also whether factors ‘interact’
with one another.

In normal theory inference linear models provide a framework
that links analysis of variance and linear regression analysis.

Nonparametric analyses parallel some aspects of the normal
theory linear model, but relaxing assumptions means that some
linear model techniques have no direct nonparametric analogue.

We develop first overall tests for treatment differences analogous
to those used in the analysis of variance. These generalize some of
the methods in Chapters 4 and 5. Detailed testing of certain aspects
of data subsets is deferred to Section 6.4.

Having more than two samples often means there are sufficiently
many observations for asymptotic results to be reasonable but this
may not be so if some samples are very small even when that total
number of data is large. Over-reliance on asymptotic results when
some samples are small has in the past reflected a paucity of tables
giving even nominal significance levels for permutation tests based
on ranks, etc. Programs like StatXact and Testimate have eased this
problem.   

In this and the following four chapters we shall find that the same
nonparametric technique may often be applied to problems that
appear at first sight to be different. We have already met examples
of such equivalences; e.g. the sign test and McNemar’s test (Section
4.2), also that between Wilcoxon’s signed-rank test in a specific
highly tied situation and the sign test (Exercise 2.6). We also
introduced the median test (Section 5.3) as a special case of the
widely applicable Fisher exact test (Section 9.2.1).

6.2   CENTRALITY TESTS FOR INDEPENDENT SAMPLES

6.2.1   The Pitman permutation test

A permutation test based on raw data that extends the two-
independent sample test mentioned briefly in Section 5.1.2 was
developed by Pitman (1938). For reasons similar to those given in
that section the test is seldom used in practice. Exact P-values for
the test corresponding to the overall F-test in the one-way
classification ANOVA mentioned in Section 6.1 are only obtainable
with present software for fairly small samples so one has to resort to
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Monte Carlo approximations or asymptotic results if the samples are
not all small. We omit details here but the procedure is outlined
together with an example in Sprent (1998, Section 7.2). StatXact
includes a program under the title One-way ANOVA with general
scores that may be used for the test by taking the raw data as scores.

6.2.2   The Kruskal–Wallis test

Kruskal and Wallis (1952) extended the WMW test using the
Wilcoxon formulation to three or more samples. As well as being
applicable to data consisting only of ranks it is relevant as an overall
test for equality of population means or medians when samples are
from otherwise identical and continuous distributions. It also has
reasonable power for testing for identical population cumulative
distribution functions against an alternative that one or more of these
cumulative distributions are distinct in the sense of dominating the
others. As in the two-sample case, a shift in mean or median is often
referred to as an additive treatment effect, a term used in parametric
(normal theory) linear models.
 Suppose we have k random samples, the ith sample (i = 1, 2, . . . ,
k) consisting of ni observations, the jth of these being xij, (j = 1, 2, . . .
, ni).  The total number of observations is N = Σini. We assume there
are no ties and rank the N observations from smallest (rank 1) to
largest (rank N). Let rij be the rank allotted to xij and si = Σjrij be the
sum of the ranks for the ith sample. We compute Sk = Σi(si

2/ni). The
test statistic is then

                         T
S

N N
Nk=

+
− +

12

1
3 1

( )
( )                            (6.1)

If all the samples are from the same population we expect a
mixture of small, medium and high ranks in each sample, whereas
under the alternative hypothesis high (or low) ranks may dominate
in one or more samples. Consequently, under the alternative
hypothesis Sk will contain the square of at least one relatively large
rank sum, leading to larger values of T.

Computing exact permutation probabilities under H0 by hand is
impractical except for small samples. For N moderate or large, T has
a chi-squared distribution with k – 1 degrees of freedom under H0.

Example 6.1

The problem.  An estate agency sells properties in villages A, B and C. The
homes for sale in these villages are at the following prices (£K):
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A 39   45   71
B 51   63   88  97
C 99 150 260

Use the Kruskal–Wallis test to examine the validity of the hypothesis that the
house prices in these samples come from identical populations.

Formulation and assumptions. A suitable null hypothesis is H0: the
populations from which the samples were drawn have identical medians while
the alternative is H1: the population medians are not all equal.

Procedure. The N (= 10) house prices are ranked overall and the ranks are
assigned to the appropriate groups. These are shown in Table 6.1.

The sum of ranks is 1 + 2 + 5 = 8 for the houses in Village A, 3 + 4 + 6 + 7 = 20
for Village B and 8 + 9 + 10 = 27 for Village C, whence Sk = (8)2/3 + (20)2/4 +
(27)2/3 = 364.33.   Hence (6.1) gives

      T =
↔

↔
−   ↔    =

123     6433

10     11
3    11   6745

.
.

corresponding to an exact P = 0.010.

Conclusion.  There is strong evidence that house prices differ between villages.

Comments. 1. Properties in Village C seem to be more expensive. This may be
because the village has more ‘executive-style’ homes. One could only make an
informed comparison of house prices in the three villages by looking at similar
types of property. Remember too that properties offered for sale may not be
representative of the local housing stock. We have a small non-random sample
which may not be representative of the ‘population’ of village properties.

2.  We could use Sk as a test statistic rather than T since all other quantities in
T are invariant in the exact permutation distribution (i.e. are the same for any
permutation). The use of T is preferred for practical reasons (e.g. availability of
tables and for asymptotic approximations).

3. Calculating the P-value by hand is tedious. StatXact computes an exact P
directly from the above data. Tables giving critical values of T for small sample
sizes (strictly relevant to the ‘no-tie’ situation) are given by Neave (1981,
pp. 32–34) while Hollander and Wolfe (1999, Table A12) give upper-tail P-values
for large T for a range of sample sizes. Good estimates of exact probabilities are
also available using the Monte Carlo facility in StatXact. Using Stata or other
general statistical packages the chi-squared approximation with T  =  6.745 gives

Table 6.1 House prices (£K) and ranks in three villages.
        _______________________________________________

Village A Price 39   45     71
Rank   1     2       5

Village B Price 51   63     88       97
Rank   3     4       6         7

Village C Price 99 150   260
Rank   8     9     10

         _______________________________________________
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P = 0.0343, considerably different from the exact value indicating, not
surprisingly, that the asymptotic result can be misleading for small samples.

4.  The test is scale invariant and exactly the same ranks and T value would be
obtained if the prices were converted to US$, euros or any other currency at the
ruling exchange rate.  

6.2.3   The Kruskal–Wallis test with ties

As in the WMW test we give mid-rank values to tied data. With ties
a more general formula for T is needed. In addition to the terms
calculated above, we need also to calculate Sr = Σi,jrij

2, where some
of the rij will now be mid-ranks.  Readers familiar with the analysis
of variance will recognize Sk and Sr as uncorrected treatment and
total sums of squares for ranks. An appropriate correction for the
mean is subtracted from each, namely C =   N(N+1)2. The test
statistic is

    T
N S C

S C
k

r

=
− −

−
( )( )1

      (6.2)     

If there are no ties, this can be shown to be equivalent to (6.1), since
then Sr = N(N+1)(2N+1)/6.

Example 6.2

The problem.  Uniform editions by each of three writers of detective fiction
are selected. The numbers of sentences per page, on randomly selected pages in a
work by each are

C.E. Vulliamy 13   27   26   22   26
Ellery Queen 43   35   47   32   31   37
Helen McCloy 33   37   33   26   44   33   54

Use the Kruskal–Wallis test to examine the validity of the hypothesis that these
may be samples from identical populations.

Formulation and assumptions. The null hypothesis is that the populations are
identical. We consider the alternative hypothesis that the samples are from
populations that are not identically located.

Procedure. Manual calculation of the required statistic is outlined for illus-
trative purposes, but one only need do this if no program is available to compute
an exact P-value.  Ranks are shown in Table 6.2.  From that table we find that
s1 = 1 + 2 + 4 + 4 + 6 = 17, s2 = 72.5 and s3 = 81.5, whence

Sk = (17)2/5 + (72.5)2/6 + (81.5)2/7 = 1882.73.

 The sum of squares of all the allocated ranks is Sr = 2104.5 and C = 18 × (19)2/4 =
1624.5 since N = 18. We compute

  T = 17(1882.73 – 1624.5)/(2104.5 – 1624.5) = 9.146.
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Table 6.2  Sentences per page and ranks in samples for three authors.
_______________________________________________________

Vulliamy Number 13 22 26 26 27
Rank   1   2   4   4   6

Queen Number 31 32 35 37 43 47
Rank   7   8 12 13.5 15 17

McCloy Number 26 33 33 33 37 44 54
Rank  4 10 10 10 13.5 16 18

_______________________________________________________

 Neave’s tables show that T ≥ 8.157 implies strong evidence against H0
(significant at the 1 per cent level). StatXact confirms the above value of T and
gives an exact P = 0.0047.

Conclusion.  There is strong evidence to support a difference in sentence
length.  Inspection of the data indicates that Vulliamy uses longer sentences
(fewer sentences per page).

Comments.  1.  Using uniform editions avoids difficulties that may arise with
different page sizes or type fonts.

2. The total number of observations is small (N = 18). However, if we
perform an asymptotic test T = 9.146 is just short of the chi-squared value 9.21
required for significance at the 1 per cent level. Indeed P = 0.0103 for this chi-
squared approximation.

Computational aspects.  Monte Carlo estimates are provided by StatXact and
these may be useful for sample sizes a little larger than those in this example.
The computational burden for exact P-values rapidly increases as N increases.
Many standard packages such as Minitab and Stata include the Kruskal–Wallis
test, usually computing T but giving only an asymptotic P-value.  

For the above example most statisticians would consider a para-
metric analysis of variance to be suitable. This leads to basically
similar conclusions (Exercise 6.1).

Boos (1986) developed more comprehensive tests for k samples
using linear rank statistics that test specifically for location, scale,
skewness and kurtosis. Willemain (1980) tackles the interesting
problem of estimating the mean of a population given only the
largest observation in each of n samples. This scenario may arise if
each of n consultants is given one dose of a new or expensive drug
and asked to give this to the patient of greatest need on his or her
list. A record may be taken of the change, say, in some level of a
blood constituent and the aim may be to estimate the mean or
median change that could be expected if the drug were used for all
patients suffering from the relevant disease.
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Shirley (1977) proposed a nonparametric test to determine the
lowest dose level at which there is a detectable treatment effect
compared with the level for untreated control subjects. An improved
version of this test was given by Williams (1986) and House (1986)
extended the idea to a randomized block design.

6.2.4   Tests based on transformation of ranks

A modification of the Kruskal—Wallis test is to use van der Waerden
scores in place of ranks. We replace the rank or mid-rank r by the
r/(N+1)th quantile of a standard normal distribution. Ignoring a
slight discrepancy in the case of ties, the mean of these scores is
zero. If we evaluate quantities corresponding to Sk and Sr in Section
6.2.2 with ranks replaced by van der Waerden scores and set C = 0,
we may compute a T analogous to (6.2) for the van der Waerden
scores.  Again, asymptotically T has a chi-squared distribution with
p — 1 degrees of freedom. The asymptotic result is usually reas-
onable for all but very small samples although some packages
including StatXact now include a program giving exact P-values for
samples that are not too large and provide Monte Carlo estimates for
larger samples. The exact P-value given by StatXact using van der
Waerden scores for the data in Example 6.2 is again 0.047. In
Exercise 6.2 we ask you to reanalyze the data in Example 6.2 using
van der Waerden scores with whatever programming facilities are
available. Expected normal scores may also be used.

Other transformations are possible, e.g. to Savage scores if these
are appropriate.  There is no call for their use in Examples 6.1 or
6.2 since there is little evidence of asymmetry with a long right tail.

6.2.5   The Jonckheere—Terpstra test

The Kruskal—Wallis test is an omnibus test for differences in
centrality or for differences of a dominance nature. If
treatments represent, for example, steadily increasing doses of a
stimulant we may want to test hypotheses about means or
medians, θi, of the form H0: all θi are equal against H1: θ1 ≤ θ2

≤ θ3  ≤ . . . ≤ θk, where at least one of the inequalities is strict,
or against an ordered dominance alternative H1: F1(x) ≥ F2(x) ≥
. . . ≥ Fk(x), again at least one inequality being strict at least for
some x. This is a one-tail  test.  Reversal of all inequalities
gives an analogous test in the opposite tail. A test for such
ordered alternatives was devised by Jonckheere (1954), but it
had been conceived independently by Terpstra (1952).
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In essence it is an extension of the WMW test using the
Mann—Whitney  formulation. The samples must be ordered in the
sequences specified in H1. Exact permutation tests are more readily
available for small samples than they are for the Kruskal—Wallis  test,
and an asymptotic test is also available. We discuss this after an
example.  The asymptotic test at least is available in many standard
statistical software packages.

Example 6.3

The problem. Hinkley (1989) gives braking distances taken by motorists to
stop when travelling at various speeds. A subset of his data is:

Speed (mph) Breaking distances (feet)

    20   48
    25   33      59     48      56

     30   60    101     67
    35   85    107    

Use the Jonckheere—Terpstra test to assess the evidence for a tendency for
braking distance to increase as speed increases.

Formulation and assumptions. We test H0: braking distance is independent of
initial speed against H1: braking distance increases with speed. The samples are
already arranged in order of increasing speed implicit as the natural order under
H1.

Procedure.  If there are k samples we calculate the sum, U, of all
Mann—Whitney statistics Urs relevant to the rth sample (r = 1, 2, . . . , k — 1) and
any sample s for which s > r. Thus for the four samples above we calculate U12,
U13, U14, U23, U24 and U34. For example, U12 is the sum of the number of sample
2 values that exceeds each sample 1 value. Clearly here U12 = 2.5 since there is
only one sample 1 value (48) and this is equal to one value in sample 2 and is
exceeded by two others (56, 59); ties are scored as _ as in the Mann—Whitney
statistic.  Similarly U13 = 3, U14 = 2, U23 = 12, U24 = 8 and U34 = 5. Adding all Urs

gives a total U = 32.5. Obtaining the exact permutation distribution of ranks is
tedious without a suitable computer program. However the exact test in StatXact
indicates P = Pr(U  ≤ 32.5) = 0.0011, for the one-tail test relevant here.

Conclusion.  There is clear evidence (not surprisingly!) that increasing speed
increases braking distance.

Comments.  1. When it is relevant, the Jonckheere—Terpstra test is generally
more powerful than Kruskal—Wallis. If a Kruskal—Wallis test is applied to these
data, the exact P = 0.0133 while the asymptotic test gives P = 0.0641.  It is not
surprising that the asymptotic result is unreliable for such small samples. A
parametric analysis of variance using these data gives a variance ratio F = 4.45
with 3, 6 degrees of freedom which again would not indicate significance at the 5
per cent level (P =  0.057 for this F-value).

2. Older editions of the UK Highway Code used the formula d = v + v2/20 for
minimum stopping distances d feet, when travelling at v mph. The mean values
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in the above data for each speed are fairly close to those obtained from this
formula, but there is considerable variation between drivers at any one speed.

Computational aspects.  StatXact computes exact P-values for somewhat
larger samples than it does for the Kruskal–Wallis test. It is illuminating to
compare these with tail probabilities for the asymptotic test given below.  In this
example the asymptotic result gives P = 0.0022; although twice as large as the
exact test level, the discrepancy is not so great as that indicated above for the
Kruskal–Wallis test.

The asymptotic Jonckheere–Terpstra test is based on the fact that
U as defined in Example 6.3 has a mean E(U) = _(N2 – Σini

2) and
variance Var(U) = {N2(2N + 3) – Σi[ni

2(2ni
 + 3)]}/72. For large N

and the individual ni not too small the distribution of

                                 Z
U U

U
= − E

Var

( )

( )
                            

is approximately standard normal. The sample sizes in Example 6.4
are too small for an asymptotic result to inspire confidence, but
calculations sought in Exercise 6.3 give, for this example, Z = 2.85,
corresponding, as indicated above, to a one-tail P = 0.0022.

The above expression for Var(U) needs adjustment for ties. The
adjustment is trivial for relatively few ties but in Section 9.3.2 we
show that the existence of many ties may have a dramatic effect. A
formula for adjusting Var(U) for ties is given by Lehmann (1975,
p. 235) and a modified version is given by (9.11) in Section 9.3.2.

Exercise 6.21 covers a situation where H1: F1(x) ≥ F2(x) ≥ . . . ≥
Fk(x) is an appropriate alternative hypothesis.

Tests involving ordered treatment differences that are sometimes
of interest include that where we wish to test H0: all _i are equal
against H1: θ1 ≤ θ2 ≤ θ3  ≤ . . .  ≤ θq–1 ≤ θq ≥ θq +1 ≥ . . . ≥ _k where
at least one inequality is strict. These tests are called umbrella tests
and were proposed by Mack and Wolfe (1981) and are discussed in
some detail by Hollander and Wolfe (1999, Section 6.3).

6.2.6   The median test for several samples

The median test in Section 5.3 generalizes easily to three or more
samples. The alternative hypothesis is now one of a difference
between population medians without specifying which populations
differ in location, how many differences there are, or their direction.
As in the two-sample case, each sample may come from any
unspecified population (they need not all have the same
d i st ri bu t io n) .   G iv en  k  s a mp le s wh e re  t he  u n kn ow n po p ul at io n 
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Table 6.3  A general contingency table for the median test.
                                                                                      _

       Above M        Below M Total
                                                                                   __

  a1   b1   n1

  a2   b2   n2

   .    .    .
   .    .    .
  ak   bk   nk

              ___     
  A   B   N

____________________________________

medians are  θ1, θ2, .  .  . , θk, we test H0: θ1 = θ2 = .  .  . = θk against
H1: not all θi are equal. The procedure generalizes that in Section
5.3.1. If M is the combined sample median for all observations, in
each sample we count the numbers of observations above and below
M.  As in Section 5.3.1, we reject sample values equal to M and
then work with reduced samples. Assuming sample values that equal
M have already been dropped, suppose that of the ni observations in
sample i there are ai > M and bi < M,  i = 1, 2, . . . , p. We record
these numbers above and below M in a k × 2 contingency table of k
rows and 2 columns. The values ai, bi are constrained for each
sample so that ai + bi = ni the number in that sample. When no
observations equal M, the column totals A and B both equal 1/2N.
Table 6.3 illustrates this for a general contingency table having k
rows and 2 columns.  

The probability P* of the above cell values with the row and
column totals fixed is given by a generalization of (5.3):

      P
A B n

N a b
ii

i iii

*
! ! ( !)

! ( !) ( !)
= Π

Π 
Π

                                             (6.3)

where Πi(xi!) is the product (x1!) × (x2!) × . . .  × (xk!).  Other k × 2
contingency tables with the same marginal totals must be considered
to obtain the P-value. This is illustrated by an example.

Example 6.4

The problem.  Six dental surgeons (I, II, III, IV, V and VI) perform the removal
of third molar (or wisdom) teeth from adult patients.   To investigate the
assertion that some surgeons extract these teeth more quickly, the following data
were obtained. These relate to 28 patients each of whom had just one third molar
teeth removed. The times (in minutes) taken for the six dental surgeons to
operate were: 
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    I 23 25 34 45
   II   7 11 14 15 17 24 40
  III   5   8 16 20 26
  IV 12 21 31 38
   V 30 43
 VI   4   9 10 18 19 35

Inspecting the data we find that the median extraction time, M, for all 28 patients
is 19.5 minutes, so no sample value is equal to the median. Table 6.4 shows the
numbers of extraction times above and below M by each surgeon. Use a median
test to assess the strength of any evidence against H0: all six samples come from
populations with the same median extraction time.

Formulation and assumptions. The test is an extension of the Fisher exact test
developed in Section 5.3 for the two-sample situation to the k × 2 table having
the form in Table 6.3. We omit details but the formula (6.3) is obtainable by
extending arguments similar to those leading to (5.3). For the data in Table 6.4  a
P-value is calculated based on a critical region consisting of all 6 × 2 contingency
tables having the given marginal totals for which, under H0, P* does not exceed
that observed.  For the 2 × 2 tables in Example 5.6, the more extreme
configurations were obvious. For larger contingency tables this is not the case,
nor can we attribute these extreme configurations to a particular tail; i.e. our
alternative hypothesis H1: not all medians are equal is essentially two-tail, not
unlike the situation in the Kruskal–Wallis test (Section 6.2.2), or indeed the F-
test in parametric ANOVA.

Procedure.  For Table 6.4 the calculation using (6.3) reduces to  

      P*
( !)( !)( !)( !)( !)( !)( !)(

( !)( !)( !)( !)( !)( !)( !)( !)( !)( !)
=

14 14 4 7 5 4 2 6!)

28!)(4 2 2 3 2 1 0!)(5 3 1 0!)(5

where, by definition, 0! = 1.  Despite cancellations between numerator and den-
ominator, it is tedious to verify that P* = 0.00013 using only a pocket calculator.

Table 6.4  Numbers of observations above and below the
combined sample median, M, in Example 6.3.
                                                                                              ____

Dental surgeon Above M Below M Total
                                                                                              ____

   I     4     0      4
  II     2     5    7
 III     2     3    5
 IV     3     1    4

    V     2     0    2
VI       1      5     6

   __   __  __
  14   14  28

                                                                                             _____
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The P* for all other contingency tables with the same marginal totals that have
the same or lower values of P* can be found similarly. Realistically, a computer
program or some suitable approximation is required. An appropriate program
gives a P-value of 0.046 for the comparison of third molar extraction times.

Conclusion.  There is moderately strong evidence against H0, indicating some
variation in median extraction times between the dental surgeons.

Comments.  1. Individual sample sizes here are all small (particularly for
dental surgeon V). The main differences in Table 6.4 seem to be that surgeon I
probably has a median above M and surgeon VI (possibly also surgeon II) has a
median below M. If we were to perform separate sign tests of H0: θi = M for each
individual sample we would not be able to demonstrate strong evidence against
H0 (even in a one-tail test) since for any particular surgeon the number of
patients operated on is very small. In practice much larger samples of patients
would be selected for such a study.

2. The results from a comparison of dental surgeons need to be interpreted
carefully. Most extractions are completed in around 15 to 20 minutes, but
complicated cases can take 1 hour or more. These can be identified in advance
from a radiograph, so consultants may deal with serious cases, with less
experienced staff operating on the straightforward patients. Higher extraction
times for surgeon I could indicate greater responsibility rather than inexperience.

3. The difficulty in carrying out an exact test without a suitable computer
program makes an asymptotic test of interest.  We discuss one below.

4. A situation where we may want to test for a common median when
samples come from distributions differing in other respects (e.g. spread,
skewness, etc.) arises if we compare alternative components that may be used in
an industrial process. We may measure a characteristic such as time to failure for
a number of replicates of each type of component. A preliminary step may then
be to test whether it is reasonable to suppose all may have the same median time
to failure.  If there is clear evidence they do not, one might reject from further
consideration those that appear to have a lower median time. Further choice may
depend on preference for a component with little variability in its failure time
distribution, or on non-statistical factors, such as cost.   

Computational aspects.  The StatXact, Testimate or Stata programs for the
Fisher exact test (Section 9.2.1) may be used for the median test.  

In the notation used in Table 6.3 an asymptotic test makes use of
the statistic

T
a n A N

n A N

b n B N

n B N
i i

i

i i

i
ii

= − + −( / )

/

( / )

/

2 2

     (6.4)
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The term niA/N is equal to the expected number of cases above M
for the ith surgeon, assuming that the null hypothesis is true.
Readers familiar with the chi-squared test for independence in
contingency tables will recognize (6.4) as the sum of

[(observed – expected value)2/expected value]

for all cells, which we discuss in Section 9.2.2, where an alternative
form easier to compute manually is given by (9.8).  For a k × 2
table T has asymptotically a chi-squared distribution with k – 1
degrees of freedom. Chi-squared tables (e.g. Neave, 1981, p. 21)
giving minimal critical values for significance at conventional levels
are widely available and nearly every statistical software package has
a program for this test.

Example 6.5

The problem.  For the data in Example 6.4 test for equality of population
medians using the asymptotic test based on (6.4).

Formulation and assumptions.  We calculate all quantities in (6.4) from Table
6.4 and compare the resulting T with the tabulated critical value.   

Procedure.  The expected numbers (n1A/N, etc.) are calculated for each cell in
Table 6.4 using (6.4). For instance, with surgeon I the expected number of cases
above M is n1A/N or 4 x 14/ 28 = 2. The expected values, in the order given in
Table 6.4 are:

2 2
3.5 3.5
2.5 2.5
2 2
1 1
3 3

Substituting these and the observed cell values from Table 6.4 in (6.4), we find  T
= 2 × (22/2 + 1.52/3.5 + 0.52/2.5 + 12/2 + 12/1 + 22/3) = 11.15. Tables indicate  T
≥ 11.07 is the critical value of chi-squared with k – 1 = 5 degrees of freedom for
significance at the 5 per cent level.

Conclusion.  There is moderately strong evidence against H0.  

Comments.  1.  All samples are small, but exact and asymptotic results agree
well.  For the chi-squared distribution with 5 degrees of freedom Pr(T ≥ 11.15) =
0.048, close to the exact P = 0.046 obtained in Example 6.4.     

2.  The alternative hypothesis that not all medians are equal is essentially
two-tailed, but the asymptotic test uses a single tail of the chi-squared
distribution.  This is because we use the squares of the discrepancies observed –
expected and these are necessarily positive, no matter what is the sign of the
actual discrepancy.  
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Computational aspects.  If StatXact is used for the Fisher exact test it gives an
asymptotic test statistic that differs from T given by (6.4). This is because it
uses a statistic, called the Fisher statistic, which also has an asymptotic chi-
squared distribution.  For this particular example the Fisher statistic takes the
value 10.23 and Pr(γ2 ≥ 10.23) = 0.069. The reason for this discrepancy is
explored further in Section 9.2. For larger samples the two asymptotic statistics
are usually in reasonable agreement.    

In practice, we may be interested in whether there are differences
in medians for some subset of the k populations. One might take
pairs of samples and compute, say, 95 per cent confidence limits for
the median differences for each pair using the method given in
Section 5.3.2. Since these confidence intervals will generally be
determined with varying precision for different pairs (due to
differences in sample size and perhaps differences in the population
distributions) direct comparisons involving these intervals sometimes
lead to what at first sight appear bizarre consequences.  For
example, if zero is included in the 95 per cent confidence interval
for the difference θ2 – θ1 and also in the 95 per cent confidence
interval for the difference θ3 – θ1 there is no strong evidence against
the null hypotheses that θ2 = θ1 or that θ3 = θ1.  It is tempting to
conclude that this implies a lack of evidence against the  hypothesis
θ3 = θ2. This does not follow. For instance, if most of the confidence
interval for θ2 – θ1 is positive and most of that for θ3 – θ1 is
negative, the likely differences with respect to θ1 are in opposite
directions. As a consequence, differences between possible values
for θ2 and θ3 may in fact be quite large and the 95 per cent
confidence interval for θ2 – θ3 might not include zero. Similar
considerations apply for pairwise comparisons in parametric analyses
and the practice is not recommended (see also Section 6.4.1 for
further comments).

If assumptions needed for, say, a Kruskal–Wallis test appear to
hold that test should be preferred to the median test, the latter then
usually being appreciably less powerful. For the data in Example
6.4, however, one may have reservations about the Kruskal–Wallis
test because the sample values suggest appreciable differences in the
spread of times taken by different surgeons.  

6.3   CENTRALITY TESTS FOR RELATED SAMPLES

In Example 4.3, we analyzed systolic blood pressure measured
before and after exercise for a group of students. The data from such
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a study form two related groups. The sign test gives an individual a
positive sign if the systolic blood pressure increases on exercise and
a negative sign if it decreases. The numbers of positive and negative
signs are then compared. This procedure amounts to ranking the two
blood pressure measurements for each individual and comparing
them before and after exercise. In a general repeated-measures
study, measurements on individuals are made at t points where t can
be three or more. The data collected form t related samples.

Another type of study that generates several related samples is the
randomized block design. In its simplest form, each patient
receives two treatments in random order. Alternatively, matched
patients can be used to compare the two treatments (Section 4.1.1).
A pair of linked observations is known as a block. Using matched
pairs allows us to make treatment comparisons by analyzing
differences between responses within blocks, which effectively
eliminate differences between blocks. It is advantageous to do this
when we expect results for each member of a pair to be more
homogeneous under a null hypothesis of no treatment effect than
would be the case if treatments were applied randomly to large sets
of less homogeneous units.

Generalizing this type of study to compare t (>2) treatments we
might replace our homogeneous pairs by blocks of t units, blocks
being chosen so that units within each block are as homogeneous as
possible for characteristics other than the applied treatments. For
example, to compare the effects of five different diet regimes on
pigs, each block may be a litter of five pigs.  In each litter the five
diets are allocated, one to each pig, chosen at random.

To compare three different cake recipes (treatments) we might
make batches of cakes using each recipe and divide each batch into
four equal parts and cook one part of each batch in four different
ovens (each oven is a block). We do this because each oven may
operate at a slightly different temperature and they may have
varying heat efficiencies. To assess the merits of the recipes we
might ask experts to rank them in order of preference for taste.
Comparison between cakes baked in the same oven is desirable
because, although all mixtures may produce poor cakes (all slightly
burnt for example) in a particular oven and all pleasant tasting cakes
in another, one hopes that the relative preference ordering for
products from each oven may be reasonably consistent from oven to
oven. We have so far not considered randomization within ovens. If
all mixtures are cooked at the same time it would be wise to allocate
the three different recipes to shelf positions at random as these may
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affect the cakes produced. If the cakes in each oven are to be cooked
one after another the time order could sensibly be randomized
separately for each oven as the end product might be affected by the
time the mixture stands before cooking. Alternatively, there may be
some carry-over effect on flavour depending upon which cake is
cooked first. These are matters reflecting principles of good
experimental design and are relevant irrespective of whether the
method of analysis is parametric or nonparametric.

6.3.1   Pitman type tests

When data consist of measurements or other sample values from
continuous distributions, it is again possible to use permutation tests
of the type developed by Pitman (1938) for tests equivalent to the
overall F-test in the analysis of variance. Once again for reasons
given in Sections 5.1.1 and 6.2.1 these are seldom used in practice
although the procedure is described and illustrated in simple terms
by Edgington (1995, Chapter 5) and Sprent (1998, Section 8.1).
The former reference gives a program for Monte Carlo tests for this
permutation ANOVA.  At the time of writing we know of no
software in major statistical packages for calculating exact
permutation P-values for repeated measures or randomized block
designs using raw measurement data. We do not discuss the test
further because of these practical limitations.  

6.3.2    The Friedman test

Friedman (1937) extended the sign test to the case of  several related
samples. As we have noted, in the sign test the two scores (– or +)
can be thought of as corresponding to ranks 1 and 2. In the
Friedman test, the scores for each individual are ranked (e.g. if
measurements are made at five points in time the five readings will
be ranked from 1 to 5). Each reading is then replaced by the
appropriate rank.

The null hypothesis is that the population distributions at each
time point are the same, so that for instance, the population medians
are equal. If the null hypothesis is true, inspection of the readings
for a particular time point will reveal a mixture of ranks. If the
population medians differ, then for at least one of the time points
the ranks should be mainly high or mainly low.

In the randomized block design, instead of several discrete times
there are an equivalent number of treatments. The number of units in
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each block equals the number of treatments (each treatment is
applied to exactly one unit in each block).

In parametric analysis of variance for continuously distributed
observations such as measurements we remove differences between
patients (or blocks) as a source of variability before making time
point (or treatment) comparisons. Do not worry about how this is
done if you are unfamiliar with the analysis of variance. For
Friedman’s test differences between patients (or blocks) are removed
automatically by the process of replacing observations by their ranks
when we do this separately within each block. The test is also
immediately applicable if the basic data are only ranks within each
block (see Exercise 6.11). Friedman’s test in the context of that and
similar examples examines the consistency of ranks rather than
acting as a test for centrality. This approach, which we discuss
further in Section 7.2, was developed independently by M.G.
Kendall.  

This is how the test works.  Suppose that in a study b patients are
measured at t time points (or in a randomized block design t
treatments are applied each to 1 of t units in each of b blocks). If xij

denotes the measurement at time i for patient j where i runs from 1
to t and j from 1 to b, we replace the xij for each patient by ranks 1
to t, this ranking being carried out separately for each patient
(block). We assume that there are no tied ranks. The sum of the
ranks for time point i is denoted by si, i = 1, 2, . . . , t. The
Friedman statistic can then be written

                                T
s

bt t
b tii=

 +
− +

12 Σ
1

3 1
2

( )
( )                   (6.5)

If b and t are not too small, T has approximately a chi-squared
distribution with t – 1 degrees of freedom.  For this no-tie situation,
some tables are available for conventional critical values of T, e.g.
Neave (1981, p. 34). Modern statistical software provides many
programs for exact or asymptotic tests.  

Example 6.6

The problem. For a group of seven students, the pulse rate (per minute) was
measured before exercise (I), immediately after exercise (II), and 5 minutes after
exercise (III). The data are given in Table 6.5. Use the Friedman statistic to test
for differences between pulse rates on the three occasions.

Formulation and assumptions.  Separately for each student we replace each
observation by its rank and calculate the Friedman statistic for these ranks to test
H0:  population  distributions  of  pulse  rates  are identical against H1: at least one
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Table 6.5  Pulse rate values for students before and
after exercise.
__________________________________________            

       Time  I   II   III
______________________

       Student

    A 72 120   76
    B 96 120     95
    C 88 132 104

       D 92 120   96
    E 74 101   84
    F 76   96   72
    G 82 112   76

_________________________________________

Table 6.6  Pulse rate values, ranks within students.
_________________________________________

     Time I II III
_____________________

       A 1 3 2
       B 2  3 1
       C 1 3 2
       D 1 3 2
       E 1 3 2
       F 2 3 1
       G 2 3 1

        __         __         __
    Total         10         21         11  
_________________________________________

 time point has a different distribution of pulse rates reflected by a median shift or
dominance.  As there are no ties within students, formula (6.5) may be used.

Procedure.  Relevant ranks are given in Table 6.6 along with the rank total for
each time point.  To use (6.5), we calculate Σ i (si

2).  The column totals are
squared and summed to give 102 + 212 + 112 = 662.  We have b = 7 students and
t = 3 time points, whence

     T =
7   3   ( 3 + 1 )

−                +    =1 2   6 6 2 3 7 3 1 1057( ) .

This gives an exact P = 0.0027.  By contrast, the chi-squared approximation with
T = 10.57 (2 degrees of freedom) gives P = 0.0051.

Conclusion.  There is strong evidence of a difference in pulse rates between
the three times.

©2001 CRC Press LLC

x x

x
x x



 

Comments.  1. The difference between the P-values given by the exact and
approximate methods is a cause for concern. For such small data sets it is unwise
to rely on the chi-squared approximation.

2. Inspection of the raw data shows that the strength of evidence against the
null hypothesis is not really surprising. From a physiological point of view, the
pulse rate should increase on exercise and fall off to the resting value once the
exercise has been completed. Note that some individuals appear to take longer
than others to return to the resting pulse rate.

 3.  While the physiological explanation of the differences is sensible for this
example care must be taken with measurements repeated in time because, unlike
the randomized block situation, time order is fixed, not randomized. This means
that evidence against H0 may be due to some factor other than that under study.
In the present study if all individuals recorded their pulse rates using a clock in
the exercise room and because of some unnoticed mechanical defect the clock
mechanism slowed only during the time of the second reading and this was not
detected this could explain higher readings on occasion II.  Alternatively, if for
some reason the air temperature at the time of the third reading had dropped
dramatically from that at the time of the second reading this might explain the
relatively lower rates at occasion III.

6.3.3   The Friedman test with ties

Tied ranks within individuals (blocks) are given mid-rank values. If
there are such ties we use a more general formula for T. In addition
to the above terms we need to calculate Sr = Σi,jrij

2 where rij is the
rank corresponding to xij (with no ties Sr = bt(t + 1)(2t + 1)/6). It is
also convenient to write St = Σi(si

2)/b.  
As with the Kruskal–Wallis test, a correction factor is required and
this is C = 1/4bt(t + 1)2. The Friedman statistic can be written

        T
b t S C

S C
t

r

=
− −

−
( )( )1                                 (6.6)

If there are no ties this is equivalent to (6.5). As with the no-ties
case, if b, t are not too small T has an approximate chi-squared
distribution with t – 1 degrees of freedom. Iman and Davenport
(1980) suggest that a better approximation than (6.6) is

            T
b S C

S C
r

r
1

1
=

− −
−

( )( )       (6.7)

which, under a null hypothesis of no treatment difference, has
approximately an F-distribution with t – 1 and (b – 1)(t – 1) degrees
of freedom. If the ranking is identical in all blocks the denominator
of T1 is zero. Iman and Davenport show that in formal significance
t e st in g  t er ms  th is  m a y be  i n te rp r et ed  a s  a  r es u lt  s ig n if ic an t  a t a 
P = (1/t)b – 1 significance level.
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Table 6.7  Nodes to first flower, total for four plants.
_____________________________________________

Block I II III IV
_________________

Treatment

Control 60 62 61 60
Gibberellic acid 65 65 68 65
Kinetin 63 61 61 60
Indole acetic acid 64 67 63 61
Adenine sulphate 62 65 62 64
Maelic hydrazide 61 62 62 65

Table 6.8   Nodes to first flower, ranks within blocks.
___________________________________________________

Block I II III IV       Total
___________________________

Treatment

    Control 1 2.5 1.5 1.5         6.5
    Gibberellic acid 6 4.5 6 5.5       22
    Kinetin 4 1 1.5 1.5         8
    Indole acetic acid 5 6 5 3       19
    Adenine sulphate 3 4.5 3.5 4       15
    Maelic hydrazide 2 2.5 3.5 5.5       13.5
___________________________________________________

Example 6.7

The problem.  Pearce (1965, p. 37) quoted results of a greenhouse experiment
carried out by J. I. Sprent (unpublished). The data, given in Table 6.7, are the
numbers of nodes to first initiated flower summed over four plants in each
experimental unit (pot) for the pea variety Greenfeast subjected to six treatments
– one an untreated control, the others various growth substances. There were
four blocks allowing for differences in light intensities and temperature gradients
depending on proximity to greenhouse glass. The blocks were arranged to make
these conditions as like as possible for all units (pots of four plants) in any one
block. Use the Friedman statistic to test for differences between treatments in
node of flower initiation.

Formulation and assumptions. Within each block we replace each obser-
vation by its rank and calculate the Friedman statistic for these ranks to test
H0: no difference between treatments against H1: at least one treatment has a
different centrality parameter from the others.  We may test using (6.6) or (6.7).

Procedure. Relevant ranks are given in Table 6.8 where we add a column
giving rank totals si for each treatment.  Squaring each rank and adding we get Sr

= 361. The uncorrected treatment sum of squares is
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St = (6.52 + 222 + 82 + 192 + 152 + 13.52)/4 = 339.625

and C = 4 × 6 × 72/4 = 294; using (6.6) T = 4 × 5(339.625 – 294)/(361 – 294) =
13.62, and (6.7) gives T1 = 3(339.625 – 294)/(361 – 339.625) = 6.40.

Using T1, as recommended by Iman and Davenport, we find that with 5, 15
degrees of freedom critical values for significance at the 5, 1 and 0.1 per cent
significance levels are respectively 2.90, 4.56 and 7.57 so we would judge our
result significant at the 1 per cent level.  If instead we compare T with the critical
values of the chi-squared distribution with 5 degrees of freedom the result is
significant at the 5 per cent but not the 1 per cent level. For the chi-squared
distribution with 5 degrees of freedom Pr(T ≥ 13.620) = 0.0182.  Comparing T
with the critical values given by Neave for six treatments and four blocks we find
significance is indicated at the 1 per cent level if T ≥ 12.71, so again significance
is indicated at that level, but remember that Neave’s tables apply strictly to the
‘no-tie’ situation.  The Friedman test program in StatXact confirms and refines
the above findings based on T. The exact P-value based on the relevant
permutation test is P = 0.0045, while the asymptotic P-value based on the chi-
squared distribution is P = 0.0182 as already stated.    

Conclusion.  There is strong evidence of a difference between treatments.   

Comments.  1. While for practical reasons we use T or T1 as our test statistic
we could use St because both Sr and C remain unaltered in the permutation
distribution which involves only permuting ranks within blocks.

2.  A parametric randomized blocks analysis of variance of the original data
gives F = 4.56, which corresponds almost exactly to P = 0.01.

3.  Whereas analysis of variance introduces a sum of squares reflecting
difference between block totals there is no such term in the Friedman analysis
because the sum of ranks in all blocks is the same, namely     t(t + 1).

Computational aspects.  For larger samples exact P-value computations like
those in StatXact may be slow or even impossible.  The Monte Carlo option will
then give good estimates of P.  The test statistic is calculated in many statistical
software packages, but often only asymptotic tail probabilities are quoted.

Ranks within blocks might be replaced by normal scores.
Experience suggests that such rescoring has few advantages.  Indeed,
if there are ties, the block differences removed by ranking may be
reintroduced, though usually not dramatically.

Ranking within blocks is robust against many forms of
heterogeneity of variance, in that it removes any inequalities of
variance between blocks (see Exercise 6.14).

Durbin (1951) gives a rank-based Friedman-type test for data in
incomplete blocks.

6.3.4  The Quade test

Quade (1979) proposed a test that is often more powerful than the
Friedman test.  It  also  eliminates  block  differences but weights the
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rank scores to give greater weight in those blocks where the raw data
indicate possibly more marked treatment effects. Details, together
with a numerical example, are given by Sprent (1998, Section 8.2)
and by Conover (1999, Section 5.8). StatXact includes a program
for this test. Whereas the Friedman test is basically an extension of
the sign test, the Quade test is effectively an extension of the
Wilcoxon signed-rank test and is equivalent to it when t = 2.

If xij denotes the observed value for treatment i in block j the
range, Dj of values in block j is the difference between the greatest
and least xij,  i.e.

Dj = maxi xij – mini xij.

For the Quade test the Dj are ranked in ascending order from 1 to b,
using mid-ranks for ties if needed. If we denote the rank of Dj for
block j by qj and the Friedman rank of xij by rij, then the Quade
scores are defined as sij = qj[rij – 1/2(t+1)].  These scores are used in
StatXact for an exact permutation test but if that program is not
available the Iman and Davenport (1980) analogue of (6.7) may be
used in an asymptotic test and it takes the form

     T
b S

S S
t

s t
1

1
=

−
−

( )

where St = Σi[(Σjsij)
2]/b and Ss = Σi,jsij

2. Asymptotically T1 has an F-
distribution with t – 1 and (b – 1)(t – 1) degrees of freedom. As
with the Friedman test, if the denominator is zero this may be
interpreted as a result significant at the P = (1/t)b – 1 significance
level.

For the data in Example 6.7 for the Quade test StatXact gives an
exact P = 0.0019.

 6.3.5   An alternative extension of Wilcoxon-type tests

Hora and Conover (1984) proposed ranking all observations
simultaneously without regard to treatments or blocks and carrying
out an analysis of variance on the ranks (or normal scores derived
from these). The procedure for ranks is described by Iman, Hora
and Conover (1984).

When applied to the data in Example 6.7 the relevant F-statistic
for treatment difference is F = 4.96 (compared with 4.56 for a
parametric test and 6.40 using (6.7)). The reader familiar with
standard analysis of variance may wish to verify these results (see
Exercises 6.4 and 6.13).
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6.3.6   The Page test for ordered alternatives

Page (1963) proposed an analogue to the Jonckheere–Terpstra test
for ordered alternatives applicable to blocked data. If the treatments
are arranged in the order specified in the alternative hypothesis and
si is the sum of ranks for treatment i (as in the Friedman test) the
Page statistic is P = s1 + 2s2 + 3s3 + . . . + tst. Asymptotically, if
H0: no treatment difference holds, then P has a normal distribution
with mean tb(t + 1)2/4 and variance b(t3 – t)2/[144(t – 1)].  Tables
(Daniel, 1990, Table A17) give critical values of P for small b, t.
The test is discussed in more detail by Daniel (1990, Section 7.3),
by Marascuilo and McSweeney (1977, Section 14.12), by Sprent
(1998, Section 8.2) and by Hollander and Wolfe (1999, Section
7.2).  StatXact includes a program for calculating exact P-values for
this test with the usual provision for a Monte Carlo approximation if
the sample size is too large.  An asymptotic approximation is also
given.  Hollander and Wolfe (1999, Table A23) give tail
probabilities for the Page statistic P given above for a range of
treatment and block sizes for which the asymptotic approximation
may prove unreliable.

6.4   MORE DETAILED TREATMENT COMPARISONS

In parametric analysis of variance after a preliminary overall test
interest usually shifts to specific treatment comparisons.  In factorial
experiments, for example, interest may centre on main effects and
interactions. In other contexts one may be interested in pairwise
comparisons for a selected subgroup of treatments or in comparing
one specified treatment (often called a control) with each of the
remaining treatments. One may also want to make comparisons
between groups of treatments; for example, if three of a set of seven
fertilizer treatments include a nitrate component while the remaining
four do not one may want to make inferences about differences
between the overall means or medians for the nitrate fertilizers and
the corresponding measure for the nitrate-free fertilizers.

In parametric ANOVA such comparisons are referred to as
contrasts in a linear model. The reader familiar with the notion of
factorial experiments (factorial treatment structures) will know that
in a 2 × 2 factorial experiment with factors A and B each at two
levels the main effect for A is defined as the difference between the
mean for all experimental units receiving the higher level of factor
A and the mean for all units receiving the lower level of factor A.   
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For nonparametric methods there are analytical procedures for
assessing such contrasts covering both hypothesis tests and
estimation (e.g. obtaining confidence intervals for differences). A
detailed treatment is beyond the scope of this elementary text, but an
account of the basic theory illustrated with a range of examples is
given by Hettmansperger and McKean (1998, Chapter 4). Many
contrasts of practical interest are considered by Hollander and Wolfe
(1999, Chapters 6 and 7) and by Conover (1999, Chapter 5).   
 

6.4.1   Multiple comparisons

Careful thought should be given to which of many possible contrasts
are relevant and to the implications of the fact that not all contrasts
are independent of one other. We drew attention to a possible
anomaly that may arise when comparisons are not independent in the
penultimate paragraph of Section 6.2.6. In an experiment in which
one treatment may reasonably be regarded as a control it is often
both relevant and sensible to compare the mean or median for this
treatment with the corresponding measure for each remaining
treatment. Such contrasts may be of interest, for example, when
comparing the efficacy of three different drugs in treating a disease
and the experiment includes also a group consisting of individuals
not receiving any drug. If an experiment is conducted where the
different treatments consist of administration of the same drug at
increasing dose levels the main contrast of interest will be in how
response changes with dose level and overall tests for increasing or
decreasing responses with dose are provided by the
Jonckheere–Terpstra or the Page test.  In some circumstances
umbrella tests of the type mentioned at the end of Section 6.2.5 may
also be appropriate. Further tests using specific contrasts may also be
relevant to find, for example, if there is a threshold dose which must
be exceeded before there is evidence of a real treatment effect.

For both parametric and nonparametric analyses many more-or-
less automatic procedures known as multiple comparison tests have
been devised. They are designed to safeguard against making
unwarranted inferences when many contrasts that are not indepen-
dent are examined. These aim to restrict the number of unwarranted
conclusions that differences are real that may arise as a result of
carrying out all possible tests. For example, if 20 treatments are
involved in an experiment and an overall parametric test such as the
F-test in the analysis of variance or a Kruskal–Wallis test indicates
no acceptable evidence of treatment differences, a comparison of the
largest   observed   treatment   mean    with    the   smallest   observed
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treatment mean will very often produce a P-value sufficiently small
to indicate strong evidence that these means differ. This is an ever-
present danger if one decides to carry out a test because the data
look as though that test might tell us something interesting.  

Many statisticians advise strongly against using multiple
comparison procedures blindly especially when there is no obvious
treatment structure such as that implied in factorial experiments
(where multiple comparison procedures are irrelevant) or in an
experiment where comparisons with a control are of prime interest.  

We shall not go into the sometimes deep and often contentious
logical arguments for and against multiple comparison methods
here. We stress rather that if used at all they should be used with
caution. A more constructive approach is one where an experimenter
(often in association with a statistician) elects (or nominates)
comparisons that are of interest before the data are obtained and
makes relevant assessments of evidence about these on the basis of
what information is later provided by the data. This is in the spirit
of our overall attitude in this book towards interpretation of P-
values as a tool for weighing evidence rather than a decision tool
implicit in the assignment of pre-fixed formal significance levels.  

We indicate one approach that is widely used for nominated
pairwise comparisons. This is to compute what are known as least
significant differences. Logically they can only be justified if
applied to prechosen comparisons (i.e. those chosen before the data
are collected, or at latest before they are examined) and even then
they are applied only if an overall Kruskal–Wallis, Friedman or
other relevant test indicates strong evidence for differences. The
critical P-value or ‘significance level’ used in multiple comparison
tests should be no less stringent than that in the overall test.

When using the Kruskal–Wallis test the criteria for accepting a
centrality difference between the ith and jth sample are that

1. the overall test indicates significance and
2.  if mi = si/ni, mj  = sj/nj are the mean ranks for these samples, then

    |mi – mj| > tN – t, α√[(Sr – C)(N – 1 – T)(ni + nj)/{ninj(N –  t)(N – 1)}]          (6.8)

where T is given by (6.2) and tN – t, α is the t-value required for
significance at level α per cent in a t-test with N – t degrees of
freedom, other quantities being defined as in Section 6.2.2 or 6.2.3.

An analogous result holds for van der Waerden scores with
sample rank means replaced by sample score means and C now zero
and T being the form of the statistic appropriate for these scores.
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Nominated comparisons for the Friedman test may be based on
either treatment rank means or totals since we have equal
replication.  The algebraic expression in terms of rank totals is
simpler.  An analogue of (6.8) gives the requirement for a least
significant difference between the treatment rank totals si, sj:

|si – sj| > t(b–1)(t–1),α√[2b(Sr – St)/(b – 1)(t – 1)]                (6.9)

in the notation of Section 6.3.2.
Most statisticians agree with Pearce (1965, pp. 21–2) that it is

reasonable to compare a subset of all samples (or treatments) if that
subset is selected before the data are obtained (or at least before they
are inspected) using formulae like (6.8) or (6.9) if one could
sensibly anticipate that the specified pair are likely to show a
treatment difference that may be of practical interest or importance.

Example 6.8

The problem.  In Example 6.2 special interest attaches to differences in
sentence length between Vulliamy and Queen because the former is an English
author with an academic background and limited fictional output and Queen is a
popular and prolific American writer. Use a least significant difference test to
determine whether the difference is significant.

Formulation and assumptions.   Relevant quantities are mostly available from
the solution to Example 6.2, and these are substituted in (6.8).

Procedure. Relevant rank means are m1 = 17/5 = 3.4 (Vulliamy), m2 = 72.5/6 =
12.1 (Queen). Also Sr – C = 2104.5 – 1624.5 = 480.0, T = 9.146, N = 18, n1 = 5,
n2 = 6, t = 3; tables give the critical t-value at the 1 per cent significance level with
15 degrees of freedom to be 2.95. The left-hand side of (6.7) is 12.1 – 3.4 = 8.7 and
the right-hand side reduces to

2.95 ×√[480 × (17 –  9.164) × 11/(30 × 17 × 15)] = 6.86.

Conclusion.  Since 8.7 > 6.86 the difference is formally significant at the 1 per
cent level, i.e. there is strong evidence of a real difference.

Comment.  We use the 1 per cent level since the overall test indicated
significance at this level.

 The description of the experiment and the data in the next
example were kindly provided by Chris Theobald.

Example 6.9

The problem.  As part of a study of the feeding habits of the larvae of the
Blue-tailed Damsel Fly, 6 of the larvae were collected along with 6 members of
each of seven species of prey on which they usually fed. Each larva was placed
on a cocktail stick in a glass beaker that contained water and one each of the
seven types of prey.  Records were kept of the order in which each larva ate the
prey.    The  results  are  shown  in  Table 6.9.   Some  ties  denoted by mid-ranks
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Table 6.9   Preferences of Blue-tailed Damsel Fly larvae for various prey.
________________________________________________________________
                                                                                                 

Larva 1 2 3 4 5 6 Total
______________________________________

Prey
Anopheles                                1 2 1 1 3 1   9
Cyclops 7 7 7 6.5 6.5 7  41
Ostracod 5.5 5.5 5 5 5 2.5  28.5
Simocephalus (wild) 3 4 4 6.5 1.5 4  23
Simocephalus (domestic) 2 1 6 4 6.5 6  25.5
Daphnia magna 4 3 2 2 1.5 2.5  15
Daphnia longspina 5.5 5.5 3 3 4 5  26

arose due to failure to observe the order when a larva ate two prey in quick
succession. Is there evidence that the larvae prefer to eat some species of prey
before others?

The cyclops was usually the last to be eaten. If the experimenter had prior
reason to anticipate such an outcome, how might you appropriately examine
whether the tendency was statistically significant?  

Formulation and assumptions.  Evidence of preference requires a Friedman
test analogous to that in Example 6.6. A multiple comparison test using (6.9) is
one approach to examining the situation regarding cyclops.

Procedure.  The Friedman test follows the lines in Example 6.6.  If not using
StatXact or some other program for a Friedman test the reader should confirm
(Exercise 6.20) that t = 7, b = 6, Sr = 837, St = 775.75, C = 672, T = 22.64 and
that T1 = 8.47, indicating a P-value less than 0.01, or probably less than 0.001.
Indeed the Monte Carlo estimate of the exact P-value in StatXact indicates
almost certainly that P < 0.0005. Setting _ = 0.01 we find the appropriate t-value
with (b – 1)(t – 1) = 30 degrees of freedom is 2.75, so when using (6.9) the least
significant difference between treatment rank totals given in the last column of
Table 6.9 is 2.75 ×√[2 × 6(837 – 775.75)/30] = 13.61.

Conclusion.  The difference 13.61 is exceeded between totals for cyclops and
all other prey except ostracod, so there is strong evidence that there is a low
preference for cyclops.

Comment.  We have used the only relevant test given in this book to clarify
the situation regarding cyclops but it is possible to devise a test comparing
cyclops with the average rank response for all other prey which would confirm
the conclusion that cyclops was less favoured. A more sophisticated approach to
multiple comparisons is given by Leach (1979, Section 6.2). A useful paper on
this topic is that by Shirley (1987), and an important earlier paper is Rosenthal
and Ferguson (1965).  References given in the preliminary discussion in this
section are also relevant.
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6.4.2   Factorial treatment structures

A lot of work has been done in recent years on nonparametric
analyses of factorial treatment structures. The detail is beyond the
scope of this book and a fuller discussion would only be useful to
readers already familiar with the equivalent analysis of variance.
Some key references to work in this area include Grizzle, Starmer
and Koch (1969), Iman (1974), Conover and Iman (1976), Scheirer,
Ray and Hare (1976), Mack and Skillings (1980), de Kroon and van
der Laan (1981), Groggel and Skillings (1986) and the paper by
Shirley (1987) referred to in Section 6.4.1. Further references,
together with a critical review of some problems in analysis of data
expressed as scores, are given by Thomas and Kiwanga (1993) and
Sprent (1998, Section 7.6) gives a simple exposition of some of the
basic ideas. A more sophisticated approach will be found in
Hettmansperger and McKean (1998, Section 4.4).

6.4.3  Commonsense analysis

We now show how simple nonparametric methods may be adapted
to deal with a practical complication. The example indicates the
versatility that goes with common-sense applications of nonpara-
metric methods in what is often termed exploratory data analysis.     

Example 6.10

The problem.  Suppliers of word-processing programs are testing an updated
version designed to make it easier to prepare technical reports containing graphs,
mathematical formulae, etc. To see whether the updated version (package A)
shows an advantage over the current version (package B) four people chosen at
random from nine are asked to prepare a specimen report using package A and
the remaining five to prepare the same report using package B. All participants
had similar experience in word processing. The numbers of mistakes made by
each operator in their first drafts of the report were:

Package A   2    11    24    26
Package B 17    25    28    31    63

A WMW test just fails to shows a significant difference in a one-tail test (that
test is appropriate because improvements in package A should not tend to
increase mistakes) at a conventional 5 per cent level. The relevant Wilcoxon
statistic (Exercise 6.5) is Sm = 13 and the corresponding one-tail P = 0.0556.

It is now disclosed that some participants in this test had a training in the
technology which was the subject of the report whilst others did not. The results
could now be displayed separately for each group:

           Package A     2    11
           Package B   17    25With knowledge of technology (K)
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           Package A   24    26
           Package B   28    31    63

Clearly, whichever package is used, those with no knowledge of the technology
make more mistakes than those using the same package who have a knowledge.
Explore the use of this new information in establishing whether there is  evidence
that package A reduces mistakes, independent of prior knowledge.

Formulation and assumptions.  A simplistic approach would be to apply the
WMW test separately to the two groups K and NK but the samples are now too
small to show significance no matter what outcome! We might regard the results
as representing samples from four populations and apply a Kruskal–Wallis test.
If this gave a significant result we would need to follow it by multiple
comparison tests comparing packages A and B with technical knowledge (K), and
packages A and B with no technical knowledge (NK). For the Kruskal–Wallis test
(Exercise 6.6) T = 7.1333.  In an asymptotic test this is not significant at the 5
per cent level, but it is significant in an exact test at a nominal 1 per cent level
(Neave, 1981, p. 33), a result confirmed by StatXact where P = 0.0079.  The
asymptotic test is clearly unreliable for such small samples. Tests based on least
significant differences (Exercise 6.6) indicate significance at the 5 per cent level
between packages A and B for K but not for NK.

Alternatively, we might look upon knowledge (K) as a factor (often called a
covariate) likely to reduce errors in a similar way for each package and allow for
its effect by considering separately permutation distributions for K and NK, and
then combine these results in an appropriate manner.  

Procedure.  We rank all observations as for the Kruskal–Wallis test, i.e.

Package A    1     2
Package B    3     5

Package A    4     6
Package B    7     8      9

but now we carry out separate permutation distribution calculations for K, NK
respectively using these scores.  With K the possible scores for package A are
clearly (1, 2) (1, 3) (1, 5) (2, 3) (2, 5) (3, 5).  The associated sums are S1 = 3, 4, 6,
5, 7, 8 each with probability 1/6. Similarly, for NK possible scores for package A
are (4, 6) (4, 7) (4, 8) (4, 9) (6, 7) (6, 8) (6, 9) (7, 8) (7, 9) (8, 9) with sums
S2 = 10, 11, 12, 13, 13, 14, 15, 15, 16, 17 each with probability 1/10 under H0.
The samples are independent, so each sum S = S1 + S2 has associated probability
1/60 and the tail probability relevant to a one-tail test is Pr(S ≤ k), where k is the
value we observe. We double this probability for a two-tail test. To work out the
relevant probabilities we proceed, much as we did in Example 1.4, to work out
the number of ways each sum can be obtained. In Table 6.10 each entry is the
sum of the S1 value at the top and the S2 value at the left. We repeat the values
13 and 15 for S2 as each occurs twice. This ensures equal probabilities of 1/60 for
all 60 sums in the body of the table. If a particular sum occurs r times the
associated probability is r/60. We easily deduce the probabilities associated with
each sum: these are given in Table 6.11.

Without knowledge of technology (NK)

With knowledge of technology (K)

Without knowledge of technology (NK)
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In this example adding the ranks associated with package A for K and NK we
find S = 1 + 2 + 4 + 6 = 13. This is the same as the WMW statistic. Can you see
why?  From Table 6.10 or Table 6.11, Pr(S ≤ 13) = 1/60.

Conclusion.  Since for a one-tail test P = 0.0167, there is quite strong evidence
that package A is superior.

Comments.  1. In this ad hoc analysis the assumption that if one package is
superior then this should be evident for both K and NK is critical. In practice, one
might have found that one group preferred one package and one the other – an
effect known as an interaction in the terminology of factorial experiments.

2. A parametric analysis of variance of the raw data when broken into the four
samples does not indicate a significant difference (see Exercise 6.7).

3. Those familiar with factorial treatment structures will realize that this
experiment might be looked upon as a 2 × 2 factorial experiment with knowledge
status as one factor and type of package as the other.  

Table 6.10   Equiprobable sums under separate permutation
 of sub-samples in Example 6.10.
________________________________________________

 S1  3  4  5  6  7  8
S2

10 13 14 15 16 17 18
11 14 15 16 17 18 19
12 15 16 17 18 19 20
13 16 17 18 19 20 21
13 16 17 18 19 20 21
14 17 18 19 20 21 22
15 18 19 20 21 22 23
15 18 19 20 21 22 23
16 19 20 21 22 23 24
17 20 21 22 23 24 25

________________________________________________

Table 6.11    Probability of each rank-sum in Table 6.10.
____________________________________________________

Value k of S Pr(S = k)    Value k of S      Pr(S = k)
____________________________________________________

 13     1/60           20         8/60
14     2/60            21         7/60
15     3/60            22         5/60
16     5/60            23         4/60
17     6/60            24         2/60
18     8/60            25         1/60
19     8/60

____________________________________________________
 Computational aspects.  The method given under Procedure is only feasible
for larger data sets with a suitable computer program. StatXact provides one for
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what are termed WMW tests with stratification. The method extends to more
than two covariate levels, e.g. we might have tested the packages using groups
with (a) no knowledge (b) elementary knowledge and (c) advanced knowledge.

6.4.4  Binary responses

In many situations each experimental unit may show one of two
responses – win or lose, succeed or fail, live or die, a newborn child
is male or female.  For analytic purposes we usually score such
responses as 0 or 1.  For example, generalizing from Example 4.4,
suppose five members A, B, C, D, E of a mountaineering club each
attempt three rock climbs at each of which they either succeed or
fail.  If a success is recorded as 1 and a failure as 0, the outcomes
may be summarized as follows:

Member A B C D E

Climb 1 1 1 0 0 1
Climb 2 1 0 0 1 0
Climb 3 0 1 1 1 1
_________________________________

Cochran (1950) proposed a method applicable to such situations
to test the hypothesis H0: all climbs are equally difficult against
H1: the climbs vary in difficulty. In conventional terms climbs are
‘treatments’ and climbers are blocks. If we have t treatments in b
blocks and binary (i.e. 0, 1) responses the appropriate test statistic is

                        Q
t t T t N

tN B
ii

jj

= − − −
−

( ) ( )1 12 2

2                 (6.10)

where Ti is the total (of 1s and 0s) for treatment i, Bj is the total for
block j and N is the grand total.  The exact permutation distribution
of Q is not easily obtainable but for large samples Q has
approximately a chi-squared distribution with t – 1 degrees of
freedom. Although not immediately obvious, for two treatments the
test reduces to McNemar’s test and in Section 9.5 we give an
alternative form of the McNemar test, which is exactly equivalent to
Q given above.

Cochran’s test is discussed more fully by Conover (1999, Section
4.6) and by Sprent (1998, Section 8.4).
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6.5   TESTS FOR HETEROGENEITY OF VARIANCE

Most tests for heterogeneity of variance discussed in Section 5.8
extend to several samples. We illustrate this for the squared-rank test
given in Section 5.8.3. The procedure parallels that for the
Kruskal–Wallis test with squared ranks of absolute deviations
replacing data ranks as scores. The absolute deviations of all sample
values from their sample mean are ranked over all samples and these
ranks are squared. The statistic T is identical to (6.2) except that
now si is the sum of the squared rank deviations for sample i and C
is the square of the sum of these squared ranks divided by N:
symbolically, denoting such a squared rank by rij

2, C = [Σi,jrij
2]2/N.

Sr  is here the sum of squares of the squared ranks, i.e. Sr = Σi,j rij
4.

If all population variances are equal, for a reasonably large sample T
has a chi-squared distribution with t – 1 degrees of freedom. If there
are no rank ties the sum of squared ranks is N(N+1)(2N+1)/6. Also,
for no ties the denominator of T reduces to

   Sr – C = (N – 1)N(N + 1)(2N + 1)(8N + 11)/180
Example 6.11

The problem.  As well as increasing with speed it is thought possible that
braking distance may be more variable from driver to driver as speed increases.
Use the squared rank test to test for heterogeneity of population variance on the
basis of the following sub-sample from Hinkley (1989) of initial speeds (mph)
and braking distance (feet).  

Speed Braking distance

   5   2   8    8    4
  10   8   7  14
  25  33  59  48  56
  30  60 101  67

Formulation and assumptions.  We obtain the absolute deviations |xij – mi| of
each observation xij from its sample mean mi. These deviations are then ranked
over combined samples and the statistic T is calculated and compared to the
relevant chi-squared critical value.

Procedure.  The means at each speed are m1 = 5.5, m2 = 9.67, m3 = 49, m4 =
76.  The absolute deviations together with their ranks (1 for least, 14 for greatest,
with mid-ranks for ties) are as follows:

Absolute deviation  3.5  2.5 2.5  1.5
 Overall rank  7  4.5 4.5  2

Absolute deviation  1.67  2.67  4.33
Overall rank  3  6  8

Absolute deviation  16  10  1  7
Overall rank   12.5  11  1  9

5 mph

10 mph

25 mph
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 Absolute deviation  16  25  9
Overall rank  12.5  14  10

The sum of squared ranks at 5 mph is s1 = 72 + 4.52 + 4.52 + 22 = 93.5. Similarly,
s2 = 109, s3 = 359.25, s4 = 452.25, so the sum of all squared ranks is 1014 and
Sp = (93.5)2/4 + (109)2/3 + (359.25)2/4 + (452.25)2/3 = 106 587.724. It is left as
an exercise for the reader to verify that C = 73 442.571 and that

Sr = 74 + 4.54 + . . . + 104 = 127 157.25,

whence T = 8.02.  Tables of the chi-squared distribution indicate that the critical
value for significance at the 5 per cent level with 3 degrees of freedom is T =
7.815.

Conclusion. There is evidence of heterogeneity of variance in the light of
significant at a nominal 5 per cent level.

 Comments.  1. One has reservations about an asymptotic result with such
small samples, but we can do little better except in extremely small samples
where we might calculate exact permutation distributions (see Computational
aspects below). For the original data there may of course be differences in
centrality whether or not we accept H0 : no variance difference in a squared rank
test.

2.  An alternative would be a Kruskal–Wallis test using overall ranks of
absolute deviations.

Computational aspects. StatXact provides a program for an exact permutation
test.  The squares of the rank deviations are submitted as data to the program for
one-way ANOVA with general scores and this gives P = 0.0240 broadly in line
with the asymptotic result based on T.  Indeed if T = 8.02 the exact chi-squared
P = 0.046, a discrepancy that should not surprise one with such small samples.      

6.6   SOME MISCELLANEOUS CONSIDERATIONS

6.6.1   Analogues of other parametric situations

Readers familiar with the design of experiments and the analysis of
data using ANOVA and related techniques will appreciate that the
nonparametric analogues introduced in this chapter correspond to
only a small portion of this methodology. We have only touched
upon the concept of factorial treatment structures and have not dealt
at all with the analogues of many experimental designs such as
balanced incomplete blocks. Many of these and other aspects are
covered in considerable detail by Hollander and Wolfe (1999,
Chapters 6 and 7).

6.6.2 Power sample size and efficiency

In the light of the problems hinted at in our discussions about power
calculations in the much simpler one- and two-sample situations in

30 mph
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earlier chapters it will hardly surprise readers to learn that exact
power calculations for most of the procedures considered in this
chapter are only available for a few very restricted, and often
unrealistic, situations. Exploration of the circumstances in which a
specific method is likely to be beneficial and any indication of
sample sizes needed to meet specific objectives may be aided by
information about Pitman efficiency. Pitman efficiencies for some
of the methods developed in this chapter as well as in other
situations discussed by them are considered by Hollander and Wolfe
(1999, Sections 6.10 and 7.16).

Bηnning and Kssler (1999) give some asymptotic power results
for the Jonckheere–Terpstra test and some closely related tests and
report that simulation studies indicate that their asymptotic results
provide good approximations even for moderate sample sizes.      

6.6.3  Runs test for three or more samples

If we have three or more groups and clustering or alternation is
suspected it is possible to derive the relevant tail probabilities for the
numbers of runs, see e.g., Mood (1940). The algebra involved is
challenging, however, and Mood’s work appears not to have been
widely used.  This may reflect the relatively low power of such tests
in many circumstances.

6.6.4  A quantile-based procedure for minimum dispersion

Sometimes samples come from several populations for each of which
the kth quantile is known to be the same. We may then be interested in
selecting the population with the smallest variance or some other
measure of spread. For example, if several different methods of
producing an item all lead to the same proportion of defectives (e.g.
falling below a minimum permitted weight) we may want to select the
production method with the smallest variability of weight among the
items produced. A nonparametric approach to this problem is given by
Gill and Mehta (1989, 1991).

6.7  FIELDS OF APPLICATION

Parametric analysis of variance of designed experiments has
historical origins in agriculture but soon spread to the life and
natural sciences, medicine, industry and, more recently, to business
and the social sciences. Development of nonparametric analogues
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was stimulated by a realization that data often clearly violated
normal theory assumptions and, more importantly, to provide a tool
for analysis of ordinal data expressed only as ranks or preferences
(see e.g. Example 6.9).  Ranking or preference scores often combine
assessment, either deliberately or subconsciously, of a number of
factors that are given different weights by individuals. It is thus of
practical interest to see if there is still consistency between the way
individuals rank the same objects despite the fact that they may not
give the same weight to each factor. Our first example illustrates this
point.

Preferences for washing machines

Consumers’ preferences for washing machines are influenced by
their assessment of several factors, e.g. price, reliability, power
consumption, washing time, load capacity, ease of operation and
clarity of instructions. Individuals weigh such factors differently; a
farmer’s wife offering bed and breakfast to tourists will rate ability
to wash bed linen highly; a parent with a large young family the
ability to remove sundry stains from children’s clothing; for many a
low price and running economy may be key factors. No machine is
likely to get top ratings on all points, but manufacturers will be keen
to achieve a high overall rating for their product from a wide range
of consumers. A number of people may be asked to state preferences
(e.g. ranks) for each manufacturer’s machine and for competitors;
each manufacturer wants to know if there is consistency in rankings
– whether most people give a particular machine a preferred rating –
or whether there is inconsistency or general dislike for some
machine. Each consumer is a block, each machine a treatment, in the
context of a Friedman test. The hypothesis under test is H0: no
consistency in rankings against H1: some consistency in rankings.
We discuss this type of situation further in Section 7.2.

Literary discrimination

A professor of English asserts that short stories by a certain writer
(A) are excellent, those by a second writer (B) are good, and those
by a third (C) are inferior. To test his claim and judgement he is
given 20 short stories to read on typescripts that do not identify the
authors and asked to rank them 1 to 20 (1 for best, 20 for worst). In
fact 6 are by A, 7 by B and 7 by C. Rankings given by the professor
when checked against authors are:
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      Excellent author  1  2   4   8  11  17
Good author  3  5   6  12  16  18  19
Inferior author  7  9 10  13  14  15  20

Do these results justify his claim of discriminatory ability? A
Kruskal–Wallis test could be used to test the hypothesis that the ranks
indicate the samples are all from the same population (i.e. no
discriminatory ability) but as the samples have a natural ordering –
excellent, good, inferior – a Jonckheere–Terpstra test is more
appropriate. See Exercise 6.9.

Assimilation and recall

A list of 12 names is read out to students.  It contains in random
order, 4 names of well-known sporting personalities, 4 of national
and international political figures, and 4 of people prominent in
local affairs. The students are later asked which names they can
recall and a record is made of how many names each student recalls
in each of the three categories. By ranking the results we may test
whether recall ability differs systematically between categories, e.g.
do people recall names of sporting personalities more easily than
those of people prominent in local affairs?  See Exercise 6.8.

Tasting tests

A panel of tasters may be asked to rank different varieties of
raspberry in order of preference. A Friedman test is useful to detect
any pattern in taste preference.  See Exercise 6.11.

Quantal responses

Four doses of a drug are given to batches of rats, groups of four rats
from the same litter forming a block. The only observation is
whether each rat is dead or alive 24 hours later. Cochran’s test is
appropriate to test for different survival rates at the four doses.

6.8  SUMMARY

Centrality tests for several independent samples include the follow-
ing:

The Kruskal–Wallis test (Section 6.2.2) is a rank analogue of the
one-way classification analysis of variance. The test statistics
commonly used are (6.1) or, if there are ties, (6.2). If p is the
number of samples (6.1) and (6.2) have asymptotically a chi-squared
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distribution with p – 1 degrees of freedom.  An alternative is to
transform ranks to van der Waerden scores.

The Jonckheere–Terpstra test (Section 6.2.5) is appropriate if H1

orders the treatments. The test statistic is a sum of certain
Mann–Whitney statistics. An asymptotic approximation is widely
used, but care is needed with ties.  

The median test (Section 6.2.6) is applicable to k samples from any
populations (these may differ from one another in aspects other than
the median). The test is essentially a special case of the Fisher exact
test, or asymptotically a Pearson chi-squared test applied to a k × 2
contingency table calculating the statistic using (6.4). The test often
has low power relative to many of its competitors.

For related samples the Friedman test (Section 6.3.2) is applicable
to randomized block designs where ranks are allocated within
blocks. One test statistic is given by (6.5) or (6.6) and
asymptotically it has a chi-squared distribution. Another statistic is
given by (6.7).  An alternative test is the Quade test (Section
6.3.4). The Page test (Section 6.3.6) is an analogue of the
Jonckheere–Terpstra test applicable in a randomized block context if
H1 orders treatments.

General treatment comparisons (Section    6.4) need care.
Analogies to least significant differences in parametric analyses for
both the Kruskal–Wallis and Friedman test situations are given in
(6.8) and (6.9).

The Cochran test (Section 6.4.4) is applicable to blocked binary
response data and the test statistic (6.10) has an asymptotic chi-
squared distribution.

The squared-rank test and some other tests for heterogeneity of
variance (Section 6.5) extends from those for two samples.

EXERCISES

Readers unfamiliar with (parametric) analysis of variance may ignore questions
on that topic.

6.1 Perform a parametric analysis of variance on the data in Example 6.2,
comparing your result with those for the Kruskal–Wallis test.

6.2 Reanalyze the data in Example 6.2 using van der Waerden scores.
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6.3 Carry out the asymptotic Jonckheere–Terpstra test for the data in Example
6.3.

6.4 Analyze the data in Example 6.7 using a parametric analysis of variance.
6.5 Verify for Example 6.10 that the relevant statistic for the WMW test is 13.
6.6 Perform the Kruskal–Wallis test on the four-sample data in Example 6.10

to confirm the results quoted in that example, including computation of
least significant differences between package A and package B (i) for those
with technical knowledge and (ii) for those without technical knowledge.

6.7 Perform a parametric analysis of variance (ANOVA) of the data on
numbers of mistakes in Example 6.10.

6.8 At the beginning of a session 12 names are read out in random order to 10
students. Four are names of prominent sporting personalities (Group A),
four of national and international politicians (Group B) and four of local
dignitaries (Group C). At the end of the session students are asked to recall
as many of the names as possible.  The numbers recalled were:

_______________________________________________________

Student I II      III      IV V      VI     VII    VIII     IX      X    
_______________________________________________________

Group A 3 1 2 4 3 1 3 3 2 4
Group B 2 1 3 3 2 0 2 2 2 3
Group C 0 0 1 2 2 0 4 1 0 2
_______________________________________________________

Rank the data within each block (student) and use a Friedman test to assess
evidence of a difference between recall rates for the three groups.  In
particular, is the recall rate for group B and/or group C significantly lower
than that for group A?  Carry out an ANOVA on the given data.  Do the
conclusions agree with the Friedman test?  If not, why not?

6.9 Use the ranks in the literary discrimination example in Section 6.7 to assess
validity of the professor’s claim to discriminate between the authors.

6.10 A sergeant major orders 34 men to parade tallest on the right, shortest on
the left, numbered 1 (tallest) to 34 (shortest).  Each man is then asked
whether he smokes or drinks alcoholic beverages and the rank numbers of
men in the various categories are as follows:

Drinker and smoker 3  8  11  13  14  19  21  22   26  27  28  31  33
Smoker, non-drinker      2  12  25  32  34
Drinker, non-smoker 1  7  15  20  23  24  30
Non-smoker, non-drinker   4  5    6    9  10  16  17  18   29

Is there evidence of association between height, smoking and drinking
habits? Would you reach the same conclusion if ranks were replaced by
van der Waerden scores?  (In this basic analysis ignore the ‘factorial’ nature
of the treatment structure although in practice this should be taken into
account in a more sophisticated analysis.)

6.11 Five tasters rank four varieties of raspberry in order of preference.  Do the
results indicate a consistent taste preference?  Mid-ranks are given for ties.  
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     ___________________________________________

Taster 1 2 3 4 5

Variety _____________________

  Malling Enterprise 3 3 1 3 4
   Malling Jewel 2 1.5 4 2 2
    Glen Clova 1 1.5 2 1 2

  Norfolk Giant 4 4 3 4 2
      _________________________________________

6.12 Four share tipsters are each asked to predict on 10 randomly selected days
whether the London FTSE Index (commonly known as Footsie) will rise or
fall on the following day. If they predict correctly this is scored as 1, if
incorrectly as 0. Do the scores below indicate differences in tipsters’
ability to predict accurately?

   ________________________________________

   Day 1   2   3   4   5   6   7   8   9  10      
________________________

Tipster 1 1   0   0   1   1   1   1   0   1   1
       Tipster 2 1   1   1   1   0   1   1   0   0   0

Tipster 3 1   1   0   1   1   1   1   1   0   1
Tipster 4 1   1   0   0   0   1   1   1   0   1

           ________________________________________

6.13 Replace the data in Table 6.7 by ranks 1 to 24 (using mid-ranks for ties
where appropriate) and carry out an ordinary randomized block analysis of
variance of these ranks to confirm the F-value quoted in Section 6.3.4.

6.14 Berry (1987) gives the following data for numbers of premature ventricular
contractions per hour for 12 patients with cardiac arrhythmias when each
is treated with 3 drugs A, B, C.

         ____________________________________________________________                         

Patient   1   2    3    4     5      6     7    8       9      10   11    12
____________________________________________________________

A 170 19 187 10 216   49    7 474  0.4   1.4   27    29
B     7   1.4 205   0.3     0.2   33  37     9  0.6 63 145   0
C     0   6   18   1   22   30    3     5  0 36   26   0
____________________________________________________________

Use a Friedman test to investigate differences in response between drugs.
In particular, is there evidence of a difference between drug A and drug B?
Note the obvious heterogeneity of variance between drugs. Carry out an
ordinary randomized block analysis of variance on these data. Do you
consider it to be valid?  Is the Friedman analysis to be preferred? Why?

6.15 Cohen (1983) gives data for numbers of births in Israel for each day in
1975. We give below data for numbers of births on each day in the 10th,
20th, 30th and 40th weeks of the year.
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________________________________________________

Day          Mon Tue Wed Thu Fri Sat Sun
________________________________________________

Week

    10 108 106 100   85   85  92   96
    20   82   99   89 125   74  85 100
   30   96 101 108 103 108  96 110
    40 124 106 111 115   99  96 111

________________________________________________

Perform Friedman analyses to determine whether the data indicate (i) a
difference in birth rate between days of the week that shows consistency
over the four selected weeks and (ii) any differences between rates in the
10th, 20th, 30th and 40th weeks.

6.16 Snee (1985) gives data on average liver weights per bird for chicks given
three levels of growth promoter (none, low, high).  Blocks correspond to
different bird houses.  Use a Friedman test to see if there is evidence of an
effect of growth promoter.

________________________________________________________        

Block 1 2 3 4 5 6 7 8    
_____________________________________

None 3.93 3.78 3.88 3.93 3.84 3.75 3.98 3.84
Low dose 3.99 3.96 3.96 4.03 4.10 4.02 4.06 3.92
High dose 4.08 3.94 4.02 4.06 3.94 4.09 4.17 4.12
________________________________________________________

Since dose levels are ordered, a Page test is appropriate.  Try this also.
6.17 Lubischew (1962) gives measurements of maximum head width in units of

0.01 mm for three species of Chaetocnema.  Part of his data is given below.
Use a Kruskal–Wallis test to see if there is a species difference in head
widths.

    __________________________________________________

    Species 1 53   50   52   50   49   47   54   51   52   57
        Species 2 49   49   47   54   43   51   49   51   50   46   49
        Species 3 58   51   45   53   49   51   50   51
       __________________________________________________

6.18  Biggins, Loynes and Walker (1987) considered various ways of
combining examination marks where all candidates sat the same number of
papers but different candidates selected different options from all those
available.  The data below are the marks awarded by four different methods
of combining results for each of 12 candidates. Do the schemes give
consistent ranking of the candidates?  Is there any evidence that any one
scheme treats some candidates strikingly differently than the way they are
treated by other schemes so far as rank order is concerned? Is there any
evidence of a consistent difference between the marks awarded by the
various schemes?
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___________________________________________________________

Cand. 1       2      3       4      5       6  7      8        9      10   11      12
___________________________________________________

 A       54.3   30.7 36.0  55.7 36.7  52.0 54.3  46.3  40.7  43.7 46.0  48.3
 B       60.6   35.1 34.1  55.1 38.0  47.8 51.5  44.8  39.8  43.2 44.9  47.6
 C       59.5   33.7 34.3  55.8 37.0  49.0 51.6  45.6  40.3  43.7 45.5  48.2

  D       61.6   35.7 34.0  55.1 38.3  46.9 51.3  44.8  39.7  43.2 44.8  47.5
____________________________________________________________

6.19 The pea node data in Example 6.7 include a control treatment with no
growth substance because the experimenter wished to compare all other
treatments with this as a base. Regarding each such as a nominated
comparison check whether any exceed the least significant difference.

6.20  Confirm the numerical values quoted in Example 6.9 that are relevant for
the Friedman test for the data in that example.

6.21 Chris Theobald supplied the following data from a study of 40 patients
suffering from a form of cirrhosis of the liver. One purpose was to examine
whether there was evidence of association between spleen size and blood
platelet count. Blood platelets form in bone marrow and are destroyed in
the spleen, so it was thought that an enlarged spleen might lead to more
platelets being eliminated and hence to a lower platelet count. The spleen
size of each patient was found using a scan and scored from 0 to 3 on an
arbitrary scale, 0 representing a normal spleen and 3 a grossly enlarged
spleen. The platelet count was determined as the number in a fixed volume
of blood. Do these data indicate an association between spleen size and
platelet count in the direction anticipated by the experimenter?
____________________________________________________________

Spleen Platelet count
size _______________________________________________________

  0 156 181 220 238 295 334 342 359 365 374 391 395   481
  1   65 105 121 150 158 170 214 235 238 255 265 390
  2   33   70  87 109 114 132 150 179 184 241 323
  3   79   84  94 259

____________________________________________________________
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7
Correlation and concordance

7.1   CORRELATION IN BIVARIATE DATA

We frequently want measures that summarize the strength of a
relationship between two variables. Interpreted sensibly, such
measures are often appropriate even when both variables are
outcome variables, neither being considered as ‘explanatory’ in the
sense of it indicating the cause of the other variable taking the values
it does.  Correlation is one measure of the strength of association or
dependence between two variables. In the parametric context, the
Pearson product moment correlation coefficient estimates the
degree of linear association between two variables. The coefficient
takes values between –1 and +1; these extreme values are attained
only when points lie exactly on a straight line (with negative and
positive slopes or gradients respectively). If one of the variables
tends to be large when the other is large and small when the other is
small, the correlation is positive. If large values of one variable
occur with small values of the other the correlation is negative. If
the two variables are independent of each other, the value of the
correlation is zero. A non-linear relationship can also produce a
correlation value close to zero; it is prudent to plot a scatter diagram
before calculating any correlation coefficient.

If we have measurements on two variables (such as height and
weight) for a sample of n individuals, these paired observations can
be written (x1, y1), (x2, y2), . . . , (xn, yn) where the population
distributions are X and Y. The sample Pearson product moment
correlation coefficient, r, is defined as

  

r

x x y y

x x y y

i i
i

i i
ii

=
− −

− −

∑
∑∑

[( )( )]

( ) ( )2 2
          (7.1)

which for computational purposes is usually rearranged and written 

     r = cxy/[√(cxxcyy)]
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where

       cxy= Σi(xiyi) — (Σixi)(Σiyi)/n,   cxx = Σixi
2 — (Σixi)

2/n,  

                  cyy = Σiyi
2 — (Σiyi)

2/n.

It is easy to verify from (7.1) that r is unaltered by what are
called location and scale changes (see also location and scale
parameters, Section 5.8), i.e. if all xi are replaced by (xi — k)/s and
all yi are replaced by (yi — m)/t where k, m are any constants that
represent location  or centrality changes and s and t are any positive
constants that represent scale changes.  Another way of putting this
is that r is invariant under such linear transformations of the x and y.
This property extends to the alternative correlation coefficients
described in Sections 7.1.3 to 7.1.5 and also has important practical
implications in some regression methods considered in Chapter 8.   

In parametric inference the Pearson coefficient is particularly
relevant to a bivariate normal distribution where the sample
coefficient r is an appropriate estimate of the population correlation
coefficient ρ. If ρ = 0 for a bivariate normal distribution this implies
X and Y are independent and values of r close to zero support that
hypothesis.  Even when the sample (x1, y1), (x2, y2), . . . , (xn, yn) is
assumed to come from a bivariate normal distribution, inference
about an unknown population correlation coefficient ρ based upon
the sample coefficient r given by (7.1) is more complicated than that
for inferences about the means or variances of the distributions of X
or Y.  If the joint distribution of X and Y is not bivariate normal, 
parametric inference about ρ is even more difficult.

In contrast, basic nonparametric correlation inference does not
require the assumption of bivariate normality and can be applied to
both paired observations of continuous data and to data consisting of
ranks.  These ranks may be the original data or they may be derived
from continuous measurements.

7.1.1   A Pitman test for zero correlation

Pitman (1937b) introduced a permutation test based on the
Pearson coefficient for continuous data that may be used for
inference. Like other permutation tests for continuous data such as
those for the one- and two-sample problems considered in Chapters
2 and 5 the test is a conditional test and fresh computation of the
permutation distribution is required for each data set. For testing
H0: ρ = 0 against a one-sided alternative, H1: ρ > 0, say, or a two-
sided alternative H1: ρ ≠ 0, an exact permutation P-value may be
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calculated. Modern computer software makes the computation
feasible for small samples. For larger samples Monte Carlo or
asymptotic approximations are available in, for example, StatXact. 
The appropriate test is based on the fact that if we fix the order of
the x values then all n! permutations of the y values are equally
likely under an hypothesis of independence or lack of association
between X and Y.  Permutations giving values of r near to —1 or +1
(±1) indicate strong evidence against the hypothesis H0: ρ = 0.  This
test has similar disadvantages to other permutation tests based on
raw scores  or continuous data ; not only are fresh computations of

the permutation distribution, or at least of relevant tail probabilities,
required for each data set but also the test lacks robustness. 
However, when normality assumptions hold, the Pitman efficiency
of the test is 1. It is easily seen from (7.1) that the permutation
distribution of r corresponds to that of Σi(xiyi), since the other
quantities in (7.1) are all invariant under permutation of the yi. The
test is seldom used in practice so we once again omit details but the
interested reader will find a simple numerical example in Sprent
(1998, Section 9.1). 

7.1.2   Other measures of bivariate association

Desirable properties of any correlation coefficient are that its
values should be confined to the interval (—1, 1) and that lack of
association implies a value near zero. Values near +1 should imply a
strong positive association and values near —1 imply a strong
negative association. For the Pearson coefficient, r = ±1 implies
linearity, but for the rank coefficients we introduce below values of
±1 need not, and usually do not, imply linearity in continuous data
from which the ranks may have been derived. Rather, we are
interested in what for continuous data is known as monotonicity. If
x and y increase together, this is a monotonic increasing relationship
whereas if y decreases as x increases the relationship is monotonic
decreasing. For rank correlation the value +1 implies strictly
increasing monotonicity, the value —1 strictly decreasing mono-
tonicity.

Rank correlation coefficients are also relevant to, and indeed were
originally developed for use in, situations where there is no
underlying continuous measurement scale, but where the ranks
simply indicated order of preference expressed by two assessors for
a group of objects, e.g. contestants in a diving contest or different
brands of tomato soup in a tasting trial.
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Figure 7.1  Scatter diagram for data in Table 7.1.  The broken lines at right angles
represent axes when the origin is transferred to the x, y sample medians.

Table 7.1  A data set showing scores x, y for two examination questions, Q1

and Q2, on the same paper.
_________________________________________________________________

Q1    x    1   3   4   5   6  8 10 11 13 14 16 17
Q2    y      13 15 18 16 23 31 39 56 45 43 37   0
 ____________________________________________________________________________

We illustrate some basic concepts in nonparametric correlation
using the artificial but realistic data in Table 7.1. This gives for 12
candidates the scores achieved in an examination paper consisting of
a short question marked out of 20 and a long question marked out of
60. To a certain extent the two marks are positively associated.
However, some students concentrated their revision on the material
for Question 1 (Q1), which they answered well, and performed less
well on Question 2 (Q2). One student only revised the material for
Q1 and did not even attempt Q2. Figure 7.1 is a scatter diagram for
these data. 

Figure 7.1 shows the tendency for the Q2 marks to increase with
the Q1 marks up to a certain point, beyond which the Q2 marks tend
to decrease. Other examples of this type of relationship can be found
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in a biological context. A measured response often increases broadly
in accord with increasing level of a stimulus, up to a maximum
beyond which the rate of increase may fall off, perhaps due to a
toxic effect associated with an overdose of a potentially beneficial
t r e a t m en t .  F o r t h e  d at a  i n  Ta b l e  7. 1 ,  t h e P e a r s on  c o e f fi c i e n t 
i s  r  =  0.373. This is not significantly different from zero at the 5
per cent level even in a one-tail test (exact one-tail P ≈ 0.116) if we
assume the sample is from a bivariate normal distribution, but that 
assumption is hardly realistic for these data. This lack of
significance of the Pearson coefficient is counter to an intuitive
feeling that there is evidence of a reasonably high degree of
association in the data. Not unexpectedly, because it lacks
robustness, the Pitman permutation test for these data gives an exact
one-tail P = 0.112, close to the value assuming normality.

In Sections 7.1.3 to 7.1.5 we consider three nonparametric
measures of correlation and see how each behaves with the data in
Table 7.1. We present the coefficients in a way that shows
relationships between these measures of correlation and some
concepts introduced in earlier chapters. 

Exact tests are based on appropriate permutations of data, ranks or
counts. For tests based on ranks the simplest permutation procedure
is to fix the rank order associated with one variable, conventionally
x, and to calculate the value of the chosen coefficient under all
equally likely permutations of values of ranks of the other variable,
y. The probabilities of the observed or more extreme values of the
chosen coefficient (or some linear function of it) determine the size
of the relevant critical region for testing for zero correlation.

7.1.3   The Spearman rank correlation coefficient

The rank correlation coefficient that bears his name was proposed by
Spearman (1904) and is computationally equivalent to the Pearson
coefficient calculated for ranks (in place of the original continuous
data if these are given).  The coefficient is often denoted by the
Greek letter ρ (rho), and referred to as Spearman’s rho.  Because ρ
 is also used for the correlation coefficient in bivariate normal
distributions (estimated by the Pearson coefficient r) to avoid
confusion we denote an estimate of the Spearman coefficient by rs

and the corresponding population value by ρs. The formula (7.1)
may be used to calculate rs if we replace (xi, yi) by their ranks (ri,
si).   If  there  are  no  ties  a  simpler  formula  can  be  obtained  by
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straightforward algebraic manipulation using properties of sums of
ranks and sums of squares of ranks.  The formula is

  
r 

T

n ns = −
−

1
6

12( )  
         (7.2)

where T = Σi(ri – si)
2, i.e. the sum of the squares of the difference

between the ranks for each sample pair.  If the x and y ranks are all
equal for each individual, i.e. ri = si for all i, then clearly T = 0
and rs = 1. If there is a complete reversal of ranks, tedious
elementary algebra establishes that rs = –1. If there is no correlation
between ranks it can be shown that E(T) = n(n2 – 1)/6, so that rs has
expected value zero.  If the observations are a random sample from
a bivariate distribution with X, Y independent we expect near-zero
values for rs.

Tables giving critical values at nominal 5 and 1 per cent
significance levels for testing H0: ρs = 0 against one- and two-sided
alternatives are widely available [see e.g. Hollander and Wolfe,
(1999, Table A31) or Neave (1981, p. 40)]. For not too large
samples StatXact provides exact P-values for this test with the
choice of an asymptotic or a Monte Carlo estimate of P for larger
samples.  Since rs is a monotonic function of T when n is fixed we
may use T itself as a test statistic and critical values of T have been
tabulated for small n. We prefer to use rs because it gives a more
easily appreciated indication of the level of association; it complies
with the convention that possible values of a correlation coefficient
should lie in the interval [–1, 1].

Both this coefficient and one we develop in Section 7.1.4 are
often used to test whether there is broad equivalence between ranks
or orderings assigned by different assessors. Do two examiners
concur in their ranking of candidates? Do two judges agree in the
placings of n competitors in a diving contest? Do job applicants’
ranks for manual skill based on a psychological test show a relation-
ship to their rankings in a further test for mathematical skills?

These coefficients are also appropriate for tests of trend. Does Y
increase (or decrease) as X increases? Such tests are often more
powerful than the Cox–Stuart test described in Section 3.2.3.

Example 7.1

The problem. Compute the Spearman coefficient for the data in Table 7.1 and
use your result to test H0:   s = 0 against the one-sided alternative H1:   s > 0.

Formulation and assumptions. The coefficient is computed using (7.2) and
tables or appropriate software are used to assess the evidence.

©2001 CRC Press LLC

ρ ρ



 

Table 7.2   Paired ranks and their differences, d, for the data in Table 7.1.
________________________________________________________________

x-rank    1   2   3   4   5   6   7    8    9  10  11   12
y-rank    2   3   5   4   6   7   9  12  11  10    8     1

   d  –1 –1 –2   0 –1 –1 –2  –4  –2    0    3   11
________________________________________________________________

Procedure.  To compute T in (7.2) we replace the data in Table 7.1 by the
paired ranks in Table 7.2.  T is calculated by taking the difference between ranks,
d, in each column, squaring that difference, and adding the squares.  Thus

T = (–1)2 + (–1)2 + (–2)2 + . . . + (11)2 = 1 + 1 + 4 +  . . . + 121 = 162

whence rs = 1 – (6 × 162)/(12 × 143) = 0.4336. One-tail critical values for
significance at nominal 5 and 1 per cent levels given by tables are 0.503 and
0.678.  For this example StatXact gives an exact one-sided P = 0.081 and using an
asymptotic approximation (see Section 7.1.6)  P = 0.080.

Conclusion. Since rs = 0.4336 is less than the value 0.503 required for
significance at a nominal 5 per cent level and corresponds to an exact P ≈ 0.08
there is not strong evidence against a hypothesis of lack of monotonic
association. 

Comment. We indicated in Section 7.1.2 that the exact test based on the
Pearson coefficient had an associated P = 0.112 which is slightly greater than that
obtained here. This again reflects the influence of the curved nature of the
relationship for high Q1 marks. The conceptual relationship between the
Spearman and the Pearson coefficients often results in both coefficients lacking
robustness when some observations are markedly out of line with the general
pattern.

Computational aspects. Many general statistical packages have programs that
compute rs or T or an equivalent statistic, but often either leave one to look up
tables or else give only an asymptotic result to establish whether there is strong
evidence against H0. If no specific program is included for the Spearman
coefficient one might use the paired ranks as ‘data’ for a Pearson test. This will
give the correct numerical value of the coefficient, but if such a program gives
only an asymptotic P-value this will usually be calculated on the assumption
that the data are a sample from a bivariate normal distribution and so it is not
relevant. 

The exact permutation distribution of rs for small samples is not
hard to compute and indeed StatXact will do this. The basic idea is
similar to that outlined in Section 7.1.1 for the permutation distrib-
ution of the Pearson coefficient.  In practice one would be likely to
use a facility like that in StatXact to compute the distribution, but if
it were needed we illustrate the procedure for four paired ranks in
Example 7.2.

©2001 CRC Press LLC



 

Table 7.3  Possible arrangements of y-ranks for four data pairs corresponding to
the x-ranks 1, 2, 3, 4 for a set of four paired observations.
________________________________________________________________

          x-ranks 1 2 3 4

Case Number      y-ranks      rs

     1 1 2 3 4            1.0
     2 1 2 4 3   0.8
     3 1 3 4 2   0.4
     4 1 3 2 4   0.8
     5 1 4 2 3   0.4
     6 1 4 3 2   0.2
     7 2 1 3 4   0.8
     8 2 1 4 3   0.6
     9 2 3 1 4   0.4
   10 2 3 4 1 –0.2
   11 2 4 1 3   0.0
   12 2 4 3 1 –0.4
   13 3 1 2 4   0.4
   14 3 1 4 2   0.0
   15 3 2 1 4   0.2
   16 3 2 4 1 –0.4
   17 3 4 1 2 –0.6
   18 3 4 2 1 –0.8
   19 4 1 2 3 –0.2
   20 4 1 3 2 –0.4
   21 4 2 1 3 –0.4
   22 4 2 3 1 –0.8
   23 4 3 1 2 –0.8
   24 4 3 2 1 –1.0 

________________________________________________________________

 Example 7.2

The problem.  Given four paired observations calculate the exact permutation
distribution of the Spearman correlation coefficient rs.  Assume there are no ties.

Formulation and assumptions.  It is easily seen that there are 4! = 24 possible
data pairings.  For each such pairing we may compute the value of rs and since all
pairings are equally likely under a hypothesis of no association each has an
associated probability of 1/24.

Procedure.  The number of possible pairings is obtained by noting that the
y-rank associated with the x-data value that is ranked 1 may take any of the four
values 1, 2, 3, or 4. Once we note which y-rank is associated with the x-rank 1
there are three remaining y-ranks that may be associated with the x-rank 2. This
leaves 2 possible y-ranks for association with the x-rank 3 and only 1 y-rank for
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association with the x-rank 4. Thus, as already stated, there are 4 × 3 × 2 × 1 = 4! =
24 possible arrangements. These are given in Table 7.3 together with the value of
rs computed for each.

From the last column of Table 7.3 we easily confirm that the possible values
of rs and the numbers of times each occurs are those given below.  Since each of
the 24 cases is equally likely to occur division of these numbers by 24 gives Pr,
the probability of occurrence of each possible value of rs under the hypothesis
H0:    s = 0. 

____________________________________________________________

rs –1 –0.8 –0.6 –0.4 –0.2  0.0 0.2 0.4 0.6 0.8 1.0
Occurs   1   3   1   4   2  2 2 4 1 3 1

Pr 1/24  1/8 1/24  1/6 1/12  1/12  1/12 1/6   1/24   1/8    1/24
____________________________________________________________

Conclusion. The distribution of rs under the null hypothesis is discrete and
takes only 11 possible values in the interval [–1, 1] with the given probabilities.

Comment.  The distribution is clearly symmetric about zero, and this
property holds for all values of n. 

Computational aspects. The program for the Spearman coefficient in StatXact
will generate the complete distribution for any specified value of n that is not too
large. For n = 10 the discontinuities are appreciably smaller than those in this
example, and the statistic takes 166 distinct values in the interval [–1, 1].
  

Ties in data are replaced by mid-ranks.  To obtain exact P-values
with ties requires a program like that in StatXact although the value
of rs may be computed by applying the Pearson coefficient formula
(7.1) to these mid-ranks.  Thomas (1989) showed that if (7.2) is
used to compute rs when there are ties represented by mid-ranks it
gives a value that is always greater than or equal to the correct value
given by the Pearson formula.  We consider an asymptotic
approximation in Section 7.1.6.

7.1.4   The Kendall  correlation coefficient

We use methods reminiscent of the Mann–Whitney scoring
procedure for the WMW test to obtain another measure for
monotonic association.  Inferences involve a coefficient known as
the Kendall correlation coefficient, or Kendall’s tau, which is
closely related to the Jonckheere–Terpstra test statistic. 

In practice, as in the Jonckheere–Terpstra test, we need not
replace continuous data by ranks, although the test may also be
carried out using ranks. Computation is simplified if we assume the
x data are arranged in ascending order. We may use either data in a
form like that in Table 7.1 where the x are already in ascending order
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or the corresponding ranks in Table 7.2. It is often convenient to use
the labels x-ranks  and y-ranks  to refer respectively to the ranks
associated with the first and second members of a bivariate pair
(x, y), even when our basic data are themselves ranks only and there
is no specific underlying continuous variable (e.g. in the case of
taste preferences or two judges ranking a number of competitors in a
sporting event like ice skating or high diving).

Denoting the ranks of xi, yi by ri, si respectively, the Kendall
coefficient is based on the principle that if there is association
between the ranks of x and y, then if we arrange the x-ranks in
ascending order (i.e. so that ri = i) the si should show an increasing
trend if there is positive association and a decreasing trend if there is
negative association. Kendall (1938) therefore proposed that after
arranging observations in increasing order of x-ranks, we score each
paired difference sj — si for i = 1, 2, . . . , n — 1 and j > i as +1 if this
difference is positive and as —1 if negative.  Kendall called positive
and negative differences concordances and discordances respect-
ively. Denoting the numbers of concordances and discordances by
nc, nd respectively, Kendall s tau, which we shall denote by tk,
although historically it has usually been denoted by the Greek letter
τ, is

t
n n

n nk
c d=

−
−1

2 1( )
         (7.3)

We distinguish between this sample estimate tk and the corres-
ponding population value that we shall denote by τk. If we are
comparing ranks assigned by two judges to a finite set of objects
such as ten different brands of tomato soup this is essentially the
entire population of interest, so our calculated coefficient is a
measure of agreement between the judges in relation to that
population. On the other hand, if we had a sample of n bivariate
observations from some continuous distribution (of measurements,
say) and calculate tk using (7.3) this is an estimate of some
underlying τk that is a measure of the degree, if any, of monotonic
association, or dependence between the variables X, Y in the
population. Since there are 1/2n(n — 1) pairs sj — si, if all are
concordances nc = 1/2n(n — 1) and nd = 0, whence tk = 1. Similarly,
if all are discordances, then tk = —1. If the rankings of x and y are
independent we expect a fair mix of concordances and discordances
and tk should be close to zero. When there are no ties in the rankings
nc + nd = 1/2n(n — 1).Although the coefficient is often referred to as a
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rank correlation coefficient it is clear that to compute it we only
need to know the order of the relevant x and y and not the actual
ranks as we did for the Spearman coefficient.  

Example 7.3

The problem.  Compute Kendall s tau for the data in Table 7.1. 

Formulation and assumptions.  We may compute nc from the y-ranks in Table
7.2.  We may also obtain nd this way, or deduce it from nd = 

1/2n(n — 1) — nc.

Procedure. To count the number of concordances we inspect the y-ranks in
Table 7.2, noting for each successive rank the number of succeeding ranks that
are greater.  The first y-rank is 2 and this is succeeded by 10 greater ranks,
namely 3, 5, 4, 6, 7, 9, 12, 11, 10, 8.  Similarly, the next y-rank, 3, gives 9
concordances.  Proceeding this way it is easily verified that the total number of
concordances is

nc = 10 + 9 + 7 + 7 + 6 + 5 + 3 + 0 + 0 + 0 + 0 = 47.

Since n = 12 we easily deduce that nd = 
1/2 × 12 × 11 — 47 = 19. This may be

verified by counting discordances directly from Table 7.2. 

Conclusion.  For the given data tk = (47 — 19)/66 = 0.4242.

Comments.  1. Since the x are ordered in Table 7.1, the order of the
corresponding y values is a one-to-one ordered transformation of the ranks in
Table 7.2. Thus we could equally well have computed the number of concor-
dances and discordances by noting the signs of all differences yj — yi in Table 7.1
as these signs correspond to those of the sj  — si above.

2. As noted above the counting procedure for concordances is reminiscent of
the Mann—Whitney counts for the WMW test, and we show below equivalence
to the Jonckheere—Terpstra test.

3.  We discuss a test of significance for H0: τk = 0 in Example 7.4.

The xi are in ascending order in Table 7.1; though not essential,
this simplifies computation.  More generally, the number of
concordances is the number of positive bij among all 1/2 n(n — 1)  of
the bij = (yj — yi)/(xj — xi),  i = 1, 2, . . . , n — 1 and j > i.  The
number of negative bij is the number of discordances.

Equivalence to a Jonckheere—Terpstra test is evident if we arrange
the x in ascending order as in Table 7.1 and regard the xi (or the associated
ranks) as indexing n ordered samples each of 1 observation where that 
observation is the corresponding y value.  Clearly the number of 
concordances is the sum of the Mann—Whitney sample pairwise
statistics used in the Jonckheere—Terpstra test in Section 6.2.5. Thus, in
theory, any program for the exact Jonckheere—Terpstra test may be used
for Kendalls coefficient to test H0 : no association between x and y ranks
against either a one-



 

or two-sided alternative. In practice, however, most programs for
the Jonckheere—Terpstra test will, in this situation, only give exact
tail probabilities for very small n. Asymptotic results, or Monte
Carlo estimates, of the exact tail probability must be used with this
approach if the samples are moderate to large. We consider more
specific asymptotic results in Section 7.1.6. Programs in general
statistical packages often calculate tk directly, some indicating
significance levels (usually asymptotic), others leaving the user to
determine these at a nominal level from tables. Extensive tables are
given, for example, by Neave (1981, p. 40) and by Hollander and
Wolfe (1999, Table A30). Some tables give equivalent critical
values of nc — nd for various n. However, calculating tk gives a better
feel for the degree of association implied by any correlation
coefficient. When there are no ties tests may be based on nc only, for
it is clear from (7.3) that if n is fixed, tk is a linear function of nc.   
StatXact includes a program that computes exact P-values for the
test of no association based on this coefficient for small to moderate
sample sizes.
 In passing it is worth noting one difference between the usual
scoring systems for the Kendall coefficient and that used for
Jonckheere—Terpstra, namely that whereas the former uses 1, 0, —1
for concordances, ties and discordances, the latter uses 1, 1/2 , 0. 
This is not a fundamental difference because providing certain
obvious adjustments are made to relevant formulae the scoring
systems may be interchanged without altering our conclusions.
 
Example 7.4.

The problem.   For the data given in Table 7.1 use Kendall s tau to test H0:
no association against H1: positive association between x and y.

Formulation and assumptions.  The appropriate test is a one-tail test of
H0: τk = 0 against H1: τk > 0.

Procedure.  In Example 7.3 we found tk = 0.4242, also showing that nc —  nd  =
47 — 19 = 28. Tables give nominal 5 and 1 per cent critical values for significance
when n  = 12 in a one-tail test as 0.3929 and 0.5455.  Corresponding values for
nc — nd  are 26 and 36.  More precisely, StatXact for these data gave an
approximate Monte Carlo estimate of the exact one-tail P of  0.032.

Conclusion.  There is moderately strong evidence against the hypothesis of no
association. In a formal significance test one would reject H0 at a nominal 5 per
cent significance level and accept a positive association between the ranks of x
and  y.

Comments. 1.  Had the alternative hypothesis been H1: τk ≠ 0, requiring a
two-tail test we would not have rejected H0 at the 5 per cent significance level.
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2.  The evidence of association provided by Kendall’s tau is stronger than that
provided by Spearman’s rho. We give a likely explanation in Section 7.1.7.

Computational aspects.  As indicated above, most general statistical programs
do not give exact P-values or significance levels for relevant hypothesis tests. 
That in StatXact gives exact results for small samples, but a Monte-Carlo
approximation is needed for moderate to large samples.

For small samples we may calculate the exact distribution of tk in
a way like that for the Spearman coefficient in Example 7.2.

Example 7.5

The problem.  Calculate the exact permutation distribution of Kendall’s tk
when n = 4, under the null hypothesis of no association.

Formulation and assumptions.  If the x-ranks are in ascending order, then for
each of the 4! = 24 equally likely permutations of the y-ranks we count the
number of concordances, nc.  When n = 4, nc + nd = 6 whence, given nc, we easily
find nd.  We then compute tk using (7.3) and count the number of times each
value of tk occurs.  Division of each number of occurrences by 24 gives the
probability of observing each value.

Procedure.  In Exercise 7.1 we ask for computation of tk for each of the 24
possible permutations of 1, 2, 3, 4.  For example, for the permutation 4, 2, 1, 3
we easily see that nc = 2, whence (7.3) gives tk= (2 – 4)/6 = –0.333.  It is easy to
verify that 4 other permutations give the same nc, whence Pr(tk = –0.333)  =
5/24.

Conclusion.  Completing Exercise 7.1 gives the following probabilities
associated with each of the 7 possible values of tk:

tk      1       0.67     0.33       0 –0.33     –0.67    –1
Probability    1/24     1/8      5/24      1/4     5/24         1/8    1/24

Comments.  1.  The distribution of tk is symmetric. 
2.  When n = 4, a P-value less than 0.05 can only be obtained in a one-tail test

corresponding to tk = ±1 for which P = 1/24 ≈ 0.042.  Samples of this size are of
little use in practice for inference.  

Computational aspects. StatXact will calculate complete distributions for
small samples. The Monte Carlo option in that program may be used to estimate
P-values rapidly and with good accuracy for quite large samples.

Modifications are needed to calculate and use tk when there are
rank ties. With ties (7.3) no longer takes values +1 or –1 even when
all mid-rank pairs lie on a straight line. Ties among the x or y are
both scored zero in Kendall’s coefficient because they are neither
concordances nor discordances. Now (7.3) can no longer take the
value ±1 because |nc + nd| is necessarily less than 1/2n(n – 1). It can
be shown (see e.g. Kendall and Gibbons, 1990, Chapter 3) that we
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obtain a coefficient that takes values in the interval [–1, 1] if we
replace the denominator in (7.3) by √[(D – U)(D – V)] where

D = 1/2n(n – 1), U = 1/2Σu(u – 1), V = 1/2 Σv(v – 1)

and u, v are the number of consecutive ranks in a tie within the
x- and the y-ranks respectively, and the summations in U, V are over
all sets of tied ranks. Clearly if there are no tied ranks U = V = 0
and the modified denominator reduces to that in (7.3). We denote
this modified statistic by tb and it is often called Kendall’s tau-b. If
there is an exact linear relationship between mid-ranks tb takes either
the value +1 or –1.  A simple example with heavy tying illustrates
some of the above points.

Example 7.6

 Two judges are each asked to arrange 12 Cabernet-Sauvignon wines in order of
preference.  Both agree on which wine they rank 1 (or best).  There are 4 wines
that they both agree are almost as good but neither can separate within that
group, so each gives these a tied rank 3.5, while there are a further 5 wines that
they both classify as fairly good but neither judge can separate the wines within
that group. Each of these wines is thus given a mid-rank 8.  Both also agree the
remaining 2 wines are equally bad and thus are ranked 11.5.  Thus the mid-ranks
allocated are those given below

Judge A   1 3.5 3.5 3.5 3.5 8 8 8 8 8    11.5 11.5
Judge B   1 3.5 3.5 3.5 3.5 8 8 8 8 8    11.5 11.5

Clearly there is a linear relationship between these mid-ranks pairs since they all
lie on a straight line through the origin with unit slope.  Since the ranks awarded
by Judge A (i.e. x-ranks) are ordered, nc, the number of concordances, is obtained
by counting the number of positive sj – si,  j > i.  This is easily found by a direct
(but careful) counting process, (see Exercise 7.12) to be 49, whence (7.3) gives tk
= 0.7424 since there are no discordances.  Also in Exercise 7.12 we ask you to
verify that U = V =    (4 × 3 + 5 × 4 + 2 × 1) = 17, whence

tb = 49/√[(66 – 17)2] = 1.

Here tb exhibits the desirable property of a correlation coefficient, i.e. tb = 1,
when there is complete ranking agreement, whereas tk does not.

The next example covers a less extreme situation involving ties.

Example 7.7

The problem.  Life expectancy showed a general tendency to increase during
the nineteenth and twentieth centuries as standards of health care and hygiene
improved.  The extra life expectancy varies between countries, communities and
even families. Table 7.4 gives the year of death and age at death for 13 males in a
clan  we  call  the  McDel tas  burie d in the Baden scallie buria l groun d in  We ste r
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Table 7.4  Year of death and ages of 13 McDeltas.

Year 1827   1884  1895  1908   1914   1918   1924  1928   1936   1941  1964   1965   1977
Age   13   83 34  1       11      16      68      13      77      74      87       65      83

Ross, Scotland (see Appendix). Is there an indication that life expectancy is
increasing for this clan in more recent years?

Formulation and assumptions.  If there is an increase in life expectancy those
dying later will tend to be older than those dying earlier.  Years of death, x, are
already arranged in ascending order so we may count the number of concor-
dances and discordances by examining all pairs of y and scoring each as
appropriate (1 for concordance, –1 for discordance, 0 for a tie).

Procedure.  There are no ties in the x. The first y entry is 13. In the following
entries this is exceeded in nine cases (concordances); there are two discordances
and one tie.  Similarly for the second y entry (83) there is one concordance, nine
discordances and one tie.  Proceeding this way we find that

nc = 9 + 1 + 6 + 9 + 8 + 6 + 4 + 5 + 2 + 2 + 0 + 1 = 53
and

nd = 2 + 9 + 4 + 0 + 0 + 1 + 2 + 0 + 2 + 1 + 2 + 0 = 23. 

Since n = 13, (7.3) gives tk = (53 – 23)/(
1/2 × 13 × 12) = 0.3846.  There are two

tied values at each of y = 13 and at y = 83.  Using the formula for the denominator
adjustment we have D = 78, U = 0 and V = 

1/2 × 2 × 1 +  
1/2 × 2 × 1 = 2, hence

tb = (53 – 23)/√[78 × (78 – 2)] = 0.3896. 

This small difference between tk and tb does not affect our conclusion.  StatXact
gives Monte Carlo estimates of the exact P and in three simulations of 10 000
samples gave estimated P = 0.0359, 0.0399 and 0.0381, suggesting P < 0.04.

 Conclusion.  There is reasonable evidence against the hypothesis H0: no
increasing trend of life expectancy and favouring the one-tail alternative that
expectancy has increased during the period covered.

Comments.  1.  If there are only a few ties and we ignore them and use (7.3)
the test is conservative, for clearly if we allow for ties by using tb the
denominator is less than that in (7.3). 

2.  A one-tail test is justified because we are interested in whether data for the
McDelta clan follow established trends in most developed countries.

3.  Care is needed in counting concordances if there are ties in both x and y. 
For example, for the data set:

     x 2 5 5 7 9
     y 5 1 3 8 1

the first pair (2, 5) gives one concordance (7, 8) and three discordances; the
second pair (5, 1) gives one concordance (7, 8) and no discordances because of
the tied values in x at (5, 3) and in y at (9, 1); the next pair (5, 3) gives one
concordance (7, 8) and one discordance (9, 1).
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Computational aspects.  With more than a few ties a program that gives at
least a Monte Carlo estimate of the relevant tail probabilities is especially useful.

For moderately large samples with only a few ties, use of (7.3)
and tables of critical values for the no-tie situation or the use of
asymptotic results given in Section 7.1.6 should not be seriously
misleading.            

We have so far established only that it is intuitively reasonable to
expect Kendall’s tk to take values near zero when the (xi, yi) are
sample values from a bivariate population where the random
variables X and Y associated with that population are independent,
implying a population τk = 0 (though the converse may not be true).
 This leaves open the question of what precisely the sample Kendall
coefficient is estimating when τk ≠ 0. We now give a probabilistic
interpretation of τk which leads naturally to tk as a reasonable sample
estimator for it whether or not X and Y are independent and
establishes the ‘parameter’ τk as a reasonable measure of a certain
type of dependence between X and Y. Further, the measure is
distribution-free as it makes only the assumption that we are
sampling from some unspecified bivariate distribution.

We base our argument on the fact that if (Xs, Ys) and (Xt, Yt) are
independent samples from a population with some joint cumulative
distribution function FXY(x, y), then each has that same distribution.

We consider some properties of a variable Bts = (Ys – Yt)/(Xs –
Xt). If Bts = (Ys – Yt)/(Xs – Xt)  > 0 this implies that either the joint
event (Ys > Yt and Xs > Xt ) or the joint event (Ys < Yt  and Xs < Xt )
has occurred and since these are mutually exclusive this in turn
implies that

 Pr(Bts > 0) = Pr[(Ys – Yt)/(Xs – Xt) > 0] =
Pr(Ys > Yt  and Xs > Xt) + Pr(Ys < Yt  and Xs < Xt ).

If also X and Y are independent we have

Pr(Ys > Yt  and Xs > Xt) = Pr(Ys > Yt) Pr(Xs > Xt ).   (7.4)

Because Ys and Yt both have the marginal distribution of Y it
follows that Pr(Ys > Yt ) = 1/2.  Similarly Pr(Xs > Xt) = 1/2, whence
from (7.4) independence implies Pr( Ys > Yt  and Xs > Xt) = 1/2×1/2 =
1/4.  Similarly under independence Pr(Ys < Yt  and Xs < Xt ) = 1/4

which in turn implies that under independence

     Pr(Bts > 0) = Pr[(Ys – Yt)/(Xs – Xt) > 0] = 1/4 + 1/4 = 1/2.

If we now define the population Kendall τk to be
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     τk = 2Pr[Bts > 0] — 1    (7.5)

it follows that under independence τk = 2 × 1/2 — 1 = 0.  A moment s
reflection indicates that if the departures from independence are such
that high values of Y tend to be associated with high values of X and
low values of Y with low values of X then

Pr(Bts > 0) = Pr[(Ys — Yt)/(Xs — Xt) > 0]

will be greater than 1/2, and will equal 1 if Ys > Yt always implies Xs

> Xt  in which case from (7.5) τk = +1.  A similar argument shows
that if high values of Y tend to be associated with low values of X
and low values of Y with high values of X then _ will be negative
and for a complete reversal of rank orders τk = —1. 

In the discussion following Example 7.3 we showed that if for all
pairs of n sample values (xi, yi), (xj, yj) we formed the quotients
bij = (yj — yi)/(xj — xi), i = 1, 2, . . . , n — 1, for all j > i, then a
positive value of this quotient corresponds to a concordance and a
negative value to a discordance and that in the notation used in (7.3)
nc/(nc + nd) provides a sensible estimate of  Pr[(Ys — Yt)/(Xs — Xt) >
0] in (7.5).  Further in the no-tie  case since nc + nd = _n(n — 1) it
is easily verified that substitution of nc/(nc + nd) in (7.5) leads to
(7.3).   Kerridge (1975) gives an interesting example of an
estimation problem with this probabilistic interpretation. 

It should be realized that the type of dependence described above
is by no means the only possible kind. For example, it is not
uncommon for high values of Y to go with both high values of X
and low values of X while intermediate values of Y go with
intermediate values of X. At its simplest this might represent a near
quadratic relationship between X and Y. The correlation measures
described in this chapter are generally unsuitable for detecting this
or many other possible kinds of nonlinear dependence.

7.1.5   A median test for correlation

Blomqvist (1950; 1951) proposed a test that embodies similar
concepts to the median test considered in Section 5.3. Suppose the
medians of the marginal distribution of X, Y are respectively θx, θy. 
In a sample we expect about half the observed x to be below θx and
about half the y to be below θy. If X and Y are independent we expect
a good mix of high, medium and low values of Y to be associated
with the various values of X. If we knew θx and θy we could shift the
origin in a scatter diagram of the observed (xi, yi) to (θx, θy). Then
under H0: X, Y are independent we expect about one quarter of all
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points to be in each of the four quadrants determined by the new
axes. Usually we do not know θx, θy, so Blomqvist proposed
replacing them by the sample medians Mx, My as reasonable
estimates. In Figure 7.1 axes with a new origin at (Mx, My) are
shown by broken lines, and working anticlockwise from the first (or
top right) quadrant the numbers of points in the respective quadrants
are 5, 1, 5, 1. The concentration of points in the first and third
quadrants suggests dependence between X and Y.  We may formalize
a test of H0 against a one-sided alternative of either positive or
negative association, or a two-sided alternative of some association,
following closely the procedure in Section 5.3.1. In general, if n is
even, denoting the sample medians for X, Y by Mx, My and assuming
no values coincide with these medians, we count the numbers of
pairs a, b, c, d in each of the four quadrants determined after this
shift of the scatter plot origin to (Mx, My). Because of sample
median properties we get a 2 × 2 contingency table of the form
shown in Table 7.5.

The marginal totals follow from the properties of the sample
median and  restriction to even n with no observation at either Mx or
My. If n is odd at least one sample value for x and one sample value
for y will coincide with the medians, resulting in points at or on axes
through the sample medians; such points are omitted from the count.
This necessitates modifications that we give at the end of this
section.

In the case envisaged in Table 7.5, if X, Y are independent then
clearly a, b, c and d each has expected value 1/4n.  Marked
departures from this value indicate association between X, Y. The
appropriate test procedure then uses the Fisher exact test. We
illustrate this in Example 7.8, but first we consider what is an
appropriate correlation measure having the desirable properties that
it takes values in the interval (—1, 1) with values near ±1 indicating
near-monotonic dependence, and independence resulting in values
near zero (although the converse may not be true).

Table 7.5  Contingency table for the median test for correlation.
____________________________________________________

Above Mx Below Mx Row total

    Above My     a     b     
1/2

    Below My     c     d     
1/2n

          ___    ___
    Column total    

1/2n    
1/2n      n

____________________________________________________
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Two possible coefficients are

        rd = (a + d – b – c)/n                             (7.6)

and

          rm
 = 4(ad – bc)/n2                                                            (7.7)

It is easily verified that in the special circumstances of Table 7.5,
where the marginal totals imply that a = d, b = c and a + b = 1/2n,
both (7.6) and (7.7) have the desirable properties for a correlation
coefficient and are equivalent, each taking the same set of 1/2n+1
possible values with the same associated probabilities under the null
hypothesis of independence. While (7.6) has arithmetic simplicity,
(7.7) generalizes more readily to other contexts, including the case n
odd, so it is usually preferred.

Example 7.8

The problem. Calculate rm (or rd) for the data in Table 7.1 and test the
hypothesis of independence against that of positive association between X and Y.

Formulation and assumptions. We find the sample medians Mx, My and deduce
the entries in Table 7.5. The relevant coefficient values are computed using (7.6)
or (7.7) and the test of significance is based on the Fisher exact test as in Example
5.6. In this case a one-tail test is appropriate since the alternative is in a specified
(positive) direction.

Procedure.  For the data in Table 7.1 the sample medians are Mx = 9, My = 27,
from which we deduce the values of a, b, c, d in Table 7.5 (most easily done by
inspection of Figure 7.1) to be a  =  d  = 5 and b  =  c = 1. Since n = 12 we easily
calculate rm = 2/3 = rd. We use the Fisher exact test, the relevant tail probabilities
being associated with the observed value a = 5 and the more extreme a = 6. 
Calculating these probabilities using (5.3) is easy even if an appropriate
computer program is not available. The relevant probability is P = 0.0400.

Conclusion. There is fairly strong evidence against the hypothesis of
independence and favouring that of positive association.  The numerical value of
the appropriate median correlation coefficient is rm = 0.667.

Comments.  1. The Pearson correlation coefficient was not significant for
these data; it is not robust against departures from normality of the type implicit
in the observation (17, 0).  However, rm is robust and indeed we would reach the
same conclusion if the point (17, 0) were replaced by any point in the fourth
quadrant (positive x, negative y) relative to axes with origin at the sample
medians if there were no other data changes.  In general, the median correlation
test is robust against a few major departures from a monotonic or near-
monotonic trend.  Unfortunately, it has low Pitman efficiency compared to the
Pearson coefficient test when the relevant normality assumption holds.

2.  The Blomqvist test is applicable no matter what the marginal distributions
of X, Y may be.
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 Computational aspects.  For all but very small samples a computer program
such as that in StatXact or Testimate is desirable for the Fisher exact test. The
asymptotic result based on the chi-squared test is generally quite reliable for large
samples.

If n is odd, or generally if there are values equal to one or both
sample medians, the marginal totals in a table like Table 7.5 will no
longer be 1/2n. It is then appropriate to use the Fisher exact test with
the marginal totals actually observed, and if a correlation coefficient
is required to use a modification of rm, namely

 rm = (ad – bc)/{√[(a + b)(c + d)(a + c)(b + d)]}

where a, b, c, d are the observed cell values.  This reduces to (7.7)
when all marginal totals are 1/2n. 

The coefficient rm is easy to calculate, but in practice it is used
less often than the Spearman or Kendall correlation coefficients.

Several other nonparametric tests for correlation have been
suggested. Gideon and Hollister (1987) proposed a measure that is
also relatively easy to calculate, although this advantage is partly
negated for small n by the fact that the coefficient takes only
relatively few possible values and the permutation distribution under
the null hypothesis is less easily established than that for the Kendall
or Spearman coefficients. The authors give fairly extensive tables of
nominal critical values. They also compare the power of the test for
monotonic association when using their coefficient to those using
other coefficients, with generally favourable results for the former. 

Dietz and Killen (1981) extend the concept of Kendall’s tau to a
multivariate test for trend applicable to a pharmaceutical problem. 

7.1.6   Asymptotic results

For large n, tests using the Spearman and Kendall coefficients may
be based on the distribution of functions of rs and tk that have an
asymptotic standard normal distribution.

Detailed discussions of the distribution of rs under H0: ρs = 0 are
given by Gibbons and Chakraborti (1992, Section 12.3) and by
Kendall and Gibbons (1990, Section 4.14). Convergence to
normality of the distribution tends to be slow so the asymptotic
result should not be used for values of n < 30, and some writers
suggest an even higher value.  For large n it is usually assumed that
z = rs√(n – 1) has approximately a standard normal distribution
under H0.  This approximation is identical in form to one often used
for the Pearson coefficient.  A better approximation that is often
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reasonable for values of n as low as 10 suggested in Kendall and
Gibbons and elsewhere is

  t
r n

r
n − = −

−
2 2

2

1

and this has approximately a t-distribution with n – 2 degrees of
freedom under H0.  This approximation is used in StatXact for
asymptotic estimation of a P-value for both the Pearson and
Spearman coefficients.

For Kendall’s tau the exact distribution of tk under H0: τk = 0 is
difficult to obtain.  Again a full discussion is given in Gibbons and
Chakraborti (1992, Section 12.2) and by Kendall and Gibbons
(1990, Section 4.8) who show  under H0 that E(tk) = 0 and Var(tk) =
2(2n + 5)/[9n(n – 1)] and that for reasonably large n

z
t n n

n
k= −

+
3 1

2 2 5

( )

( )
          (7.8)

has approximately a standard normal distribution.  This is the basis
of the asymptotic P-value determination used in StatXact and in
many general statistical programs, not all of which give exact P-
values. Modifications are needed for ties and Gibbons and
Chaktraborti discuss these, although a few ties may make little
difference. Some writers suggest that the asymptotic result for the 
Kendall coefficient should not be used if n < 15 so it would not be
recommended for the data in Example 7.7. However, in that
example where tk = 0.3846 we find z = 1.83 implying that for a one-
tail test P = 0.0336, broadly in line with the Monte Carlo
approximations to the exact P in Example 7.7 despite the small
sample size.

A difficulty in obtaining confidence intervals for the population
coefficients,   s and   k using asymptotic results is that the limits may
lie outside the closed interval [–1, 1]. Another is that the dist-
ributions of the sample statistics are not simple for non-zero ρs or
τk. In particular, the variances are not the same as those under a zero
value hypothesis. The problem is discussed further by Kendall and
Gibbons (1990, Chapters 4 and 5) who give useful approximations. 

7.1.7   A comparison of the Spearman and Kendall coefficients

Statisticians are often asked which of the coefficients – Kendall or
Spearman – is to be preferred. There is no clear-cut answer. They
seldom lead to markedly different conclusions, though Examples 7.1
©2001 CRC Press LLC

ρ τ



 

and 7.4 show this is possible when one ranked pair is clearly out of
line with the general trend.  For instance, in Example 7.1 one pair
of ranks, i.e. (12, 1), contributes (12 – 1)2 = 121 to a total T value
of 162, suggesting rs may be sensitive to such an outlier.

An alternative way of calculating the coefficients clarifies the
relationship between them. We assume there are no ties and that the
pairs of ranks are arranged in ascending order of x-ranks as in
Tables 7.1 and 7.2. Writing sk for the rank of yk we define sij = sj –
si, i = 1, 2, 3, . . . , n – 1 for all j > i. Clearly, the number of
concordances in Kendall's tk equals the number of positive sij, and
the number of discordances equals the number of negative sij.

We do not prove it, but tedious algebra shows that if we denote
by ncs the sum of the values of the positive sij (the values of
differences that are concordant) and by nds the sum of the values of
the negative sij (the values of differences that are discordant), then in
the ‘no-tie’ case ncs + nds  = n(n2 – 1)/6 and rs is given by

r
n n

n n
s

c s ds= −
−( ) /2 1 6

          (7.9)

which has a formal similarity to (7.3).  We may write the sij as an
upper triangular matrix

s2 – s1 s3 – s1 s4 – s1 . . .    sn – s1

s3 – s2 s4 – s2  . . .    sn – s2

  . . . . .
  . . .  .

             sn-1 – sn–2    sn – sn–2

        sn – sn–1

For the data in Table 7.2 the matrix (see Exercise 7.3) is

   1   3  2 4 5 7 10   9   8   6    –1
  2  1 3 4 6   9   8   7   5     –2
       –1 1 2 4   7   6   5   3    –4

2 3 5   8   7   6   4    –3
1 3   6   5   4   2       –5

2   5   4   3   1       –6
  3   2   1    –1      –8

–1 –2    –4      –11
–1    –3      –10
        –2    –9

        –7
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To compute tk using this tableau we count the number of positive
entries and obtain nc = 47 and the number of negative entries, nd = 19.
 These were the values obtained in Example 7.3. To obtain ncs we
add all positive entries in the matrix. In Exercise 7.3 we ask you to
verify that ncs = 1 + 3 + 2 + 4 + . . . + 3 + 2 + 1 = 205.  Similarly,
adding all negative entries gives nds = 1 + 2 + 1 + 4 + . . . + 10 + 2 +
9 + 7 = 81.  Substitution in (7.9) gives rs = 6 × (205 — 81)/(12 ×
143) = 0.4336, agreeing with the value in Example 7.1.

Examining the triangular matrix helps explain why, in this
example, rs plays down any correlation relative to that indicated by
tk. A few negative sij in the last column make relatively large
contributions to the sum nds. This is clearly attributable to the fact
that the low rank value of the 12th and last observation, s12 = 1, is
out of line with the high ranks assigned to its near neighbours.

Many other aspects of parametric correlation have nonparametric
equivalents, including that of partial correlation. An introductory
treatment to that topic is given in Sprent (1998, Section 9.6) and it
is more fully discussed by Kendall and Gibbons (1990, Chapter 8),
and by Siegel and Castellan (1988, Section 9.5). Care is needed to
interpret partial correlation coefficients for ranks correctly.

7.1.8   Efficiency power and sample size

Various results concerning efficiency, power and sample sizes
needed to ensure a required power when specific alternative
hypotheses hold for both the Kendall and Spearman coefficients are
scattered throughout the literature. One important result is that when
sampling from the bivariate normal distribution both the Kendall
and Spearman coefficients have the same Pitman efficiency of 0.912
relative to the Pearson coefficient. The Kendall coefficient tends to
do rather better than the Pearson coefficient when sampling from
long-tailed symmetric distributions and has Pitman efficiency of
1.266 relative to the Pearson coefficient for a bivariate double
exponential distribution. Noether (1987a) gives the following
asymptotic formula for the sample size needed to ensure power 1 —
β in a one-tail test of H0: τk = 0 against H1: τk = τ1 where τ1 has
some fixed nonzero value:

    
n

z z
≈

+4

9

2

1
2

( )α β

τ
 

Here z_, z_ have the fairly obvious standard normal tail probability
meanings assigned to them in (4.3).  Some further results on power
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for the Kendall coefficient are given by Hollander and Wolfe (1999,
pp. 375—376).

7.2   RANKED DATA FOR SEVERAL VARIABLES

If more than two observations are ranked for each of a set of n
experimental units we often want to test for evidence of concordance
between rankings of the units.

We indicated in Section 6.3.2 that the Friedman test may be
applied to rankings of objects (preferences for different varieties of
raspberry, placings in a gymnastics contest by different judges,
ranking of candidates by different examiners) to test whether there is
evidence of consistency between those making the rankings.
Kendall, independently of Friedman, proposed the use of a function
of the Friedman statistic which is often referred to as the Kendall
coefficient of concordance and tabulated some small-sample critical
values relevant to testing the hypothesis that the rankings were
essentially random against the alternative of evidence of consistency.
Kendall regarded his coefficient of concordance as an extension of
the concept of correlation to more than two sets of rankings.
Whereas in the bivariate case we may use the Kendall correlation
coefficient to measure both agreement (positive association) and
disagreement (negative association), concordance, whether measured
by Kendall s original statistic or the Friedman modification, is one-
sided in the sense that rejection of the null hypothesis indicates
positive association. For example, if four judges A, B, C, D rank
five objects in the order given in Table 7.6 we would not with this
test reject the hypothesis of no association, for the Friedman statistic
(6.5) would take the value zero.

Table 7.6  Rankings of five objects by four judges.
__________________________________________________

    Judge
Object A B C D

   I 1 5 1 5
  II 2 4 2 4
  III 3 3 3 3
  IV 4 2 4 2
  V 5 1 5 1
___________________________________________________
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There is here complete agreement between judges A and C and
between judges B and D: but the latter pair are completely at odds
with judges A and C. The Kendall and the Friedman statistics do not
detect such patterns.

An example indicates Kendall s approach in developing his
concordance test.

Example 7.9

The problem.  There are six contestants in a diving competition and three
judges each independently rank their performance in order of merit (1 for best, 6
for least satisfactory). The rankings allocated by each judge are given in Table
7.7.  Assess whether there is evidence of consistency between judges.

Formulation and assumptions.  It is clear that the judges do not agree
completely but there is a reasonable consensus that competitor III is a good
performer and there is fairly strong support for competitor I while competitors
IV and VI are thought to perform poorly. A moment s reflection indicates that a
low rank total (last column) indicates a performance considered by the judges
overall to be better than that of a competitor who attains a high rank total. Had
the judges been inconsistent in their judgement (effectively just allocating ranks
at random) one would expect all rank sums to be nearer to the average sum of
these totals over all six competitors which is clearly 63/6 = 10.5. Had there been
complete agreement between judges it is easily verified that the six competitor
rank sums would be some permutation of 3, 6, 9, 12, 15, 18. Kendall s coef-
ficient of concordance is based on the sum of squares of deviations of the
competitors  rank sums from their mean or expectation. If we denote this sum of
squares by S then it is intuitively reasonable, and can indeed be shown that S has
a maximum when the judges are in complete agreement and a minimum of zero
when all rank sums equal the mean of 10.5 (which would imply some tied ranks
in the situation considered in Table 7.7). Arguing along these lines Kendall
proposed the statistic

   W
S

S
=

Max( )

Table 7.7  Ranks awarded to six competitors by three judges in a diving
competition.
________________________________________________________________

      Judge
Competitor  A B C Rank total
________________________________________________________________

   I  2 2 4          8
  II 4 3 3        10
 III 1 1 2          4
 IV 6 5 5        16
  V 3 6 1        10
 VI 5 4 6        15

________________________________________________________________ 
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which he called a coefficient of concordance.  Clearly this takes the maximum
value 1 when there is complete agreement and the minimum value zero when
there is no agreement.  (It will of course also take the value zero in a situation like
that in Table 7.6 where there are contrary opinions held by pairs of judges.) 
Tables of critical values are available but any program that gives exact P-values
for the Friedman test may be used also to obtain P for the Kendall statistic.

Procedure.  Clearly from Table 7.7, 

S = (8 — 10.5)2 + (10 — 10.5)2  + . . . + (15 — 10.5)2 = 99.5.

 If there are no ties it is not difficult to show that Max(S) = m2n(n2 — 1)/12 if
there are m judges and n competitors, which in this case gives Max(S) = 157.5,
whence W = 99.5/157.5 = 0.632. StatXact has a program for this test (although
the Friedman test program will give the same exact P-value) and this confirms the
value of W and gives the exact P = 0.062.

Conclusion. There is not very strong evidence of concordance between the
judges.

Comment.  The weakness of the evidence indicates the fairly low power of the
test against alternatives other than a very high level of agreement. The judges are
particularly erratic in their assessment of competitor V.

Computational aspects.  As indicated above P-values are obtainable from a
program for the Friedman test, but this will not calculate the value of W directly.

We do not prove it but it can be shown that the statistic T for the
Friedman test given by (6.5) and W satisfy the relationship

     W = T/[m(n — 1)].        (7.10)

Some modifications to the procedure in the above example are
needed for ties. These are basically similar to those for ties in the
Friedman test. If we compute T for the tied Friedman case as
described in Section 6.3.3 we may derive the correct W using
(7.10).
  An intuitively reasonable measure of concordance between
rankings of competitors by several judges is one based on the mean
of pairwise rank correlation coefficients and it can be shown that for
m judges the mean, Rs, of all _m(m + 1) such Spearman coefficients
is such that Rs = (mW — 1)/(m — 1). It follows that when Rs = 1 (i.e.
when all pairwise rankings are in complete agreement) then W = 1. 
When W = 0 then Rs = —1/(m — 1) which can be shown to be the
least possible value for Rs.  Examination of the overall pattern of
pairwise rank correlation coefficients is useful for detecting patterns
of the type illustrated for an extreme case in Table 7.6 where the
pairwise Spearman coefficients are easily shown to take the value +1
twice and the value —1 four times exhibiting a definite pattern but
where W = 0. This indicates that, like rank correlation in the bivariate
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situation, W = 0 when there is no association pattern, but the
converse may not hold.

7.3   AGREEMENT

All measures so far described in this chapter relate to the concept of
association between variables. With positive association between two
variables if one variable takes a large value then so will the other.
This does not necessarily mean, however, that the scores on some
scale for both variables are identical. If, in addition to positive
association, scores on both variables tend to be the same then we say
that there is a high level of agreement. Agreement is not the same
as association. It is possible for a correlation coefficient to be very
high whilst at the same time the agreement is very low (for instance,
if scores for one variable are consistently higher than the score for
the other). Agreement in this sense can be assessed for categorical
variables.
    This concept of agreement is particularly important in assessing
observer variation. Suppose that two dentists examine the X-ray of a
particular tooth for the presence or absence of dental caries on two
separate occasions. Although the information available from the X-ray
remains the same, there are two possible types of variation with such
examinations. A dentist re-examining the X-ray of a tooth some
time later may make a different judgment (e.g. caries absent rather
than caries present) — this is known as intra-observer variation.
Also, a colleague may make a different decision about the same
tooth, leading to inter-observer variation. For both types of
variation, the same question can be asked — how well do the two sets
of data agree with each other?
     If there are relatively few possible categories (ordered or
nominal), the most obvious measure of agreement between two sets
of data is the proportion of cases in which agreement occurs. This
has the clear drawback that a substantial amount of agreement can
occur by chance alone. We need a chance-corrected  measure of
agreement. A simple and widely used measure is the kappa
statistic, developed by Cohen (1960).

7.3.1   The kappa statistic for agreement between two assessors

Suppose that two observers allocate each of n patients to one of k
possible categories. We denote the number of patients  allocated to
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Table 7.8   A general contingency table for assessing agreement between
two observers.
___________________________________________________________

Observer B
1 2 … k Total

_________________________________________

1 n11 n12 … n1k    n1+

2 n21 n22 … n2k    n2+

. . . … .     .
Observer A .  .  . … .     .

 .  . … .     .
k nk1 nk2 … nkk    nk+

_________________________________________
n+1 n+2 … n+k    n

    ____________________________________________________________

category i by Observer A and to category j by Observer B by nij, the
total number of patients allocated to category i by Observer A by ni+

and the total number of patients allocated to category j by Observer
B by n+j. Table 7.8 shows the data in a k × k contingency table.

Dividing the number of observations for the cell in the ith row
and jth column (nij) by the total number of patients, n, gives the
proportion pij of patients for that cell. The observed proportion of
agreement is the proportion of patients for which i and j are equal
(on the diagonal of the table) which is given by

     po = (n11 + n22  + … +nkk)/ n= Σi pii

The expected proportion of agreement, pe is determined using the
appropriate row and column totals in a similar manner to that used
for expected numbers in the familiar chi-squared test (Sections 9.1.1
and 9.2.2) so that

        pe = Σi pi+ p+i 

where pi+ = ni+/n and p+i = n+i/n.
The kappa statistic is then defined as:

or symbolically as

                             κ =
−

−
p p

p
o e

e1

κ = −
−

Observed proportion  Expected proportion

 Expected proportion1
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The kappa coefficient takes values between –1 and 1, with the
value 1 for perfect agreement, zero for the level of agreement that
would be expected by chance and negative values for less than
chance agreement, i.e. apparent disagreement. Landis and Koch
(1977) suggested benchmarks for kappa, e.g. a score over 0.8
indicates good agreement, 0.6 to 0.8 indicates substantial agreement
and 0.4 to 0.6 moderate agreement. Assuming that the patients are
assessed independently of each other and that the assessors operate
independently we can test the null hypothesis that for the population
κ = 0. An exact test for small samples is available in StatXact
together with a Monte Carlo approximation for moderate sized
samples and an asymptotic result for large samples.  Fleiss, Lee and
Landis (1979) give an asymptotic formula for the standard error of
kappa assuming H0 holds, namely

       se(
e e

e

κ)
( )

( )
=

+ − +

−

+ + + +p p p p p p

p n

i i i i
i

2

1

Th e nu ll hy pot hesi s is  te ste d by  as sum ing th at if  it  ho lds  th en
Z = κ/[se(κ)] has a standard normal distribution.

A rather involved asymptotic formula for a confidence interval
for kappa based on the estimated standard error of the maximum
likelihood estimate of K is given by Fleiss (1981).

Example 7.10

    The problem. Two dentists inspected 100 patients and classified them as
either requiring treatment or not requiring treatment. Table 7.9 shows the
decisions by the two dentists as to whether or not they thought treatment was
required. Use the kappa statistic to calculate the chance-corrected agreement for
this sample and test the null hypothesis that κ = 0.

Table 7.9   Need of treatment for a series of patients as assessed by two
dentists.
_____________________________________________________________________________________

Dentist B
Treatment needed     Treatment not needed Total

     Dentist A
Treatment needed 40   5   45
Treatment not needed 25 30   55

Total 65 35 100

_____________________________________________________________
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   Formulation and assumptions. It is assumed that patients are classified
independently of each other and that the dentists do not confer. Cohen’s kappa
is calculated using the formulae for observed and expected proportions of
agreement given above. The null hypothesis may be tested using an exact test if
relevant software is available or the asymptotic formula for the standard error.

    Procedure.  We first display the data in terms of observed proportions:

Dentist B
Treatment needed     Treatment not needed Total

     Dentist A
Treatment needed 0.40 0.05  0.45
Treatment not needed 0.25 0.30  0.55

Total 0.65 0.35  1.00

As there are only two assessors and two categories the formulae for the observed
and expected proportions of agreement are straightforward. The observed
proportion of agreement is 0.4 + 0.3 = 0.7. However, some of this agreement
could have been expected by chance, and this is calculated from the row and
column totals. Under chance agreement, the expected proportion of cases in the
“yes/yes” cell of the table is given by 0.65 × 0.45  = 0.2925. The expected
proportion of cases in the “no/no” cell is given by 0.35 × 0.55  = 0.1925.

The total proportion of expected agreeing cases is therefore 0.2925 + 0.1925 =
0.485.  Hence

κ  =  (0.7 – 0.485)/(1 – 0.485)  =  0.417.

The asymptotic formula for the standard error of kappa under the null
hypothesis gives:

se(κ) =
−1 0 485 100

       = 0.09215,

whence

           Z = κ/se(κ) = 0.417/0.09215 = 4.53,

and reference to a standard normal distribution indicates P < 0.0001.  StatXact
confirms this and indicates that the same is true for an exact P.

Conclusion. There is moderate chance-corrected agreement (κ = 0.417)
between the two dentists. The very small P-value shows overwhelming evidence
against the null hypothesis.

    Comments. 1. Superficially, the observed agreement appears satisfactory but
once chance agreement is taken into account the level of agreement is less
impressive.
    2. The strong evidence against the null hypothesis should come as no surprise.
One would expect dentists, who receive several years of training, to have
considerable agreement with each other.  However, the fact that kappa is only
0.417 should be a cause for concern.
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    3. An asymptotic 95 per cent confidence interval for kappa is (0.256, 0.578).
This is very wide, indicating that even a sample of 100 patients does not provide
a great deal of information about the population value for kappa. Studies of
observer agreement frequently involve complex and time-consuming methods for
assessing patients or specimens. As a consequence, samples are generally small
(typically no more than 50) and the benchmarks given by Landis and Koch
(1977) are in practice therefore not always helpful.

    Computational aspects. One can calculate kappa along with the asymptotic
P-value for the null hypothesis κ = 0 using SPSS or Stata.  SPSS additionally
gives the standard error for the calculated kappa value, from which the 95 per
cent confidence interval for kappa can be obtained. Similar information, together
with an exact P-value or a Monte Carlo estimate for large samples is also given
by StatXact. The asymptotic standard error given by StatXact is slightly
different from that given above, being based on the maximum likelihood estimate
of κ rather than on the null hypothesis value. 

7.3.2   Extensions of Cohen’s kappa statistic

If there are more than two categories, some types of disagreement
between the two assessors might be particularly serious. For
instance, in assessing a patient s state of health, disagreeing
responses of well  and poor  are more serious than well  and
moderately well . In the calculation of weighted kappa (Cohen,

1968), different types of disagreement are given different weights.
    The kappa coefficient has been given in a conditional form
(Light, 1971) and has been extended to allow for more than two
assessors (Conger, 1980; Posner et al., 1990). A straightforward
method of calculating multiple kappa  is to take the arithmetic
mean of the kappa values obtained by taking pairs of observers in
turn; however, the formulae for hypothesis testing and the
calculation of confidence intervals are involved (Fleiss, 1981). Stata
can be used to calculate kappa for several observers and to test the
null hypothesis κ = 0.
    Kappa has also been developed for ordinal data (Fleiss, 1978) and
continuous data (Rae, 1988). In certain situations kappa is equivalent
to the intraclass correlation coefficient (Fleiss and Cohen, 1973;
Rae, 1988). Sample size calculation for the case of two assessors has
been investigated (Cantor, 1996).

7.4   FIELDS OF APPLICATION

Political science

Leaders of political parties may be asked to rank issues such as the
economy, health, education, transport and current affairs in order of
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importance. In comparing orderings given by leaders of two parties,
rank correlations may be of interest. If leaders of more than two
parties are involved the coefficient of concordance may be
appropriate, or we may prefer to look at pairwise rank correlations,
because leaders of parties at different ends of the political spectrum
may tend to reverse, or partly reverse, rankings.

Psychology

A psychologist might show prints of 12 different paintings
separately to a twin brother and sister and ask each to rank them in
order of preference. We might use Blomqvist s, Spearman s or
Kendall s coefficient to test for consistency in the rankings made by
brother and sister.

Business studies

Market research consultants list a number of factors that may
stimulate sales, e.g. consistent quality, reasonable guarantees, keen
pricing, efficient after-sales service, clear operating instructions, etc.
They ask a manufacturers  association and a consumers  association
each to rank these characteristics in order of importance. A rank
correlation coefficient will indicate the level of agreement between
manufacturers  and consumers  views on relative importance.

Personnel management

A personnel officer ranks 15 sales representatives on the basis of
total sales by each during one year. His boss suggests he should also
rank them by numbers of customer complaints received about each. 
A rank correlation could be used to see how well the rankings relate.
A Pearson correlation coefficient might be appropriate if we had for
each sales representative figures both for sales and precise numbers
of customer complaints. Note that a positive correlation between
numbers of sales and numbers of complaints need not imply that a
high rate of complaints stimulates sales.

Horticulture

Leaf samples may be taken from each of 20 trees and magnesium
and calcium content determined by chemical analysis. A Pearson
coefficient might be used to see if levels of the two substances are
related, but this coefficient can be distorted if one or two trees have
levels of these chemicals very different from the others; such
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influential observations are not uncommon in practice. A rank
correlation coefficient may give a better picture of the correlation. If
a third chemical, say cobalt, is also of interest, a coefficient of
concordance might be appropriate.

Medicine

For many forms of cancer alternative forms of primary treatment
are surgery, chemotherapy or radiotherapy. Which is preferred for a
particular patient depends on factors like age, general health status,
location and stage of development of the tumour, etc. Two
consultants may or may not agree on which option is to be preferred
for individual patients. If each of two consultants make independent
assessments of the appropriate treatment for each of a group of N
patients then Cohen s kappa may be used as a measure of agreement.

7.5 SUMMARY

The Pearson product moment correlation coefficient is tradition-
ally used as a measure of association for samples from continuous
distributions. When normality is not assumed inferences may be
based on a permutation test but the procedure is not robust.

The most widely used measures of rank correlation are the 
Spearman rank correlation coefficient (rho) (Section 7.1.3) and
the Kendall rank correlation coefficient (tau) (Section 7.1.4). For
the former (7.2) and for the latter (7.3) apply for the no-tie case;
modifications to both are needed with ties and asymptotic results for
large samples are given in Section 7.1.6.

The Blomqvist median coefficient (Section 7.1.5) is usually
estimated by (7.6) or preferably by (7.7) with appropriate
modification for ties. 

For multivariate ranked data  Kendal’s coefficient of concordance
(Section 7.2) is equivalent to the Friedman test statistic for ranked
data in randomized blocks given in Section 6.3.2.

The Cohen kappa statistic (Section 7.3.1) is a widely applicable
useful measure of agreement between independent assessors on
possible courses of action. Some caution is needed in interpreting
the statistic. Rejection of the null hypothesis that any indication of
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agreement is due to chance does not necessarily imply that the level
of agreement is strong.

EXERCISES

7.1  Compute the probabilities associated with each possible value of Kendall’s
tk under the hypothesis of no association when n = 4 to verify the results
quoted in Example 7.5.

7.2  Compute the probabilities analogous to those sought in Exercise 7.1 for
Spearman’s rs statistic.

7.3  Verify the numerical values in the triangular matrix of sij given on p. 259 for
the data in Table 7.2 and also the values of ncs and nds.

7.4 Reanalyse the data in Table 7.4 for McDelta clan deaths using the
Spearman’s rho. How do your conclusions compare with those based on 
Kendall’s tau?

7.5  In Table 7.4 ages at death are ordered by year of death. Use the Cox–Stuart
trend test (Section 3.2.3) to test for a time trend in life spans. Do the
results agree with those based on the Kendall and on the Spearman
coefficients?  If not, why not?

7.6  A china manufacturer is investigating market response to seven designs of
dinner set.  The main markets are the British and American.  To get some
idea of preferences in the two markets a survey of 100 British and 100
American women is carried out and each woman is asked to rank the
designs in order of preference from 1 for favourite to 7 for least acceptable.
For each country the 100 rank scores for each design is totalled.  The
design with the lowest total is assigned rank 1, that with the next lowest
total rank 2, and so on.  Overall rankings for each country are:

         _____________________________________________

Design A B C D E F G
_____________________________________________

British rank 1 2 3 4 5 6 7
American rank 3 4 1 5 2 7 6
_____________________________________________

Calculate the Spearman and Kendall correlation coefficients.  Is there
evidence of a positive association between orders of preference?

7.7 The manufacturer in Exercise 7.6 later decides to assess preferences in the
Canadian and Australian markets by a similar method and the rankings
obtained are:

  ____________________________________________

             Design A B C D E F G
  ____________________________________________

  Canadian rank 5 3 2 4 1 6 7
  Australian rank 3 1 4 2 7 6 5
  ____________________________________________
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Calculate the Spearman and Kendall correlation coefficients.  Is there
evidence of a positive association between orders of preference?

7.8 Perform an appropriate analysis of the ranked data for all four countries in
Exercises 7.6 and 7.7 to assess the evidence for any overall concordance. 
Comment on the practical implications of your result.

7.9 In a pharmacological experiment involving β-blocking agents, Sweeting
(1982) recorded for a control group of dogs, cardiac oxygen consumption
(MVO) and left ventricular pressure (LVP). Calculate the Kendall and
Spearman correlation coefficients. Is there evidence of correlation?

_____________________________________________

Dog  A  B  C  D  E  F  G
 _____________________________________________

MVO 78 92 116 90 106 78 99
LVP 32 33   45 30  38 24 44
______________________________________________

7.10  Bardsley and Chambers (1984) gave numbers of beef cattle and sheep on
19 large farms in a region.  Is there evidence of correlation?
   __________________________________________________________

   Cattle     41       0     42     15     47       0       0       0     56      67  707
   Sheep 4716 4605 4951 2745 6592 8934 9165 5917 2618 1105 150

   Cattle   368   231   104   132   200   172   146       0
   Sheep 2005 3222 7150 8658 6304 1800 5270 1537

        __________________________________________________________

7.11  Paul (1979) discusses marks awarded by 85 different examiners to each of
10 scripts.  The marks awarded by 6 of these examiners were:

________________________________________________________

                                                                    Script
______________________________________________

    Examiner 1  2  3  4  5  6  7  8  9 10
 _______________________________________________________

1 22 30 27 30 28 28 28 28 36 29
       2 20 28 25 29 28 25 29 34 40 30
     3 22 28 29 28 25 29 33 29 33 27
     4 24 29 30 28 29 27 30 30 34 30
     5 30 41 37 41 34 32 35 29 42 34
     6 27 27 32 33 33 23 36 22 42 29

________________________________________________________

Use rank tests to determine (i) whether the examiners show reasonable
agreement on ordering the scripts by merit and (ii) whether some examiners
tend to give consistently higher or lower marks than others.

7.12 For the tied data in Example 7.6 confirm that correct values have been    
computed for all terms required to calculate tb.

7.13 For the data in Example 7.7 explore the use of the asymptotic approx-
imations for the Spearman coefficient given in Section 7.1.6.
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7.14 Timber veneer panels produced by a factory are classified after visual
inspection by experts as either de luxe (DL), standard (S) or reject (R)
depending upon the number and type of faults an observer detects.   The
management checks for consistency of classification between two
observers by asking each to independently allocate each of a set of 150
panels to the categories they consider relevant. Use Cohen’s kappa
statistic to assess whether the following findings for a pair of observers
indicate reasonable agreement between the two observers.  Comment
critically on the interpretation of your results. 

__________________________________________________________

Observer A
     Grade     DL    S  R Total

          DL       7     2   1   10
 Observer B      S       4   96 18 118

            R       1   10    11     22

Total     12 108   30 150
__________________________________________________________
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8

Regression

8.1   BIVARIATE LINEAR REGRESSION

Correlation and regression are closely related.  Correlation is mainly
concerned with qualitative aspects of possible relationships. For
example, in looking at measurements of height and weight we might
be interested in the possibility of positive association between the
two variables and if there is association whether in broad terms the
relationship is linear, monotonic, linear in ranks, etc. Regression is
concerned with the quantitative aspects of relationships such as
determining the slope and intercept of a straight line that in some
sense provides a ‘best’ fit to given data.  If a polynomial of degree p
is needed to give a good fit regression provides values for the p + 1
constants that determine a best-fitting polynomial. There is
equivalence between some aspects of the two approaches, e.g. in
straight-line regression a test of zero slope is equivalent to a test of
zero correlation. Values of +1 or –1 for the Pearson product moment
correlation coefficient tell us that all the observed points lie on a
straight line. Other relationships between correlation and regression
emerge in this chapter. In particular in straight-line regression we
shall be interested in correlations between what are usually referred
to as residuals (departures of the observed yi from their values
predicted by the fitted regression equation) and the xi. This concept,
which we explain more fully below, is basic to both classic least
squares regression based on the Pearson product moment correlation
coefficient and to nonparametric regression which may be based on
that coefficient or on the Spearman or Kendall coefficient.

Least squares is the classic method of fitting a straight line to
bivariate data. The method has optimal properties subject to well-
known independence and homogeneity assumptions. If we add
certain normality assumptions there are well-established procedures
for hypothesis testing and estimation. Regression provides useful
tools for forecasting and prediction. However, given a set of bivariate
observations (xi, y i) there are many cases where the assumptions
needed to validate least squares procedures do not hold. This may
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result in misleading or invalid inferences. While least squares
is relatively insensitive to some types of departures from
basic assumptions it is strongly influenced by others. This has led to
the development of a group of techniques known as regression
diagnostics. We do not pursue that approach in this book but an
elementary account of the basic ideas is given in Sprent (1998,
Section 11.3) and both Atkinson (1985) and Cook and Wiseberg
(1982) provide comprehensive treatments. McKean, Sheather and
Hettmansperger (1990) describe regression diagnostics for rank-
based methods. An alternative to using classic least squares with
regression diagnostics is to use distribution-free methods. 

Our treatment follows closely an approach developed by Maritz
(1995, Chapter 5) but we omit much of the theory given there.

8.1.1   Least squares and raw-data permutation tests

For estimating slope in bivariate linear regression there is a Pitman-
type permutation test procedure for continuously distributed ‘raw’
data analogous to those in Sections 2.1.1, 5.1.1, 6.2.1 and 7.1.1. It is
seldom used in practice largely because its disadvantages outweigh
its advantages. In particular, like its counterparts, it often yields
inferences similar to normal-theory based equivalents even when
these are misleading due to a breakdown in assumptions. We outline
the approach not because of its practical importance but because it
introduces notions and highlights difficulties relevant to, and often
overcome by more practical alternatives based on the Spearman and
Kendall coefficients that we consider later in the chapter.

Before moving to the permutation procedure based on the Pearson
coefficient we look briefly at a classic bivariate least squares
regression model. Many readers will already be familiar with this
model but we emphasize here those aspects that help one understand
the rationale behind many distribution-free approaches. In the classic
parametric approach it is assumed that for each of a set of n given
observed xi – which may be either random variables or a set of fixed
values that may or may not be chosen in advance – we observe some
value yi of a random variable, Yi, which has the properties that its
mean depends upon (i.e., is conditional upon) the value of xi in such
a way that

E(Yi|xi) = α + βxi          (8.1)

while the variance of Yi is independent of x and for all xi has the value

      Var(Yi) = σ2
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where α, β, σ2 are unknown.  The straight-line relationship between
E(Y|x) and x of the form E(Y|x) = α  + βx between the conditional
mean of Y and a given x defines the regression of Y on x. The line has
slope β and intercept α on the y -axis. The notation Yi|xi is the
conventional notation for an event or variable Yi having some
property conditional upon a specified xi.
     For many inference purposes it is assumed also that the
conditional distribution of Yi|xi is N(α + βxi, σ2).  A classic regression
problem is to estimate α, β and sometimes also σ2 given a set of n
paired observations (x1, y1), (x2, y2), . . . , (xn, yn) where for a given xi

the yi is an observed value of the random variable Yi featured in (8.1).
These conditions hold if each (xi, yi) satisfies a relationship

yi = α + βxi + εi

where each εi is an unobserved value of a N(0, σ2) random variable
a n d th e  εi a r e  in de p e n de n t of  ea c h  ot he r and  a ls o  of x i.   T he  po rt ion 
‘α + βxi’ is the systematic or deterministic part of the model for yi

and the εi is the random element. Least squares estimation seeks
values a, b that minimize

     S = Σi (yi  – a – bxi )
2 (8.2)

for estimates of α, β. Denoting these estimates by α̂ , β̂   the straight
line y =  α̂ + β̂ x is called the least squares regression of y on x.

If, for any line y  = a + bx we denote the y -coordinate
corresponding to x = xi by y^ i  (i.e.  y^ i = a  + bxi ) then the differences
between the observed and predicted values, i.e. ei = yi –  y^ i ,  i =  1 ,  2 , 
. . . , n, are called the residuals with respect to that line. Equation
(8.2) may be written S = Σi ei

2 and the least squares estimators of α, β
are so-called because they minimize the sum of squares of  residuals.

To obtain α̂ , β̂ , we differentiate S separately with respect to a and
b. These derivatives are then set equal to zero to obtain the so-called
normal equations that are solved for a, b. These equations are

    Σixi (yi – a – bxi) = 0,

      Σi(yi – a – bxi) = 0.

The solutions are    α̂  = y   – β̂  x     where  y  = (Σiyi )/n, x  = (Σixi)/n
and

            β̂   =
( )( )

( )

x x y y

x x

i i
i

i
i

− −

− 2          (8.3)
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With the assumptions above classic least squares regression is a
generalization of classic tests for comparison of treatment means. In
particular a test of H0: β = 0 is equivalent to a test of equality of a set
of sample means. This follows from (8.1) if we regard the xi as
‘indicators’ or labels attached to samples. If there are n paired
observations (xi, yi) each yi corresponding to a particular xi may be
looked upon as an observed value from the sample labelled by that xi.
The total number of samples m may be any number between 2 and n
and the numbers of observations, nj, in sample j, j = 1, 2, . . ., m are
subject to the constraint n1 + n2 + . . . + nm = n. In particular if no two
xi are equal there are n samples each of one observation and at the
other extreme if there are only two distinct xi there are two samples
with n1 and n2 = n – n1 observations respectively. Suppose in this last
c as e we  la be l the  firs t sample by x  = 0 and the  se cond sa mple by x  = 1
and the first sample values are

        y y n11 12 1 1
, ,  . . . , y

with mean m0 and the second sample values are

                  y y n21 22 2 2
, ,  . . . , y

with mean m1.  It can then be shown from (8.3) that  β̂  = m1 – m0, the
sample mean difference used in the familiar t-test for equality of two
treatment means (Exercise 8.1). Thus the test of equality of means is
in this case identical to testing H0: β = 0. In the more general case of
m samples a test for β = 0 is a test for identity of all m population
means.

It is well-known that for the classic least squares model the
estimator of β does not depend upon α, but that of α depends upon β
through  β̂   since   α̂  = y   – β̂  x    From this expression for α̂  it is easily
seen that the fitted equation may be written without reference to the
intercept in the form

y =  y  – β̂  (x – x )          (8.4)

implying that the line passes through the point ( x  , y ).
A graphical interpretation of this is that the slope of the fitted  line

is unaltered by a change of origin.  In particular if we shift the origin
to the bivariate mean ( x , y ) and write x’= x – x , y’= y – y  equation
(8.4) becomes

        y’ = β̂ x’

and (8.3) reduces to

    _β̂  = (Σixi’yi’)/( Σixi’
2)                            (8.5)
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The form (8.5) still holds if we only shift the origin to the mean of
the xi and use the original yi. In Section 7.1 we pointed out that the
Pearson correlation coefficient was unaltered by linear trans-
formations of (x, y) of the form x’ = (x – k)/s and y’ = (y – m)/t where
s, t are both positive. We have just seen that in regression although
the estimate of α is affected by a change in origin, that of β is not,
i.e. transformations of the form x’ = (x – k),  y’ = (y – m ) do not
affect the estimate of β. However, it is easy to establish using (8.3)
that the transformation x’ = (x – k)/s and y’ = (y – m)/t alters both the
true value of β and its least squares estimate by the same scale factor
s/t, changing β to β’ = sβ/t. For this reason we do not make scale
changes in this chapter.

We shall however make use of another property of the correlation
coefficient in permutation tests that we drew attention to in Section
7.1.1, namely that because all other quantities in (7.1) remain
constant under permutation we may base permutation tests on the
statistic T  = Σ x iyi in the case of the Pearson coefficient as an
alternative to using the sample correlation coefficient r.  A corres-
ponding property carries over to the Spearman coefficient with ranks
replacing the xi, yi.

Dropping the normality assumption for the Yi makes joint
inferences about α and β difficult so we consider first the estimation
of β only. The problem then reduces to one of making inferences
about differences in medians or means of samples labelled by the
different xi. For any independent Yi, Yj associated with distinct xi, xj

we drop the normality assumptions on the conditional distributions
of Y|x and assume now only that for any xi, xj they have distributions
Fi(Yi|xi), Fj(Yj|xj) that differ only in their centrality measure which
will be taken in general to be the median (but which will coincide
with the mean for conditional distributions that are symmetric
providing that the mean exists). For the straight line regression
model the median of Fi(Yi|xi) is Med(Yi|xi) = α  + βxi and that of
F(Yj|xj) is Med(Yj|xj) = α + βxj, these being the analogues of (8.1) and
the difference between the medians is clearly

 Med[(Yj – Yi)|xj, xi] = β(xj – xi).

Assuming that differences between distributions are confined to a
median difference implies that for all i

Di(β) = Yi – βxi

are identically and independently distributed with median α. Since
the Di are therefore independent of the xi it follows that they are
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uncorrelated with the xi.  As we have pointed out the xi can be altered
by addition or subtraction of a constant without affecting either the
slope or its estimate.  In particular, it will often simplify the algebra
if we adjust the xi by adding an appropriate constant to make Σxi = 0,
which in graphical terms implies shifting the origin to a point on the
x-axis corresponding to the mean x .   Writing di = yi – β0xi  an
intuitively reasonable test of the hypothesis H0: β = β0 against a one-
or two-sided alternative is a test for zero correlation between the xi

and the di since we know that if H0 holds then Di(β0) is uncorrelated
with the xi and the di are then observed values of the variable Di(β0).
Whether the most appropriate test is based on the Pearson,
Spearman, Kendall or some other coefficient will depend upon what
assumptions are made about characteristics of the distribution F(Y|x),
(e.g. whether long-tailed, symmetric or asymmetric, etc.).  We call
the di residuals for convenience, but this is an unorthodox use of the
term which more conventionally refers to the ei = yi – α0 – β0xi where
α0 is some hypothesized value of α.  An appropriate statistic based
on the Pearson coefficient for the test of zero correlation is

       T(β0) = Σixidi = Σixi(yi – β0xi).          (8.6)

To estimate β an intuitively reasonable estimation procedure takes
the form of solving for b the equation

    T(b) – Σixi Σi di/n = 0. (8.7)

This follows from the form of cxy given below (7.1) since equating
cxy to zero ensures a zero value for the sample correlation coefficient
since it makes the numerator in (7.1) zero.

Recalling that we may adjust the xi to have mean zero, i.e. so that
Σixi = 0 without affecting our estimate of β, we assume this has been
done so that (8.7) simplifies to

            T(b) = Σixi(yi – bxi) = 0          (8.8)

with solution β̂  = (Σ ixiyi)/(Σixi
2).  It is easily verified that this is

identical to the solution given by (8.3) with the constraint x  = 0.
We have made no assumptions about the distribution of the Di

except that they are identical for all i, so that for hypothesis testing a
permutation test for a zero Pearson correlation coefficient based on
the sample values (xi, di) is appropriate. As we have indicated in
other cases a difficulty with inferences based on raw data using a
Pitman permutation test is that the results tend to be similar to those
based   on   equivalent   theory   assuming  normality  even  when  the
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normality assumption is clearly violated.  In other words the method
lacks robustness.

This is illustrated for a small data set in Example 8.1. There are
many situations where data like these arise, although usually in
larger data sets where the complexity of computation may mask a
clear understanding of what is happening.

Example 8.1

The problem.  The water flow in cubic metres per second (y) at a fixed point
in a mountain stream is recorded at hourly intervals (x) following a snow-thaw
starting at time x = 0.

Hours from start of thaw  (x)    0   1   2   3   4   5     6
Flow in cubic metres/sec   (y)    2.5   3.1   3.4   4.0   4.6   5.1   11.1

During previous thaws there has often been a near straight-line relationship
between time and flow. Use the method of least squares to fit a straight line to
the data and a permutation test based on the Pearson correlation coefficient to
test the null hypothesis H0: β = 1 (implying that on average flow increases by 1
cubic metre per second over a period of 1 hour) against the alternative H1: β ≠ 1.

Formulation and assumptions.  We have seen that the estimate of β for classic
least squares and permutation based least squares are identical and may be
obtained using (8.3), or from (8.5) after replacing x by x’ = x – 3, or from any
least squares regression program.  The requested hypothesis test is performed by
computing the P-value associated with the Pearson coefficient between the xi

and di = yi – βxi after setting  β = 1.

Procedure.  Direct substitution of the values of x and y in the appropriate
formula gives _^ = 1.1070.  It is also easily verified that the classic least squares
estimate of α is  α^   = 1.508. To test the hypothesis H0: β = 1 against a two tail
alternative we calculate for each data pair di = yi – xi and compute the correlation
coefficient between the x and d values. Ideally for such a small sample an exact
permutation test program should be used to compute the P-value appropriate to
the hypothesis H0: ρ  = 0 implying that the xi and the di are uncorrelated.
Relevant values of the xi and di are:

xi 0 1 2 3 4 5 6
di = yi  – xi 2.5 2.1 1.4 1.0 0.6 0.1 5.1

For these data StatXact gives r = 0.1392 for the sample Pearson coefficient
and the exact two-tail P = 0.7925.

Co nc l u si o n.   T he  le as t  squ ar es li ne of  best  f i t  is  y = 1. 5 08 + 1. 1 07 x.   S i n ce
H0: β = 1 has an associated permutation test P = 0.7925 the data certainly do not
provide evidence against H0: β = 1.

Comments.  1. Figure 8.1 shows the data points and fitted line. The fit is
unsatisfactory largely because the point (6, 11.1) seems to be an outlier relative
to the other points. If we omit the point (6, 11.1) it is easily verified that the
other points are well fitted by an amended least squares regression line which is
now y = 2.491 + 0.517x.
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Figure 8.1  Scatter diagram and classic least squares line of best fit for the data
in Example 8.1.

In passing we also mention that if the point (6, 11.1) is omitted the P-value
associated with the test of H0: β = 1 against H1: β  ≠ 1 reduces to P = 0.0028
providing strong evidence (as one would expect from an inspection of Figure
8.1) against H0. A larger sample, perhaps including readings between 5 and 6
hours and after six hours would give a clearer indication of the degree of
association and the shape of the relationship after the first 5 hours.

2.  Unfortunately both the theory and practice of obtaining exact permutation-
based confidence intervals for β  present difficulties. Possible procedures are
discussed by Maritz (1995, Section 5.2) and by Sprent (1998, Section 10.2).
Using the asymptotic results given there a trial and error hypothesis testing
approach may then be used to refine the asymptotic limits in programs such as
that for the Pearson coefficient in StatXact. For these data (including the
outlying pair (6, 11.1)) the 95 per cent confidence interval for β is (0.495, 1.984)
which is not very different from the interval (0.231, 1.984) given by classic
parametric least squares.  Both clearly demonstrate the tendency for the upper
limit (as is the point estimate of β itself) to be pulled upward by this last point.

3.  The sudden departure from the apparent near-linear relationship noted at
the 6-hour reading might result from a rapidly increasing rate of thaw after 5
hours, perhaps one caused by a temperature or wind change or other
meteorological factor. If so, this may have important practical implications
because readings like these are often used as a basis for warnings of likely
flooding at points downstream from the recording station.

4. If there are outlying values and there is no reasonable explanation for them,
such values may have been incorrectly recorded. In the context considered here
it is unlikely that the last observation is an error unless there had been some
mishap with the meter used to measure flow. Another possibility might be that
the recorded y values are the mean of two readings taken, say,  1 minute  apart  at
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each hour to average out any sudden surges and that for the last reading
somebody added the two but forgot to divide by 2 to get the mean.  In practice
the observers should know if such an error were possible.  In other contexts such
as biological experiments it is not uncommon for recorded y to be the mean of
two or more observations. A further possible explanation for the last reading is
that a lead digit has been omitted and that the final point should be (16, 11.1);
this lies much closer to the straight-line relationship suggested by the remaining
points. In the context of this example this might occur if, for instance, readings
were suspended overnight and the final reading was the first on the following
morning.  Again, in practice it should be possible to check if this were the source
of an error.

5.  Data like these are common in environmental studies, especially following
incidents, natural or accidental, that have an impact over an extended period.
For example, each y reading could be parts per million of a toxic gas in the
atmosphere x hours after an explosion at a chemical plant or the y could be
some measure of radioactivity recorded at daily (or weekly) intervals after an
accident at a nuclear power station.

6.  The assumption that consecutive εi are independent might be queried in
this example, but unless some physical condition intervenes, such as a block in
the waterway restricting flow over an appreciable period, it is probably reason-
able to assume that over intervals of 1 hour the random elements in flow are for
practical purposes effectively independent.

Computational aspects.  Even simple tests based on the Pearson coefficient
require suitable computing facilities. Asymptotic tests may be unreliable if
normality assumptions break down seriously. Bootstrapping methods (a topic
discussed in Section 11.3) may sometimes be useful in this context.

Better procedures for dealing with data like that in Example 8.1
are often provided by rank-based estimation procedures.

8.1.2   Regression associated with the Spearman rho*

In practice procedures we give in Section 8.1.3 are easier to apply
and are more widely used than those in this section but the method
introduced here illustrates some key features of distribution-free
regression and helps to clarify the relationship between  procedures.
 The obvious analogue to the Wilcoxon rank sum test procedure is
to replace the di in (8.6) by rank(di). This leads to simplifications of
the exact test and estimation procedures when the xi are equally
spaced, for inferences may then be based on the distribution of
Spearman’s rho, since, if the xi are equally spaced they are linear
functions of the ranks and hence the statistic

Ts(β0) = Σixi rank(di) = Σi xi rank(yi – β0xi)                    (8.9)
_________________________
* This section may be omitted at first reading because the method is not often used in practice.
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is appropriate for a test of zero Spearman correlation.  It is
convenient for estimation problems, though not essential, to assume
also that any origin change needed to make the mean of the xi zero
has been made. The test is not conditional on either the observed x or
y because for any hypothesized β0 and fixed n only the paired set of
ranks (or linear transformations of these ranks) from 1 to n are
needed for the permutation reference set.

Example 8.2 shows that any programs providing an exact test for
Spearman’s ρs = 0 may be used to test H0: β = β0 against a one- or
two-sided alternative.

Point estimation of β is now less straightforward than it is for least
squares but it is still possible and confidence intervals based on the
permutation test are relatively easy to obtain if appropriate software
is available.

Estimation is based on an analogue of (8.8) derived from (8.9) and
we seek b satisfying the equation

Ts (b) = Σixi  rank(yi – bxi) = 0                  (8.10)

A difficulty is that there is in general no value of b for which
(8.10) holds exactly because Ts(b) is a step function in b.  This is
because the ranking of the di will only change as b passes through a
value where two or more di, dj are equal, i.e. for b such that for some
i, j , yi – bxi = yj – bxj.  Denoting this value of b by bij it follows that
bij = (yj – yi)/(xj – xi).  Thus Ts(b) does not change in value for any b
lying between successive values of bij for i = 1, 2, . . . , n – 1, j > i. It
is easy to show [see e.g. Sprent (1998, Section 10.3)] that Ts(b) is a
nonincreasing step function in b and that if for different (i, j) the
corresponding bij are equal this implies three or more observations
are either collinear or the lines joining the relevant pairs of points
have identical slopes.  The steps will then not all be of equal height.

Some implications of the properties of Ts(b) for hypothesis testing
and estimation, including confidence intervals, are best demonstrated
by an example.  The discussion in this example is somewhat open-
ended so we have not divided it under headings of Problem,
Formulation and assumptions, Procedure, etc.

Example 8.2

The data in Example 8.1 with the xi  adjusted to have mean zero become

x –3 –2 –1 0 1 2   3
y   2.5   3.1   3.4 4.0 4.6 5.1 11.1
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It is convenient to record the pairwise slopes bij as an upper triangular matrix
similar to that used for the sij in Section 7.1.7.  A typical entry is

b26 = (5.1 – 3.1)/[2 – (–2)] = 0.500

shown in bold in the matrix below. Statistical software to calculate the bij is
becoming increasingly common. Minitab will produce pairwise slopes in the
order of the columns in the upper triangular matrix.  For our data these are

0.600 0.450 0.500 0.525 0.520 1.433
0.300 0.450 0.500 0.500 1.600

0.600 0.600 0.567 1.925
0.600 0.550 2.367

0.500 3.250
6.000

Repeated values among the bij
 imply collinearity or parallelism of some pairwise

joins. Table 8.1 is easily if tediously formed using (8.9) although the complete
table is not needed for most inferences. We use the property that Ts(b) remains
constant between successive values of bij so that we only need to evaluate (8.9)
for one value β0 of b in each interval between successive values. When b
coincides with some bij there are ties in the ranks of the di and using mid-ranks
for these gives a value of the corresponding Ts(b) which is the mean of its values
for b immediately greater than and immediately less than that bij. As an
illustration of the computation of Ts(b) for a given b consider that for the interval
between b16 = 0.520 and b15 = 0.525. It suffices to set b = 0.523, say and to
evaluate Ts (0.523) = Σi xi rank(yi  – 0.523xi).   For the given data we obtain

xi –3 –2 –1 0 1 2   3
yi   2.5   3.1   3.4 4.0 4.6 5.1 11.1

di = yi – 0.523xi   4.07   4.15   3.92 4.0 4.08 4.05 9.53
rank(di)   4   6   1 2 5 3 7

whence

     Ts(0.53) = (–3) × 4 + (–2) × 6 + (–1) × 1 + 0 × 2 + 1 × 5 + 2 × 3 + 3 × 7 = 7.

The remaining values of Ts(b) in column 3 of Table 8.1 are obtained in a
similar manner.  Since there is no unique b corresponding to each possible value
of Ts(b) it is sometimes convenient to associate with each such value the mid-b
value which is the mid-point of the interval of b values associated with that
Ts(b).  For example, we have just shown that Ts(b) = 7 is associated with b in the
interval (0.520, 0.525) so the associated mid-b value is 0.5225.  These mid-b
values are given in column 2 of Table 8.1.

The maximum value, 28, of Ts(b) corresponds to a Spearman sample
coefficient rs = 1 and since Ts is a linear function of rs if we divide any Ts(b) by
28 we get a corresponding value of the equivalent statistic rs. The relevant values
are given in column 4 of Table 8.1 We show below that this is useful for
determining confidence intervals for β, but first we consider point estimation of
β.  Maritz proposes an estimate obtained by regarding the step function Ts(b) as
an approximation to a continuous function and then using linear interpolation
between the closest mid-b  values on either side of zero. In this case we
i nt er pol at e bet ween    T s  = 1,  b = 0. 5583 and  T s  = –2,  b = 0. 5835  to obtain a p o i n t 

©2001 CRC Press LLC



Table 8.1  Intervals for b-values corresponding to each possible Ts(b)
arising from the data in Example 8.2.  The values of Ts(b) when b = bij

are the means of the values in adjacent b  intervals. Values of rs

corresponding to each Ts(b) are also given.
  __________________________________________________________

    b-interval mid-b value Ts (b) rs
      ___________________________________________________

–∞ to 0.300   28        1.000
0.300+ to 0.450–    0.375   27        0.964
0.450+ to 0.500–    0.475   23        0.821
0.500+ to 0.520–    0.510   12        0.429
0.520+ to 0.525–    0.5225     7             0.250
0.525+ to 0.550–    0.5375     3        0.107
0.550+ to 0.567–    0.5583     1        0.036
0.567+ to 0.600–    0.5835   –2      –0.071
0.600+ to 1.433–    1.0165   –7      –0.250
1.433+ to 1.600–    1.5165 –13      –0.464
1.600+ to 1.925–    1.7625 –18      –0.643
1.925+ to 2.367–    2.146 –22      –0.786
2.367+ to 3.250–    2.8085 –25      –0.893
3.250+ to 6.000–    4.625 –27      –0.964
6.000+ to ∞    –28      –1.000

__________________________________________________________

estimate corresponding to Ts = 0 and this is

       b = 0.5583 + (0.5835 – 0.5583)/3 = 0.567.

It is fortuitous that this is identical with the median of the bij although an
estimate obtained in this way will usually be close to that median.  In practice if
only a point estimate of β is required one need calculate only a few entries in
Table 8.1 for values of b in intervals close to med(bij) and then use linear
interpolation.

If an exact test program for the Spearman coefficient is available hypothesis
tests about β are straightforward. For example, to test H0: β = 1 against H0:β ≠ 1
we may use the values of xi and di computed in Example 8.1 and insert these in a
Spearman test program. Not surprisingly (as can be verified from Table 8.1) this
gives rs = –0.250 and the corresponding two-tail P = 0.5948 so there is clearly
no substantial evidence against H0. If no program is available for an exact test,
tables like Table A31 in Hollander and Wolfe (1999) clearly indicate that only
values of rs greater than about 0.7 in magnitude provide any acceptable evidence
against H0.

Given a facility like that in StatXact for generating the complete distribution
of rs under H0: ρs = 0 it is relatively easy to obtain confidence intervals for β.
Using this distribution one finds that for n = 7 the one-tail P associated with rs  ≥ 0.786
i s  P  = 0. 0 2 4 .   F r o m  T a b l e 8. 1  we  no t e t h a t  be c a u se  t i e d r a n k s oc c u r  f o r 
c e r t a i n  val ue s of  b t he r e  is  no upp er  ta i l  b cor r e spo nd i ng  exa ct l y to rs  = 0. 7 86, 
but in the lower tail when rs = – 0.786 the corresponding mid-b value is 2.146.
The smallest value of b that will just produce an rs = –0.786 is a value slightly
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above 1.925, say 1.926.  In the upper tail of rs values we see that the largest
v a l u e  o f  b  t h a t  w i l l  p r o d u c e  a v a l u e  o f  r s   of  at  l e a s t  0. 7 8 6  i s  b  sl i g h t l y  l e s s 
t h a n  0 . 5 0 0 ,  sa y  0. 4 9 9 .   T h u s  t h e  b - i n t e r v a l  ( 0 . 5 0 0 ,  1 . 9 2 5 )  i s  an  ap p r o p r i a t e 
(1 – 2 × 0.024)100 = 95.2 per cent confidence interval.

If no program giving exact P -values is available the values of rs

corresponding to ‘significance’ at many conventional levels are available from
tables like Table A31 in Hollander and Wolfe which, for a sample of 7, gives
Pr(rs  ≥ 0.786) = 0.025.  Using this value leads to the same conclusions for an
approximate 95 per cent confidence interval.

The interval obtained here is slightly shorter than that given in Comment 2 on
Example 8.1. More interestingly the point estimate  β̂  = 0.567 is much smaller
than the full-data least squares estimate and reasonably close to the least squares
estimate 0.517 obtained if the ‘rogue’ point (6, 11.1) is omitted. This indicates
that the suspect point is less influential on the point estimate of β although it still
exerts an upward pressure on the confidence limit.  Here the confidence limits,
unlike those in classic parametric least squares estimation, are no longer
symmetric about the point estimator, but they reflect more realistically the
upward pressure of the point (6, 11.1) on estimates of β.

Clearly if confidence intervals are required at or near conventional levels only
a few values of Ts(b) corresponding to large values of |Ts (b)| need be calculated.

There is an asymptotic procedure for approximate confidence
intervals that usually works well for larger n. This is discussed
briefly in Sprent (1998, Section 10.3). Since inference procedures
discussed in this section are generalizations of the WMW test it is
not surprising that they have the same Pitman efficiencies.

If the xi are not equally spaced Ts(b) given by (8.9) is no longer a
linear function of Spearman’s rho and inferences are less straight-
forward.  A brief outline is given by Sprent (1998, Section 10.5) but
in this situation the method given in the next section is generally
preferable. Some writers have suggested that inferences about β
might be based on a statistic that replaces xi by rank(xi) in (8.9), i.e.

            S(b) = Σi rank (xi ) rank(yi – bxi).                 (8.11)

This is clearly equivalent to using Ts(b) for equally spaced x for
hypothesis testing, although care is needed for estimation since the
mean of the ranks of the xi are no longer zero, but adjustments can be
made for this. However, if the points are not equally spaced the
transformation to ranks is not a linear transformation of the xi and
this precludes the use of S(b) for making reliable inferences about a
true β for the original data.

8.1.3   Regression associated with Kendall’s tau

In the previous section we saw that regression inference procedures
based on Spearman’s rho are possible but a major restriction is that
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the xi be equally spaced. This restriction is not needed for inferences
based on Kendall’s tau, since τk depends only upon the order of the
observations and not on magnitudes of the differences between data
values.  Further there is no advantage in adjusting the xi to have mean
zero. It simplifies presentation without loss of generality, if, when
the xi are all different we assume that x1 < x2 < . . . < xn.  We consider
briefly the case when some xi are equal in Section 8.1.4.

The statistic used for inference about β is

Tt(b) = Σi sgn[dij(b)]        (8.12)

where

dij(b) =  (yj – a – bxj) – (yi – a – bxi) =  (yj – bxj) – (yi – bxi) =  dj – di =
  (yj – yi) – b(xj – xi)

and summation of the signs of the dij is over all i = 1, 2, . . . , n – 1
and j > i. Since the xi are all different and in ascending order it is
clear that Tt(b) is the numerator in the expression (7.3) for Kendall’s
tau composed of the numbers of concordances minus the number of
discordances in the data pairs (xi, di).

Use of a statistic equivalent to Tt(b) was first proposed by Theil
(1950) and the procedure is widely known as Theil’s method. Sen
(1968) highlighted the relationship to Kendall’s tau so we refer to it
as the Theil–Kendall method.

Clearly T t(b) is a linear function of the sample estimator of
Kendall’s tau and using arguments similar to those in Sections 8.1.1
and 8.1.2 an appropriate point estimator of β is obtained by setting
Tt(b) = 0. Since the xi are in ascending order it is easy to see that Tt(b)
is unaltered if we replace dij(b) by bij – b where, as in Section 8.1.2
bij = (yj – yi)/(xj – xi). Clearly then Tt(b) = 0 if we choose b = med(bij)
for then the number of positive and the number of negative dij will be
equal. As was the case for Ts(b) it is easy to see that T t(b) only
changes in value when b passes through a value of bij and since the
statistic is the numerator term in Kendall’s tau it follows that if all bij

are distinct as b increases from –∞  to ∞  T t(b) is a step function
decreasing by steps of 2 from 1/2n(n  – 1) to – 1/2n(n – 1). Clearly
division of Tt(b) by 1/2n(n – 1) leads to Kendall’s tk which may be
used as an equivalent statistic. If the bij are not all distinct some of
the steps will be multiples of 2. In particular if a bij occurs r times it
induces a step of height 2r. The value of T t(b) at any bij may be
regarded as the mean of the values immediately above and below
that bij.

Tests of hypotheses about β are straightforward using either
Kendall’s tk or the equivalent T t(b) as the test statistic, and if we
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know the exact distribution of the sample Kendall coefficient when
τk = 0, a confidence interval for β may be obtained.  The procedures
are illustrated in Example 8.3.

Example 8.3

The problem.  Given the data in Example 8.1, i.e.

     x   0   1   2 3 4 5  6
y   2.5   3.1   3.4 4.0 4.6 5.1 11.1

use the Theil–Kendall method (i) to test the hypothesis H0: β = 1 against the
alternative H1: β ≠ 1; (ii) to obtain a point estimate of β and a confidence interval
giving at least 95 per cent coverage.

Formulation and assumptions.  To test the hypothesis in (i) we compute Tt(1)
and use an exact test program to assess evidence for or against H0.  To obtain a
point estimate of β we determine the median of the bij defined above and for a
confidence interval we then compute Tt(b) and the corresponding tk for all b.
Using the exact distribution of tk when τk = 0 or appropriate tables if the exact
distribution when n = 7 is not available we compute the relevant confidence
interval for β.

Procedure. The bij may conveniently be arranged in a triangular matrix with
the first row elements b12  b13  . . . b1n , second row elements b23  b24 . . . b2n and so
on to give

0.600 0.450 0.500 0.525 0.520 1.433
0.300 0.450 0.500 0.500 1.600

0.600 0.600 0.567 1.925
0.600 0.550 2.367

0.500 3.250
6.000

identical to the matrix introduced in Example 8.2. Inspection shows that the
point estimate of β, i.e. med(bij) is 0.567 because there are ten greater and ten
lesser bij. To test the hypothesis β = 1 we subtract b = 1 from each bij and find
t h i s  i m pl i e s 15 di sc or dan ce s ( ne ga t i v e val ue s)  an d 6 con co r da nc es wh en ce
Tt(1) = 6 – 15 = –9 and when n  = 7 this implies tk = –9/21 = 0.4286.
Corresponding to this value of tk StatXact gives an exact one-sided P = 0.1194
whi ch i s doubled for  a t wo- tail  test  so t her e is no convinci ng evidence against  H0 . 

Using the arguments outlined before this example and noting that there are
respectively 2, 4 and 4 tied values of bij at 0.450, 0.500, 0.600 we can establish
the values of Tt for all values of b. These are given in Table 8.2 together with
corresponding values of tk  obtained by dividing each Tt(b) by 21.

To obtain an approximate 95 per cent confidence interval for β we must first
determine a value of |Tt| with a one tail P as close as possible to but not
e x c e e d i n g  P  = 0 . 0 2 5 .  T h e  e x a c t  d i s t r i b u t i o n  w h e n  n  = 7  g i v e n  b y  S t a t X a c t 
indicates that P = 0.015 when Tt = 15 while P = 0.035 when Tt = 13. If the
StatXact program is not available these values may also be obtained from tables
such as those in Kendall and Gibbons (1990, Appendix Table 1) or Hollander
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and Wolfe (1999, Table A30).  The latter give the relevant probabilities for the
s t at i s t i c T t .   F r o m  Ta b l e  8. 2  we  de d u c e t h a t  t h e  sho r t e s t  ( 1  – 2 ×  0. 1 5 ) 1 0 0 =
97 per cent interval based on |Tt| = 15 will be (0.500–, 1.925+), or the open
interval  (0.500, 1.925).  See also Comment 3 below.

Conclusion.  The point estimate of β is 0.567 and a nominal 95 (actual 97)
per cent confidence interval for β is (0.500, 1.925).

Comments.  1. The point estimate of β is identical to that obtained in Example
8.2 using Spearman’s rs and the nominal 95 per cent confidence interval is
virtually the same despite minor differences in the exact coverage.

2. Comparing the methods used in this and the previous section we see that
the Theil–Kendall procedure is easier to compute and more importantly in
practice (though not relevant to this specific example) the restriction to equally
spaced xi is no longer needed.

3. To find a confidence interval we do not need to form Table 8.2 since the
obser vat ion T t = 15 i m pl ies nc  – nd  = 15 and si nce nc   + nd  = 21 t his i m pl ies nc  = 18
and nd = 3. Thus we should reject values of β greater than or equal to the three
largest bij or less than or equal to the three smallest.  Inspection of the matrix of
bij given under Procedure shows that the third largest and third smallest bij  are
respectively 2.367 and 0.450.  Rejecting these three implies the limits 0.500 and
1.925 given above.

Computational aspects.  For reasons that are not clear to us more extensive
t a bl es  ar e ava i l ab l e fo r  Ken da l l ’ s t a u th an is  th e ca se fo r  m os t  st a t i st i cs 
r e l e va nt 

Table 8.2  Intervals for b values corresponding to each Tt(b) or
corresponding tk for the data in Example 8.3. The values of Tt(b)
when b = bij are the means of its values in adjacent b intervals.

                                                                                                

  b-interval                               Tt(b)                     tk

–∞ to 0.300     21   1.000
0.300+ to 0.450–      19   0.905
0.450+ to 0.500–      15   0.714
0.500+ to 0.520–        7   0.333
0.520+ to 0.525–        5   0.238
0.525+ to 0.550–        3   0.143
0.550+ to 0.567–        1   0.048
0.567+ to 0.600–      –1 –0.048
0.600+ to 1.433–      –9 –0.428
1.433+ to 1.600–    –11 –0.524
1.600+ to 1.925–    –13 –0.619
1.925+ to 2.367–    –15 –0.714
2.367+ to 3.250–    –17 –0.810
3.250+ to 6.000–    –19 –0.905

            6.000+ to ∞                             –21                  –1.000             
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to nonparametric inference.  This to some extent relieves the need for readily
available software either for the Theil–Kendall method or indeed for inferences
about Kendall’s tau.

The close relationship between Kendall’s tk and Tt makes it easy to
carry over asymptotic approximations between them. Using results
for τk it is easily shown (see, e.g. Maritz, 1995, Section 5.2.5) that
E(T t) = 0 and that Var(Tt) = n(n – 1)(2n + 5 )/18. For large n the
distribution of Z  = Tt/[√Var(Tt)] is approximately standard normal
and asymptotic inferences can then be made in the usual way. Even
for n = 7 the approximation is sometimes not seriously misleading
(Exercise 8.4) but caution is advisable with so small a sample.

We showed in Section 7.1.4 that the Kendall procedure is a special
case of the Jonckheere–Terpstra method which in turn is a
generalization of the Mann–Whitney formulation of the WMW
procedure, whereas the method using Spearman’s rho is a general-
ization of the Wilcoxon formulation of the WMW procedure.
Although the generalizations are not exactly equivalent it is not
unreasonable when applying them to regression problems to expect
them to lead to broadly similar conclusions as we saw in Examples
8.2 and 8.3.

8.1.4   Some alternative approaches

Having noted that the Theil–Kendall procedure is a generalization of
the WMW method it is interesting to explore the possibility of
procedures that generalize those of a sign test. Theil proposed one
which is usually called the abbreviated Theil method. It uses a
small independent subset of the bij and is not recommended for
sample sizes smaller than about 14.  Even for larger n  the full
Theil–Kendall method is preferable if adequate computing facilities
or tables are available.

If n is  eve n the  only bij us ed in the  abbreviated me thod are bi, i + 1/2 n

where i = 1, 2,. . ., 1/2n while if n is odd we use only the bi, i +  _ (n +  1)

where i = 1, 2,. . ., 1/2(n – 1).  These estimators all involve different
data pairs and hence are independent so test and estimation pro-
cedures based on the sign test may be used. The point estimator of β
is the median of the reduced set of bij indicated above. Tests and
confidence intervals are easily derived from the corresponding sign-
test procedures.
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Example 8.4

The problem.  We give below the modal length (y cm) of samples of
Greenland turbot of various ages (x years) based on data given by Kimura and
Chikuni (1987). Fit a straight line using the abbreviated Theil method and obtain
a 95 per cent confidence interval for β.

____________________________________________________________

Age (x)   4   5   6   7   8   9 10 11 12
Length (y) 40 45 51 55 60 67 68 65 71

Age (x) 13 14 15 16 17 18 19 20
Length (y) 74 76 76 78 83 82 85 89
                                                                                                                    

Formulation and assumptions. For the 17 points we calculate the sub-set of
pairwise slopes b10, 1, b11, 2, .  .  . , b17, 8 and obtain their median. A confidence
interval for β is obtained in a manner analogous to that for a median based on
the sign test.

Procedure.  Since the xi are equally spaced in this example the denominators
in each of the required bij are all equal to x10 – x1 = 13 – 4 = 9 so we need only
compute the relevant yj – yi, obtain their median and divide that by 9 to obtain an
estimate of β.  Thus y10 – y1 = 76 – 40 = 34, y11 –  y2 = 76 – 45 = 31, etc. The
complete set of differences is 34, 31, 25, 23, 23, 15, 17, 24.  The median of these
is 23.5 so  β̂  = 23.5/9 = 2.61. Using the argument in Section 2.3.2 for a nominal
9 5  pe r  cen t  co nf i d e n ce  i n t er v a l  fo r  t h e ab o v e se t  of  8 di f f e r e n c e s  be t w e en  t h e 
y-values we use appropriate B(8, 1/2) distribution probabilities (Exercise 8.5) to
find that an exact 93 per cent confidence interval for the median of these
differences is the interval (17, 31) and dividing the limits by 9 gives the
corresponding interval for β, i.e. (1.89,  3.44).  Similarly the interval (1.67, 3.78)
is a 99.2 per cent interval.  With so small a sample the discontinuities in
coverage of possible intervals are quite marked.

Conclusion.   An appropriate estimate for β  is β̂  = 2.61 and a 93 per cent
confidence interval for β is (1.89, 3.44).

Comment.  Using the program in Minitab for generating all pairwise slopes
for these data one can show that the full Theil–Kendall procedure gives an
estimator β̂  = med(bij) = 2.65.  We may also establish that a 95.8 per cent
confidence interval is (2.2, 3.1) following the procedure outlined in Comment 3
in Example 8.3.  This follows because the one-tail P = 0.021 when n  = 17
corresponds to Tt = 50, implying nc – nd = 50.  We then deduce that to establish
the relevant confidence interval we reject the 43 smallest and 43 largest bij.
Inspection of the paired values establishes the above interval.  If one has a
facility to generate all bij we recommend the full rather than the abbreviated
Theil–Kendall method for samples of this size.  A comparison of the lengths of
the confidence intervals given by the two methods indicates an appreciable loss
of efficiency when using the abbreviated method.  This is not surprising because
the abbreviated method only uses 8 of the 136 items of information (the bij) used
in the full method.  It does however use an independent set, whereas there are
correlations in the complete set.
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Many variants of procedures considered in this chapter for slope
estimation appear in the literature. Another sign-test analogue related
to the Spearman coefficient rather than the Kendall coefficient is
briefly discussed in Sprent (1998, Section 10.5). As alternatives to
procedures involving correlation between xi and rank (di) such as that
discussed in Section 8.1.2, Adichie (1967) considered possible
transformations of the rank(di) such as that to van der Waerden or to
normal scores, but so far as we know these have not been widely
used in practice and one might expect their performance to show
little improvement on the direct use of ranks.

It will be clear that rank-based methods, especially those such as
the Theil–Kendall method depend heavily on the bij. Clearly the use
of median estimators based on these pairwise slope estimators
introduces robustness to point estimators in the presence of rogue
observations or observations that might indicate inadequacy of the
model.  In Example 8.3, for instance, the observation (6, 11.1) which
is so obviously out of line with the other observations influences
only the bij that involve that point, i.e. those in the last column of the
triangular matrix of bij , and these have little influence on med(bij) as
a point estimator of β. They do however exert an influence on the
confidence limits and raise the upper limit above what it would be
with no such out-of-line observation.

When there are no rogue or suspect observations one might feel
that more weight ought to be given to those bij associated with larger
values of xj  – xi. This is what classic least squares does, for it can be
shown that that estimator is a weighted mean of the bij with weights
proportional to (xj – xi)

2. Jaeckel (1972) recommended taking as a
p o i n t  e s t i m a t o r  of  β  th e  m e d i a n  o f  t h e  w e i g h t e d  b i j  w i t h  w e i g h t s 
wij = (xj  – xi)/[Σi<j(xj  – xi)].  The procedure has some optimum
properties when there are no outliers but these and other weighting
schemes that have been proposed may be less satisfactory than, for
instance, the Theil–Kendall method if there are rogue observations.
In simulation studies Hussain and Sprent (1983) found that the
Theil–Kendall method performed almost as well as least squares
when relevant assumptions held for the latter and that it showed a
marked improvement in efficiency for long-tail error distributions,
whereas in the latter situation weighted medians performed no better
than, or sometimes less well than, Theil–Kendall.

We indicated in Section 8.1.3 that a problem arises with the
Theil–Kendall method when there are tied values of xi. The bij

corresponding to such a pair becomes infinite.  For only a small proportion 
of ties there will be little loss of efficiency if such points are replaced 
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by one data entry with the y value set equal to the mean of the
y values for all the points with that tied x value. This is usually
preferable to artificial tie-breaking devices such as splitting the ties
by making arbitrary small changes to tied x-values to separate them
since that process may lead to large or even bizarre bij

 associated
with such splits because of the small denominators. An alternative
with greater appeal is to exclude all comparisons between points with
a common xi value but to consider all joins of each of these points to
points with other values xj, i.e. where xj ≠ xi. An extreme example is
when there are only two distinct x values x1 and x2, and repeated y at
each. The problem is then equivalent to the two-sample problem for
means or medians of the y. If we consider the slopes of all pairwise
joins between y values associated with the two x it is easy to see that
these are similar to the differences computed for the
Hodges–Lehmann estimator in Section 5.2.4, indeed they are simply
these differences divided by the constant x2 – x1, so the procedure is
exactly equivalent to the WMW test.

8.1.5   Joint estimation of slope and intercept

Estimating slope is often the main aim of a regression analysis but
when we want to use the fitted line for forecasting or prediction we
must also estimate α so that we are in a position to predict using the
estimate of E(Y|x) = α + βx for some new specified x. The intercept
corresponds to the case x = 0. Whereas estimation of β is unchanged
if we replace x by x’ = x – h where h is any constant, this is not the
case for α.

Even in classic parametric least squares estimates of α and β are in
general correlated.  Only in the special case when the mean of the xi

is zero and the estimator of α reduces to α̂ = y  is this estimate
uncorrelated with that for β and then the customary normality
assumption implies independence, so in that case we can make
inferences about α without having to worry about what is now a
‘nuisance’ parameter β. Unfortunately, when we move to
distribution-free methods this simplification does not hold because
even when the mean of the xi is zero, the statistics used to estimate α
and β are correlated.

Many of the implications are discussed in detail by Maritz (1995,
Section 5.3) and more informally by Sprent (1988, Section 10.6).  A
broad class of statistics relevant to joint estimation of α and β were
discussed by Adichie (1967) and these lead to inferences which in
practice call for iterative methods of estimation starting with an
estimate  of  β  that  is  used to obtain an estimate of α, then using this
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estimate of α to get a revised estimate of β and so on, the process
usually converging after a few cycles.  Some of the statistics used
have links with and similarities to those used for estimation of slopes
in Sections 8.1.2 and 8.1.3.

Here we give two variants of a method used in practice that often
gives satisfactory estimates of α providing we start with what we
accept as a good estimate of β.  For example, for the data in Example
8.1 the estimate  β̂  = 0.567 obtained by the methods used in Sections
8.1.2 or 8.1.3 is clearly a reasonable slope estimate for a line through
all points other than (6, 11.1) if that is what is of interest.   The
assumptions in Section 8.1.2 imply that all Di = yi – βxi (as defined in
Section 8.1) have identical distributions with median α.  We do not
know β, but if β̂  is a reasonably good estimate of β it is not
unreasonable to assume that di = yi – β̂ xi will have a distribution with
a median close to α.  An obvious procedure is to compute all n
values of di and to take the median of these di as an estimate of α.
This is equivalent to the optimum estimator based on the sign test.  If
one makes the further assumption that the Di are symmetrically
distributed about α the Hodges–Lehmann estimator based on the
Walsh averages of the di is arguably more appropriate.  We stress
however that these results are only approximate and will clearly be
influenced by the choice of β̂ .

Example 8.5

The problem.  Given the data in Example 8.1,  i.e.       

x 0 1 2 3 4 5   6
y 2.5 3.1 3.4 4.0 4.6 5.1 11.1

and assuming a reasonable estimate of β is β̂  = 0.567 obtain an estimate of the
intercept α.

Formulation and assumptions. We compute all di = yi – 0.567xi  and take as
our estimate either (i) the median of the di or (ii) the Hodges–Lehmann estimator
which is the median of the Walsh averages.

Procedure. The di are respectively 2.500, 2.533, 2.266, 2.299, 2.332, 2.265,
7.698.   The median of these 7 values is 2.332, there being three smaller and
three larger values. The Hodges–Lehmann estimator is easily obtained from any
program that computes the Walsh averages or a program such as the dedicated
Hodges–Lehmann estimation program in StatXact. For these data the estimate
(the median of the Walsh averages) is 2.399.

Conclusion.  Two possible estimates of α are  2.332 or 2.399.

Comments. 1.  One may argue that the median of the di should be the
preferred estimator because the extreme value d7 = 7.698 suggests that the
symmetry  assumption  needed  to  justify  Hodges–Lehmann estimation may not

©2001 CRC Press LLC



Figure 8.2  The Theil–Kendall regression line fitted to the data in Example 8.5.

hold. The line of best fit using the Theil–Kendall estimator of slope and the
median of the di

  as intercept estimator is shown in Figure 8.2.
2.  It is tempting to apply either the sign-test method or Hodges–Lehmann

procedure to obtain a confidence interval for α. However, this may not be
appropriate because we use only an estimate of β since we do not know its true
value.  It is easily shown that alternative choice of the estimate of β may
profoundly influence both the pattern of the di as well as the estimate based upon
them. For instance, in Example 8.1 we established that if the last point were
ignored the least squares estimate of β would be β̂  = 0.517 and for this the
values of the di are 2.500, 2.583. 2.366, 2.449, 2.532, 2.515. 7.998 with median
2.515 reflecting a general upward shift in the di. The pattern changes even more
markedly if we assume β̂  = 0.5 when the di apart from the last are even more
concentrated, being 2.5, 2.6, 2.4, 2.5, 2.6, 2.6 and 8.1. Indeed to obtain
reasonable approximate confidence intervals for α one must use a more
sophisticated approach. As indicated above, some that are used require an
iterative approach for the joint estimation of α and β.  One possible approach is
given by Sprent (1998, Examples 10.7 and 10.8) where it is in fact shown that in
this example an approximate interval based on the estimate β̂  = 0.567 may not
be unreasonable as iteration does not improve the joint estimates of slope and
intercept.

Some alternative proposals for estimation of α and the more
general problem of estimating med(Y|x) are discussed in Sprent
(1998, Section 10.6) and by Maritz (1995, Section 5.3).
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8.1.6   Comparison of slopes for several lines

Suppose we have k mutually independent sets of paired observations
of variables (x, y) where the ith set contains ni observations ( i = 1, 2,
. . . , k) and k ≥ 2. Assume also that the jth observation (j = 1, 2, . . .,
ni) in the ith set [i.e. (xij, yij)] satisfies the relationship

         Yij
  = αi + βixij + εij

where the εij are realized values of a N(0, σ2) random variable and
the αi, βi and σ2

 are all unknown. This model specifies k regression
lines a l l  w i t h  t h e  s a m e  e r r o r  d i s t r i b u t i o n .   T h e  mo d e l  ha s  b e e n 
w i d e l y  studied in parametric analysis in particular in the context of
testing the hypothesis that all the βi are equal against an alternative of
some inequality.  Equality of the βi implies all k lines are parallel. An
extended hypothesis of equality of all αi in addition to equality of all
βi implies the k regression lines are identical.

If we drop the normality assumptions on the distribution of the εij

and assume only that they all have median zero and are otherwise
identically distributed appropriate methods of estimation of β within
each of the k data sets include those given in Sections 8.1.2 to 8.1.4.
The importance of the ‘pairwise’ slopes denoted in the methods in
those sections by bij (not to be confused with the i, j subscripts as in
xij in this section) here suggests that a comparison of these for the
different data sets might produce a useful base for tests for
parallelism. Unfortunately this intuitively reasonable approach is
complicated by the lack of independence between pairwise slopes
within any one set. This complication does not arise, however, in the
case of the abbreviated Theil method. If this is applied to each data
set the pairwise slopes involved are independent within that set and
the independence of observations in different sets implies they are
independent of the pairwise slopes obtained by the same method in
the other sets. If, in addition, the x are equally spaced all pairwise
slopes have the same distribution within a particular set. If the slopes
of all sets are the same they will have identical distributions in all
sets.  If the βi are not all equal (i.e. if the lines are not all parallel) the
distributions of the pairwise slopes for each set will differ only in
their medians. Thus in this very restricted case an appropriate test for
parallelism against the alternative of at least one different in slopes is
the Kruskal–Wallis test (or the WMW test when k = 2).

We do not know the Pitman efficiency of the above procedure but
it may not be high because the abbreviated Theil procedure does not
make full use of all relevant information in the data.
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More sophisticated tests for parallelism are discussed by Sen
(1969) and a very general test that is asymptotically distribution-free
under broad assumptions developing some of Sen’s ideas in
combination with proposals due to Adichie (1984) is described with
an example by Hollander and Wolfe (1999, Section 9.5).

8.1.7   Efficiency power and sample size

It is well known in classic least squares straight line regression that
the standard error of the estimator β̂  of β is highly dependent upon
the positioning of the xi. If one has a choice of the xi one aim should
be to select these to make this standard error as small as possible
because then the confidence interval for β at any chosen level will be
the shortest available.  It is also well known that for least squares the
shortest confidence interval is obtained when n, the sample size, is
even by setting half the xi at the least possible value and the other
half at the greatest possible value. In practice this ideal design for an
experiment to estimate β may be impossible to attain because of
experimental constraints. Also, other factors may have to be taken
into consideration. One of these may be the need to test whether a
straight line is adequate to describe the systematic component of the
model. To test this one or more x values intermediate between the
two extreme values must be included. In many practical situations
there are major restrictions on the available x values. For example if
the study is designed to determine whether a straight line provides a
reasonable relationship between weight and age of chickens from
shortly after hatching to maturity one may have to select a sample
from available chickens. There may be doubt about whether a
straight-line relationship is adequate, so one would be unwise to
choose only day old chickens and fully mature birds. However, it
would be helpful if one could reduce the standard error of the
estimate of β by choosing, if possible, relatively large numbers of
young and of mature birds and just a few intermediate in size. There
may well be practical limitations on the extent to which this can be
done – for example, there may be only a few mature birds available.
For valid inferences if more than one bird is available at a given x
and only some of these are included, those included should be chosen
at random.

The often quite profound influence of design (in the sense of
choosing x) on the precision of estimates of β carries over to
nonparametric situations. Suppose, for example that the data in
Example 8.1 had been generated by adding ‘errors’ to some Y
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generated by the systematic relationship Y  = x + 2. Thus, for
instance, for the first point (0, 2.5) an ‘error’ 0.5 has been added to
the systematic Y = 0 + 2 = 2. It is easily shown for the remaining
points (see  Exercise  8.10) that the ‘e rrors’ are 0.1, –0.6, –1, –1.4, –1.9,
3.1. Suppose now that we retain Y = x + 2 as the systematic part of
our model but replace the values x = 4, 5, 6 in Example 8.1 by values
x = 99, 100, 101 and impose upon the true Y given by Y = x + 2 the
s a me  e rro rs  as  tho s e  ju s t gi ve n.  Fo r e xa mp le  we  re pl a c e  the  po in t
(5,  5.1) by the  point (100,  100.1) sinc e when x = 100, Y = 100 + 2 = 102
and the associated error is –1.9, whence y = 102 – 1.9 = 100.1.
Proceeding this way our new data set is

x 0 1 2 3 99 100 101
y 2.5 3.1 3.4 4.0 99.6 100.1 101.1

In Exercise 8.10 we ask you to verify that the point estimate of β
given by the Theil–Kendall method is now 0.985 and that a nominal
9 5  pe r  c e n t  c o n f i d e n c e  in t e r v a l  fo r  β  g i v e n  by  t h a t  me t h o d  i s 
(0.50, 1.037). Although the lower limit is the same as that obtained in
Example 8.3 the upper limit is appreciably lower and the point
estimator is now near the top end of the interval. The reduction in
width of the interval implies an increase in power attributable to the
design change of altering dramatically three of the x-values. We
strongly urge readers to spend a few minutes considering the
implications of these findings. In particular, one should consider
whether the model with systematic part Y = x + 2 and the given errors
seems a reasonable model in relation to the amended data values, and
why the point estimator changes so dramatically between that in
Example 8.3 and that obtained here.

We drew attention in earlier sections to a relationship between
some linear regression models and the procedures used to analyse
them and methods such as WMW and the sign test. Where relevant,
results for Pitman efficiency under various error structures carry over
to regression. However, power studies become very complicated not
only because, as in the simpler situations, they are often highly
dependent upon what distributional assumptions are made, but as we
have just indicated, the power is strongly influenced by design
factors in choosing x, as well upon the size of the sample. Further,
changes in sample size may well introduce new x-values that may or
may not in themselves enhance the power.  In view of the complexity
we do not pursue the matter further here. Other useful comments on
efficiency are given by Hollander and Wolfe (1999, Section 9.8).
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8.2   MULTIPLE REGRESSION

In parametric multiple linear regression in place of n paired
observations (xi, yi) we have n observations of p + 1 variables (x1, x2,
. . . , xp, Y) where the jth set, j = 1, 2, . . ., n, is (x1j, x2j, . . . , xpj, yj).
The straight line regression model which assumes that yi is an
observed value of a random variable Yi with conditional mean given
by (8.1) and for all xi  Var(Yi) = σ2, usually with an additional
assumption of normality, 

 is generalized to one in which

   E(Yj|x1j, x2j, . . . , xpj) = α + β1x1j + β2x2j + . . . + βpxpj

with Var(Y i) = σ2, usually one again with an assumption of
normality.  The model may also be written

    yj  =  α + β1x1j + β2x2j + . . . + βpxpj  + εj

where the ε j are independently distributed N(0, σ2).
As for straight-line regression the analogous nonparametric

multiple regression analysis replaces the assumption of normality by
one where the ε j are assumed to be identically distributed with
median zero.

Readers familiar with parametric multiple regression will know
that this is a particular case of what is known as a general linear
model which is also fundamental to analysis of variance. As Maritz
(1995, Section 6.1) points out it is theoretically possible to develop a
distribution-free approach with similarities to classic methods but
adds that it soon becomes clear that exact inferential statements can
only be made about rather uninteresting questions, unless one
considers generalizations with certain special qualities which can
perhaps be labelled properties of orthogonality .

Both the theoretical explanations of possible procedures and their
application require a deeper treatment than other topics covered in
this book, so we omit details. The flavour of how some topics are
treated is indicated by Maritz (Chapter 6). Sprent (1998, Section
11.2) discusses, with an example, the extension of some of the
distribution-free methods for straight-line regression discussed in this
chapter to the case of two explanatory or independent variables x1, x2,
mainly with the aim of highlighting practical difficulties arising with
exact theory for all but trivial data sets. Hollander and Wolfe (1998,
Section 9.6) demonstrate both the theoretical and practical problems
that must be addressed when using an asymptotically distribution-
free inference procedure specifically for investigating assumptions
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that some of the βi may be zero and they apply the method to a
substantial data set.

Because they are useful in practice some more productive
approaches to nonparametric regression analysis that have no
parametric analogues are discussed briefly in the next section.

8.3   NONPARAMETRIC REGRESSION MODELS

The multiple regression model

yj =  α + β1x1j + β2x2j + . . . + βpxpj  + εj          (8.13)

has a systematic or deterministic component  α + β1x1j + β2x2j + . . . + βpxpj

and a random component ε j. The key feature of the methods
developed in Sections 8.1.1 to 8.1.4 where p = 1 was a relaxation of
assumptions about the random component when making inferences
about β1 while the form of the systematic component remained
unaltered.  A well-known parametric generalization of (8.13) is to
replace the deterministic component  α + β1x1j + β2x2j + . . . + βpxpj by
a general function of some specified form f(x1j, x2j, . . . , xpj, θθθθ) where
θθθθ  is a vector of unknown parameters.  The classic parametric
regression model then becomes

yj =  f(x1j, x2j, . . . , xpj, θθθθ) + εj          (8.14)

where the usual assumption is that the εj are independently N(0, σ2).
As in the case of the model (8.13) it is possible in theory at any rate
to replace the normality assumption for the εi by one of identical
distributions with median zero. That approach has been developed
for many particular families f(x1j, x 2j , . . . , xpj, θθθθ ) but this is a
specialized topic we do not pursue here.

In this section we consider for the case of one explanatory
variable, x, completely nonparametric models in the sense that no
specific form is suggested for either the systematic or the random
portions of the model.  All we specify are some properties that each
must obey.  Some but not all of these methods extend to the situation
in (8.14) with p explanatory variables. Many methods used with
these completely nonparametric models are theoretically sophis-
ticated and also need advanced software facilities for their
implementation as well as expert guidance for their interpretation.
For these reasons we only indicate the flavour of some possible
approaches and give an indication when each may be useful and
where more information about them may be found.
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For our first example we consider a bivariate model that stipulates
only that the systematic part of the model is a function f(x, θθθθ) which
is a monotonic increasing (or decreasing) function of x, while the
random component is identically distributed for any x with median
zero, or equivalently, that med(Y|x) = f(x, θθθθ).

The concept is useful when a regression of Y on x is clearly not a
straight line but exhibits the property that med(Y|x) or that E(Y |x)
increases as x increases in which case the regression is said to be
monotonic increasing.  Similarly if med(Y|x) decreases as x increases
we say the regression is monotonically decreasing.

Conover (1999, Section 5.6) indicates one approach to fitting a
monotonic regression, giving an example involving the time to
fermentation (Y) of grape juice when various amounts of sugar (x)
are added.  It is reasonable to suppose in the light of experience and a
knowledge of the chemistry of fermentation that E(Y |x) should
decrease as x increases. It is also clear from a plot of the data that the
relationship between E(Y|x) cannot be represented by a straight line.
Because of a random component the observed (xi, yi) do not exhibit
strict monotonicity due to variations from expectation for individual
observations at the given x-values.

The theory behind the approach adopted by Conover is that if the
regression or systematic part of the relationship between two
variables is monotonic then there will be a linear relationship
between their ranks. This in turn implies that if a monotonic
regression model is appropriate for n paired observations (xi, yi) the
near-monotonic relationship between observations will transform to
a near-linear relationship between ranks. The essence of the method
proposed by Conover is to transform the (xi, yi) to ranks (ri, si) using
mid-ranks for ties.  A least squares straight-line regression is fitted to
these ranks. A back-transforming procedure, involving linear inter-
polation if needed, is then used in a way described by Conover to
obtain estimates y^ i of the mean or median of Y corresponding to each
xi. The estimated regression curve consists of piecewise linear
segments joining points (xi, y

^ i) for adjacent values of xi. In summary,
the monotonicity property is encapsulated in the fitted curve by a
series of straight-line segments each of which is hopefully a
reasonable approximation to the unspecified true monotonic curve in
that neighbourhood.   Readers wishing to apply this method should
refer to Conover for details and also for references to alternative
methods that have been proposed for monotonic regression.

The idea of approximating to a true but unknown function
representing  a  regression  relationship  by  a  sequence  of  joined-up
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straight-line segments each of which might be expected to be a
locally good approximation to some true unspecified function
extends to situations where monotonicity is no longer assumed, but
then rank-based methods can no longer be used. A number of
approaches to this and more sophisticated modelling are discussed by
Hollander and Wolfe (1999, Section 9.7) and by Ryan (1997,
Chapter 10).

The processes described are called smoothing processes and are
especially relevant to large data sets, often with n considerably
greater than 50, and subject to what is conveniently described as
appreciable fuzziness.

We assume a model of the form

yi = f(xi) + εi, i = 1, 2, . . . , n

where the ε i have median zero for all i. The form of f(x) is
completely unspecified except that either med(Yi|xi) or E(Yi|xi) = f(xi).
The aim  is to estimate f(xi) at each of the xi.  The resulting points
should lie on a smoother curve than that for the original data.

A simple approach due to Cleveland (1979) uses what is known as
a running line smoother. Suppose n = 60 and that the (xi, yi) are
arranged in ascending order of the xi. We might take the first seven
points and fit a straight line to them by least squares (or one of the
other methods described in Section 8.1 if we believed that this were
more appropriate). We use this fitted line to give the usual linear
regression estimate y ̂  

4 of f(x) at the mid-value x4 of the selected first
seven xi. The process is repeated replacing the first point (x1 ,y1) by
(x8, y8) to give an estimate y ̂ 5 of f(x) at x5. Continuing this way, using
finally the last seven points we get estimates of f(x) at each xi from x4

to x57. There are two difficulties. First, why choose groups of  seven
successive observations?  Second, we have no estimates corres-
ponding to the end values x1 to x3 or x58 to x60.

The number of points in each group, usually referred to as the
window size, is arbitrary.  Clearly a very small window size (say 3)
will not give much smoothing and too large a window size (say 55)
will force something like a straight-line relationship on the data even
if this is not valid and will only give values at a handful of points in
the middle of the range. Hastie and Tibshirani (1987) suggest that a
window size including between 10–15 per cent of the total number of
points is often reasonable. The method is unsatisfactory for dealing
with values near the end of the data range.

Kernel regression smoothing is a more sophisticated approach that
also uses windows spanning groups of neighbouring points but gives
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more weight to points near the centre of each window.  Thus if, as in
the situation discussed in the previous paragraph, we use a window
spanning the values x1 to x7 to estimate f(x) at x4 more weight is now
g i ve n  to  po i n t s  a t  or ne a r  x 4  tha n  to  th e  re m o t e  po i n t s  (x 1 ,  y 1 )  an d 
( x 7 ,  y7).  The precise allocation of weights is determined by what is
called a kernel function.   There are a number of modifications to
either running line or kernel smoothing.

One such alternative makes use of a curve fitting technique based
upon the concept of splines. Splines are constructed by piecing
together a number of polynomials that differ between adjacent
intervals. The simplest are linear splines and indeed the straight line
segments we described in the discussion of monotonic regression are
linear splines. The points where the slopes change (in that example
the xi) are called knots. More sophisticated splines may consist of,
say, cubic polynomials determined and joined in such a way that
there is continuity at the knots both in the y values and also in the
first derivatives or slopes.

Another sophisticated approach to nonparametric regression uses
roughness penalties. These are especially appropriate to data like that
in Figure 8.3. Visual examination suggests some sort of ‘wavy’ curve
might be appropriate to indicate a relationship between the mean or
median of Y for each x, but if there is little empirical or theoretical
knowledge to suggest a specific form of f(x) a nonparametric fit
seems appropriate. One might use a running line or kernel estimator
smoother but the results may prove highly dependent upon the choice
of window size. Instead, we may introduce what are called penalty
functions. We give only a brief account. A full treatment of the
theory and practical implications of the technique is given by Green
and Silverman (1994).

The function f(x) in the systematic part of the model may take any
form.  In general, the more parameters that are needed to specify the
model, the more flexible that model becomes. At one extreme if a
model with sufficient flexibility is chosen the resulting estimation of
parameters leads to a curve passing through all points. For example if
there are n distinct points (xi, yi) we can always find a polynomial of
degree not greater than n – 1 to pass through all the points. This is a
generalization of the obvious and well-known f a c t  th a t on e  ca n 
a l w a y s  fin d  a  st r a i g ht  li n e  to  pa s s  th ro u g h  tw o  points and a
quadratic to pass through three points (which reduces to a straight
line if the points are collinear). One would usually not be happy to
use the resulting polynomial for prediction or interpolation purposes.
This is a clear case of over-smoothing.
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Figure 8.3  A noisy data set

The key idea behind curve fitting with a smoothness penalty
(sometimes called penalized least squares regression) is that a term is
added to the sum of squares Σi[yi  – f(xi)]

2 that is minimized in least
squares. This additional term is given a form that reduces the effect
of ro ug hn e s s  w hil e  av oid in g the  diffi c u lt ie s  of ove r- s mo ot hin g.  For
a reasonably smooth curve a measure of such roughness in a broad
sense is the amount of change in the second derivative over the
interval (a, b) where typically a = x1 and b = xn for a data set with the
xi in ascending order. This is intuitively obvious if f(x) happens to be
a polynomial because for a straight line the second derivative is zero
so the roughness is always zero. There is no smoother curve than a
straight line!  For a quadratic the second derivative is constant.  For a
polynomial of higher degree, n, the second derivative is a polynomial
of degree n – 2 at most and in general this means the measure of
roughness acts as a penalty because it tends to increase as the degree
of the polynomial increases.

In a more general context where f(x) need not be a polynomial
improved fit still tends to produce more roughness so the idea of a
roughness penalty is that there is a pay-off between the closeness of
fit at individual points and the smoothness of the fitted curve overall.
The function to be minimized takes the form

      U f y f x f x xi i

a

b

i

( ) [ ( )] [ ' ' ( )]= − + ∫∑ 2 2α d

w he re  α  is  a positive cons tant and f '' re pre se nts  the  se cond derivative
of f.  We denote by f* the function that minimizes U(f ).  The value of
α has to be chosen and clearly the greater the value of α the greater
the influence of the roughness penalty ∫a

b   [ f ''(x)]2dx on the
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solution.  When α →  0 the solution approaches least squares but
when α → ∞ for minimization of U(f ) the second derivative f ''(x) is
forced towards zero, implying that the fitted curve does not change in
slope and thus approaches a straight-line regression no matter what f is
chosen.

A remarkable property of the method is that once α is chosen we
do not need to specify the family f to estimate f *.  This is because the
latter can always be expressed in terms of cubic splines. A
description of these or the fitting procedures is beyond the scope of
this book. A detailed account of both the theory and application of
nonparametric regression using penalty functions is given by Green
and Silverman (1994), their Chapters 2 and 3 being devoted to
practical aspects of the use of cubic splines in fitting.

Another approach to smooth curve fitting is described by Efron
and Tibshirani (1993, Section 7.3) using what they call the loess
method and a further robust method of fitting uses what are called M-
estimators. Although we do not describe their application to
regression a brief introduction to M-estimators is given in Section
11.4.

Pettitt (1983, 1985) discusses various aspects of regression with
censored data.

8.4   OTHER MULTIVARIATE DATA PROBLEMS

Although they are not regression problems it is convenient to
mention briefly here several other aspects of nonparametric analysis
of multivariate data.

The univariate concept of the histogram is often associated with
‘smoothing techniques’ to iron out inherent data discontinuities.  For
multivariate data more sophisticated techniques are used. One is
known as kernel density estimation and it has links with splines and
other concepts used in sophisticated regression problems. A number
of applications may be found in the literature. Kasser and Bruce
(1969) measured a number of variables on patients with coronary
heart disease and on normal patients. These included heartbeat rates
at rest and after exercise. A three-dimensional plot of a non-
parametrically estimated joint density function of these two variables
for diseased and normal patients is given by Izenman (1991) and
illustrates dramatically the differences in pattern for the two groups.
Izenman also reviews the subject, giving over 200 references that
include applications in fields as diverse as medicine and the
interpretation of satellite pictures of the earth.
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Ingenious extensions of nonparametric centrality tests to bivariate
data were proposed by Brown (1983).  He applied angular tests
analogous to the sign test for ‘location’ shifts in a specific direction
involving what he termed the spatial median.  This is the centrality
measure in two dimensions that minimizes absolute distances to
observations. Brown et al. (1992) review various aspects of bivariate
sign tests. Multivariate sign tests are discussed by Randles (1989)
and Peters and Randles (1990) develop a multivariate signed-rank
test for one-sample centrality problems.

8.5   FIELDS OF APPLICATION

Regression is a technique used (sometimes overused) in nearly all
fields of application, so in this section we use a different format from
that in other chapters, making only general comments on the use of
the technique. In bivariate regression where least squares is widely
used, the Theil–Kendall method provides a robust alternative
especially useful when one is prepared to, or wishes to, minimize the
influence of observations that do not follow a regression pattern that
suggests a straight-line relationship for the bulk of the data. This is
appropriate if one wishes to use the fitted line for forecasting or
prediction in situations where the dominant pattern suggested by the
bulk of the data is of major interest.

Before fitting any regression curve to bivariate data it is wise to
plot the points. This will indicate whether a straight line is adequate
for fitting or prediction purposes and whether we are likely to need a
robust method of fitting due to presence of outliers, or whether a
more sophisticated curve (perhaps a polynomial or a hyperbola)
might be more appropriate, or whether a monotonic regression, for
example, may be desirable.

In multiple regression or in situations where no simple model for
the systematic part of a bivariate relationship appears obvious some
of the approaches briefly indicated in Section 8.3 should be
considered.

8.6   SUMMARY

Least squares regression may be appropriate providing errors are
independent and are symmetrically distributed all with the same
variance even without a normality assumption. However, although
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inferences may be based on the relevant permutation distribution
there is a lack of robustness against certain departures from
homogeneity of error distributions.

When the xi are equally spaced, rank based methods computing
Spearman’s rho (Section 8.1.2) between the yi and di = yi – bxi  may
be more robust than classic least squares.

The Theil–Kendall method (Section 8.1.3) often gives similar
results to methods based on Spearman’s rho, is easier to apply and is
not restricted to equally spaced xi.

  The point estimator is the median
of the slopes of all pairwise joins of data points with different x
coordinates. An abbreviated Theil procedure (Section 8.1.4) uses
only a small subset of slopes that join independent pairs of points.
Confidence intervals based on the Theil–Kendall method depend on
the distribution of Kendall’s tau for the complete procedure and upon
the sign test for the abbreviated procedure.

Nonparametric analogues of some bivariate regression procedures
extend in theory to multiple regression but software for their
implementation is not readily available so one may have to resort to
asymptotic results more frequently than one would ideally wish.

A more sophisticated development is completely nonparametric
regression (Section 8.3) where no specific form is given a priori to
the systematic part of the model and only very general assumptions
are made about the error structure. The aim is often smoothing of
rather diffuse data sets primarily to discern trends and if appropriate
then to make predictions or forecasts. Models range from those for
monotonic regression to sophisticated models using penalty
functions designed to avoid over-smoothing.

EXERCISES

8.1  S how that if  a sampl e of  n1  observati ons has m ean m0  and another  sample of
n2 = n – n1 has mean m1 and the first sample values are ‘indexed’ by x = 0
and t he second sampl e val ues by x = 1 then _ ̂β  gi ven by (8. 3)  equals m1  – m0 .   

8.2  For the data in Example 8.1 verify that the sum of residuals ei and the sum
of the products of residuals with the corresponding xi is zero. Explain why
this is an inevitable consequence of the least squares estimation procedure.

8.3  The numbers of rotten oranges (y) in 10 randomly selected boxes from a
large consignment are counted after they have been kept in storage for a
stated  number  of  days (x).  Use the  Theil–Kendall method to compute the
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slope of a straight line fitted to these data and obtain an appropriate
estimate of the intercept.

                                                                                                                        

  x       3       5      8     11    15   18   20   25    27    30
   y       2       4      7     10    17   23   29   45    59    73

                                                                                                                        
Plot these data and the fitted line.  Does the fit seem reasonable?

8.4 Using the asymptotic result relevant to the Theil–Kendall method given in
Section 8.1.3 obtain an approximate 95 per cent confidence interval for the
data used in Example 8.3.  Compare this with the exact permutation-based
interval obtained in that example.

8.5 Verify the confidence limits quoted in Example 8.4 using the abbreviated
Theil method.

8.6 Comment critically on and explain the meaning of the following statement:
Given n observations (x i, y i) where the xi are equally spaced, the
Cox–Stuart test for trend (Section 3.2.3) applied to the yi is essentially
equivalent to testing whether the abbreviated Theil estimator is or is not
consistent with zero slope.

8.7 Mattingley (1987) gives the following data based on the US census of
agriculture which gives at approximately 10 year intervals from 1920 to
1980 the percentages of US farms with tractors and farms with horses.
Explain why it would be pointless, or wrong, to fit a linear regression for
tractor percentage on horse percentage to these data. Suggest what
alternative type(s) of regression might be more appropriate.
                                                                                                                           

Per cent tractors   9.2 30.9 51.8 72.7 89.9 88.7 90.2
Per cent horses 91.8 88.0 80.6 43.6 16.7 14.4 10.5

                                                                                                                           

8.8 Gat and Nissenbaum (1976) give ammonia concentration (y  mg l–1) at
various depths (x  m) in the Dead Sea.  Fit a linear regression for
concentration on depth using the Kendall–Theil method and obtain an
approximate 95 per cent confidence interval for    .
____________________________________________________________

x      25    50     100    150    155     187      200      237      287      290   300
y   6.13  5.51   6.18   6.70   7.22    7.28     7.22     7.48     7.38     7.38   7.64
____________________________________________________________

8.9  Katti (1965) gave data for weight of food eaten (x) and weight gain (y) for
10 pigs fed on one type of food (A) and for 10 fed on a second type (B).
Use the abbreviated Theil method to fit linear regressions to each and test
whether the hypothesis that the true slopes β1, β2 are equal is supported.
____________________________________________________________

A     x    575    585     628     632    637    638   661   674   694   713
     y    130    146     156     164    158    151   159   165   167   170

B    x    625    646     651     678    710    722   728   754   763   831
        y    147    164     149     160    184    173   193   189   200   201

 ___________________________________________________________
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8.10 In Section 8.1.7 (p. 298) we gave the data set
                                                                                                            

x 1 2 3 99 100 101
y 2.5 3.1 3.4 99.6 100.1 101.1

                                                                                                            

Verify that the y values are consistent with the explanation given in that
section of the model used to obtain them. Also use the Theil–Kendall
method to obtain a point estimate of β together with a nominal 95 per cent
confidence interval.
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9.1 CATEGORIES AND COUNTS

Data often consist of counts of the number of units (people,
institutions, towns, countries, items, etc.) with given attributes. It is
often convenient to present these in one-, two-, three- or higher-
dimensional tables usually referred to as one-way, two-way, three-
way, etc. contingency tables. Each dimension or way corresponds to
a classification into categories representing attributes. These may be
explanatory (e.g. dose levels of a drug; the names of several
different drugs; gender; psychiatric diagnoses; ethnic groups;
income levels). Alternatively they may be responses (e.g. side-
effects of drugs classified as none, slight, moderate, severe; blood
pressure levels after administration of a drug; examination grades).
The attributes are often qualitative; if there is no natural ordering
they are described as nominal (e.g. psychiatric diagnoses; ethnic
groups). Attributes that may be arranged in a natural order are
described as ordinal (e.g. reactions to a drug classified as slight,
moderate, severe; grouping by age under 50 and age 50 and over).

This and the next chapter deal with problems that at first sight
appear different from any previously considered, yet many are
solved using procedures we have already developed. This is because
we can re-express many problems met in earlier chapters in an
equivalent contingency table format.

This chapter is mainly about two-way tables consisting of two or
more rows and columns. Typically, each of the rows represents
either a level of an explanatory attribute or a level of response, and
each of the columns represents a level of response. Table 9.1 is an
example with two rows and five columns. A question often asked is
whether there is evidence that the incidence rate of side-effects
differs between drugs. The null hypothesis of independence is often
expressed as one of no association between row and column
categories. Generally this means that the population distribution of
the possible column outcomes is the same for each row category.

9
Categorical Data
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Table 9.1 Numbers of patients showing side-effects for two drugs.

Side-effect level

None Slight Moderate Severe Fatal

Drug A

	

23

	

8

	

9

	

3

	

2
Drug B

	

42

	

8

	

4

	

0

	

0

In Table 9.1 the row categories are explanatory and nominal.
However, had each row referred to different dose levels of the same
drug they would have been ordinal explanatory categories. The
column categories refer to ordinal responses that reflect seriousness.

We have already met situations where we formed contingency
tables deduced from measurement data by counting the numbers of
measurements falling into defined categories. For instance, Tables
5.2 and 6.4 involve counts from two and six samples, respectively,
of numbers in each of two categories (above and below an overall
sample median M). The column categories were ordinal responses
('<M' and '>M'). The row categories (samples) were explanatory.
In that context whether the latter are ordered depends upon the
nature of the samples. If successive samples corresponded to
increasing dose levels of a drug they would be ordinal; if they
represented psychiatric diagnoses or each represented people of a
different ethnic group they would be nominal.

Although the advantage of doing so is not immediately obvious
we may also present the data in Example 5.1 as a 2 x 21 contingency
table. The rows correspond to Group A and Group B and each
column corresponds to one of the times taken to carry out the
calculations, these times being arranged in ascending order. The
numbers in the cells of this table are either 0 or 1. An entry 1 is
placed in the cell in the first row of a time column if someone from
Group A took that time to complete the calculations and similarly a
1 is entered in the appropriate cell in the second row for those in
Group B. All other cell entries are zero. This leads to Table 9.2. We
show why this is useful in Sections 9.3.1 and 10.2.6.

In Example 5.4 a contingency table format was used for what were
for practical purposes 'tied' data and there a contingency table was a
natural way to present the data. As we have already indicated this
correspondence between tables of measurements and 'counts' of
units or subjects exhibiting each measurement provides a useful
tool for showing relationships between methods.
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Table 9.2 The data in Example 5.1 presented in a contingency table.

Time

	

17 18 19 2122 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39 41

Group A

	

1

	

1

	

1

	

0

	

1

	

1

	

0

	

1

	

1

	

0

	

0

	

1

	

0

	

1

	

0

	

1

	

0

	

0

	

0

	

0

	

0
Group B

	

0

	

0

	

0

	

1

	

0

	

0

	

1

	

0

	

0

	

1

	

1

	

0

	

1

	

0

	

1

	

0

	

1

	

1

	

1

	

1

	

1

Many tests for lack of association applicable to nominal categ-
ories in both rows and columns may still be applied when either or
both of row and column categories are ordered. Generally, however,
more powerful procedures exist that take account of ordering.

Sometimes both rows and columns represent response categories.
For instance, a particular antibiotic can be used to treat both
bronchitis and otitis media (infection of the middle ear) in the same
patient (Hornbrook, Hurtado and Johnson, 1985). Table 9.3 shows a
data set where the antibiotic is prescribed to 60 patients who have
both health problems. Its effect is noted on changes (worse, the
same, better) in bronchitis (rows) and otitis media (columns). Such a
variation in outcome might occur in practice, as a substantial
minority of the patients may not take the prescribed antibiotic
leading to a worsening in their condition. Since, for each illness the
three outcomes are mutually exclusive, all subjects can be classified
into one and only one combination of row and column categories.

This may not be the case in a different study; in asthma the
outcomes of interest might be no symptoms, cough and wheeze. It is
possible for individuals to have both cough and wheeze so a fourth
category of 'both' would be needed to take this into account.

We have shown row and column totals and the total number of
patients, 60, in the bottom right of Table 9.3. This is a common
practice for contingency tables because totals play a prominent part
in analyses. In Table 9.3 both row and column categories are ordinal;

Table 9.3 Outcome for patients who receive a prescription for a particular
antibiotic.

Otitis media
Worse

	

The same

	

Better

	

Total
Bronchitis

Total 18 24 18 60

Worse 13 5 6 24
The same

	

1

	

19

	

4

	

24
Better 4

	

0

	

8 12
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in the study of cough and wheeze in asthma outlined above there is
no natural ordering and these categories would be nominal.

9.1.1

	

Some basic concepts

Before giving a more formal treatment of the analysis of contin-
gency tables we illustrate some basic concepts using the antibiotic
treatment data above. The appropriate null hypothesis for Table 9.3
asserts that there is no association between the changes in the
severity of bronchitis and changes in the severity of otitis media. So,
in the population of such patients who receive this antibiotic, the
proportions of patients in the categories for outcome in otitis media
are the same whatever the change (if any) in the severity of the
bronchitis. Under this null hypothesis, the expected number of
patients in a given cell can be calculated using the row and column
totals. For instance, if outcomes in bronchitis and otitis media are
indeed unrelated we would expect (18 x 24)/60 or 7.2 patients to
deteriorate in both conditions. A table of expected values can be
constructed for the cells, as shown in Table 9.4.

If the sample reflected the null hypothesis exactly, the observed
and expected values in each cell would be the same apart from the
'rounding' needed to produce integer values. Is it likely that the
absolute differences observed - ranging in value from 0.4 to 9.4 -
could have come about purely by sampling fluctuation if the null
hypothesis is true for the population?

The classic way to address this problem is to calculate the chi-
squared statistic (dealt with in detail in Section 9.2.2). This summary
measure assesses the differences between observed and expected
values, producing a number that is large if there is strong evidence

Table 9.4 Expected numbers of patients in Table 9.3 under the null
hypothesis of independent outcomes for bronchitis and otitis media.
Observed values from Table 9.3 are given in italics in brackets.

Otitis media
Worse

	

The same

	

Better

	

Total
Bronchitis

Worse

	

7.2 (13)

	

9.6 (S)

	

7.2 (6)

	

24
The same

	

7.2

	

(1)

	

9.6 (19)

	

7.2

	

(4)

	

24
Better

	

3.6 (4)

	

4.8 (0) 3.6 (8)

	

12

Total 18 24 18

	

60

© 2001 by CRC Press LLC



against the null hypothesis but close to zero if there is little
evidence. This statistic takes into account the sample size and the
numbers of rows and columns (large tables tend to produce larger
values of the statistic). Most statistical packages calculate this
statistic along with a P-value that is used to assess the strength of the
evidence against the null hypothesis. For Table 9.4 association
appears likely. Indeed, the calculated chi-squared value is large with
corresponding P < 0.0001. Changes in condition in otitis media and
bronchitis seem to be positively associated. Since row and column
categories are ordered it is possible to get a more powerful test than
the above if this ordering is taken into account.

9.1.2

	

Some models for counts in r x c tables

Books on categorical data analysis in both parametric and
nonparametric contexts include Bishop, Fienberg and Holland
(1975), Breslow and Day (1980), Plackett (1981), Agresti (1984,
1990, 1996), Christensen (1990), Everitt (1992) and Lloyd (1999).

In general r and c are used to denote the numbers of rows and
columns in a table referred to as an r x c (in speech 'r by c') table.
For Table 9.1, r = 2 and c = 5. It is convenient to represent a general
r x c table in the form of Table 9.5. The entry
of the ith row and jth column, referred to as cell (i, j), represents the
number of items having that combination of row and column
attributes. The total count for row i is denoted by
Similarly,

i.e.
is the total count for column j, and N =

is the total count over all cells.
The methods we develop are nonparametric in the sense that,

although several parametric models may give rise to an observed
distribution of counts in a contingency table, the inference
procedures we use often do not depend upon which of these models
we choose or upon the precise values of certain parameters, since
these are not specified in our hypotheses. Technically, we avoid the
problem of specifying parameter values by a device known as
conditional inference. This makes use of properties of sufficient and
ancillary statistics, a topic beyond the scope of this introductory text.
Readers familiar with the basic theory of maximum likelihood will
find an excellent account of inference theory for categorical data in
Agresti (1990, Chapter 3) while Agresti (1996) deals at a slightly
less technical level with both classic and modern methods of
categorical data analysis.

at the intersection
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1
2

Row
categories

r

Total

Column categories
1 2 3

	

c Total

Table 9.5 A general r x c contingency table.

When making inferences we nearly always regard row and
column totals as fixed; this is the conditional feature. It is justified
by the concept of conditional inference, but is not in general a
consequence of the experimental set-up. Sometimes neither row nor
column totals are fixed a priori by the nature of the experiment, in
other cases one of these sets is fixed but not the other and only
exceptionally are both fixed. For example, if we are comparing two
drugs, A and B, that will result in either an improvement (a success,
denoted by S) or no improvement (a failure, denoted by F) we may
have 19 patients and allocate 9 patients at random to receive drug A,
the remaining 10 to receive drug B, and observe the following
results:

S F Total

Drug A

	

7

	

2

	

9
Drug B

	

5

	

5

	

10

	

(9.1)

Total

Here row totals are fixed by our choice of numbers to be allocated to
each drug. If we regard the 19 patients as the entire population of
interest then under the null hypothesis of independence or no
association (i.e. that the drugs are equally effective) we are justified
in regarding the total number of successes, 12, as fixed. This is
irrespective of how we allocate patients to the two groups of 9 and
10 corresponding to the two drugs. Just as in the situation in
Example 1.4, it is extreme outcomes under randomization like none
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(or 9) of the 12 successes being among the 9 patients allocated to
drug A that make us suspect the null hypothesis is not plausible. As
in other permutation tests, we may compute the probability of each
possible outcome under
situation is different when we sample our patients as two groups of 9
and 10 from a larger population. Even under
pair of samples of 9 and 10 (the fixed row totals representing our
designated sample sizes) it is unlikely that the combined number of
successes for these different patients would again be 12. We might
get an outcome like that in (9.2).

S F Total

Drug A

	

6

	

3

	

9
Drug B

	

3

	

7

	

10

	

(9.2)

Total

However, the hypothesis of independence does not involve the
actual probability of success with each drug, but stipulates only that
the probability of success,
practice, we usually do not know the value of
assume there is such a common value for both drugs, we can obtain
an estimate based on the total number of successes, 12 from 19, in
our sample of 19 in our observed situation, i.e. that in (9.1). We can
use this information to compute the expected number of successes in
sub-samples of 9 and 10 from the total of 19 under the assumption
that
observed and expected numbers of successes computed in this way
for the two drugs, this is an indication of association, i.e. that the
probability of success for drug B is not the same as the probability
for drug A. In effect, what we are doing is looking at a permutation
distribution once more, but only in possible samples which have
fixed column totals (in our case 12, 7 respectively) as well as fixed
row totals. Such conditional inference is perfectly valid, and indeed
it is the entries in the body of any such table with fixed marginal
totals that provide the evidence for or against independence. As
indicated above the column marginal totals in this example tell us
something about the likely value of
indeed
there is really a common probability,
is the individual cell values that contain virtually all the information

when the marginal totals are fixed. The

if we took another

say, is the same for each drug. In
However, if we

is true. Again, if we observe big discrepancies between the

the probability of success if
is true, but they contain little information as to whether

of success for each drug. It
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on this latter point. Similar arguments apply for regarding all
marginal totals in an r x c table as fixed for nearly all the models we
consider in this and the next chapter. Methods for inference that do
not require all marginal totals to be fixed have been proposed and
are used. However, there is near-unanimity among statisticians that
conditional inference with fixed marginal totals is the most
appropriate way to test for independence (although independence is
not the only thing we may want to test in contingency tables).
Conditional inference is convenient, valid and overcomes technical
problems with hypothesis tests in this context. For enlightening
discussions about this approach and approaches that do not assume
marginal totals are fixed see Yates (1984), Upton (1992) and a wide-
ranging paper by Agresti (1992), also Freidlin and Gastwirth (1999).
We show in this and the next chapter how many permutation
distribution tests already met in this book can be reformulated as
tests involving contingency tables with fixed row and column totals.

Experimentally, we might arrive at the outcome in (9.1) without
pre-fixing even the row totals. For example, the data might have
come from what is called a retrospective study, by simply going
through hospital records of all patients treated with the two drugs
during the last 12 months and noting the responses. Our method of
testing for no association using conditional inference would be the
same, i.e. conditional upon the observed row and column totals.

For elucidation, we describe briefly several models used to
describe counts, indicating where each might be appropriate, and
show that each leads to the same conditional inference procedures.
We confine this introductory discussion largely to 2 x 2 tables. The
reader who is not familiar with the multinomial and Poisson
distributions and the concept of conditional and marginal
distributions may wish to omit the remainder of this section and
move directly to Section 9.2, where we describe applications.

A typical model for the situation exemplified by (9.1), where the
row classifications are explanatory and the column classifications
are responses, is to assume that each row has associated with it
independent binomial distributions and that the cell entries are the
numbers of occurrences of a response A and a response B for a
B(
in the second row. In the case of (9.1) we have
so that under this model for each cell we obtain probabilities
the observed numbers as follows:

for
=10

distribution
= 9 and

distribution in the first row and for a B
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The hypothesis of no association implies
associated common value
response from patient to patient and the additive property of
binomial variables imply that under
a total of 12 favourable outcomes in 19 observations (the column
total line) is

Since the classifications of individuals are independent, it follows
from standard definitions of conditional and independent
probabilities that the probability of observing 7 successes (=

successes in 19 trials, is

Thus, when

As indicated in Section 5.3.1, for a general 2 x 2 table with cell
entries

a b
c d

this generalizes to

(9.3)

and this does not involve
Equation (9.3) represents the frequency or probability mass

function for the hypergeometric distribution. We saw in Section
5.3.1 that when we fix marginal totals,
on a, since, given a, then b, c and d are automatically fixed to give
the correct marginal totals. The fact that fixing a fixes all cell entries
is summarized by saying that a 2 x 2 contingency table has one
degree of freedom. The value of
testing for independence (no association). We have already

trials, conditional upon having observed a total of 12
) in 9

given by (9.3) is relevant to

depends essentially only

say, is not specified. Independence of

the probability of observing

but the
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mentioned in Section 5.3 that the test based on the hypergeometric
distribution is the Fisher exact test which we described with an
application to a 2 x 2 table in Example 5.6. By calculating
possible values of a we may set up critical regions in the tail of the
distribution relevant to assessing the strength of evidence against
in either one- or two-tail tests, as we did in Example 5.6. We
sometimes want estimates of the expected values of each

If we knew
is unknown we base our estimates on the marginal totals, using these
to estimate

/N and the expected value of
Similarly, we establish the general result
expected values sum to the marginal totals.

More generally, if there is association in a 2 x 2 table, then
clearly, in (9.1) for example, if the binomial probabilities were
known to be

The quotients,
outcome `success' for each row. A quantity often used as an
indicator of association is the odds ratio, defined as

for all

we could obtain exact expected values, but when
under

Since has expected value we estimate by
is                     =  (           )/N.

/N. These

the expected values in that case would be

From (9.4) the odds ratio is also the ratio of cross products of the cell
expected frequencies
then
calculated under

as
including a test for whether

If
successes with drug A than with drug B and from (9.4) we find
6.75 and
total as do the expected values under
surprise as we are dealing with a situation where the probabilities of
success are known and different for each drug. For these
values
that
same degree of association, but in opposite directions. This is

and , represent the odds on the

i.e.
_= ( ) . Clearly, it

= 1. This is also true for the estimated expected values
i.e.       = (        )/N. If, as usual, we do not know

by the sample odds ratio, which is definedwe may estimate
= ( ). In Section 10.2 we give tests for association,

is consistent with = l.
and it is intuitively obvious that we expect more

= 5. These expected values no longer add to the column
this should cause no

= 3. If we interchange probabilities so
and we find . Both these cases reflect the

(9.4)
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demonstrated more clearly if we use
association, for now

and generally

Possible values of
association
logarithms to any base, most formulae for testing and estimation are
based on natural logarithms using the base `e'. Such logarithms are
sometimes denoted by 'In' rather than `log', but we use the latter.

The binomial model given above is not appropriate if our data are
for two response classifications, like those in the tableau (9.5) giving
numbers of patients responding in specified ways to a drug.

Blood cholesterol level
Increased Unchanged Total

Blood Higher 14 7 21
Pressure Lower 11 12 23 (9.5)

Total

Here all four cells are on a par in the sense that all we can say is that
with an unknown probability
allocated to cell (i, j). The multinomial distribution is an extension
of the binomial distribution with independent allocation of n items
to k > 2 categories with specified probabilities for each category.
Here we have 4 categories, one corresponding to each cell. The
probabilities are subject to the constraint
since each person is allocated to one and only one cell. We specify
by
row 2, and likewise we specify marginal probabilities
columns. For independence between rows and columns, standard
theory gives the relationship

Even if there is independence we still do not know the value of
the
Assuming no association (i.e. independence), we base our estimates
on marginal totals, estimating

if there is independence we estimate

= log as a measure of

range from
= 0. While the above relationships are true for

to and when there is no

any of the N = 44 subjects may be

= 1,

the marginal probabilities that items will fall in row 1 or
for

for i, j = 1, 2.

but this presents no problem if we use conditional inference.

by /N and by 
/N. Since

by      =
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It follows from properties of the multinomial distribution that we
may then obtain expected estimated counts as
exactly as in the two-sample binomial model, and proceed to tests as
in that model. It is easy to show that under independence the odds
ratio. here defined as

above, using these estimates or the estimated expected frequencies

Another model often relevant is one where counts in each cell
have independent Poisson distributions with a mean (Poisson
parameter)
association between rows and columns. In general, we do not know
the
estimated from marginal totals in the way we do for the row-wise
binomial and the overall multinomial models.

Extension of the three models above to r x c tables is reasonably
straightforward. 

For c > 2, binomial sampling within rows general-
izes to multinomial sampling within rows. For this, or the overall
multinomial sample or the Poisson count situation, under the null
hypothesis of no association the expected cell frequencies are
estimated in the notation of Table 9.5 by
and j = 

l, 2, . . . , c. An odds ratio may be defined for any two rows
i, k and any two columns j, l as

and
ratios are

The Fisher exact test extends to r x c tables in a way described in
Section 9.2.1.

9.2 NOMINAL ATTRIBUTE CATEGORIES

Tests developed in this section are appropriate when row and column
categories are both nominal. They are often used for tests of no
association when attributes are ordered, but tests described in
Section 9.3 or in Chapter 10 are then often more appropriate.

We describe three commonly used test procedures. Confusion
exists in the literature because each often (but not invariably) leads
to essentially equivalent permutation distributions for 2 x 2 tables,
but to different asymptotic test statistics even in this case. For
general r x c tables both the exact permutation distribution of the

. is unity (hint: put
etc.). If the are estimated under in the way indicated

gives = l. The sample odds ratio is

for cell (i, j). If = 1, there is no

but it can be shown that, again under these may be

/N, i=1, 2, ..., r

= 1 for all i, j, k, l 
if there is no association. The sample odds
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test statistics and the asymptotic test statistics differ. However, one
should not exaggerate the importance of these differences, for unless
the choice of a precise significance level is critical it is seldom that
the three possible exact tests lead to markedly different conclusions.
However, there may be considerable differences between exact and
asymptotic tests in some circumstances. Numerical values of the
three test statistics often differ considerably, even for moderately
large samples, but each statistic has asymptotically a chi-squared
distribution with (r - 1)(c - 1) degrees of freedom under the
hypothesis of independence (no association) between row and
column classifications.
The three tests are

The Fisher exact test (also known as the Fisher-Irwin or as the
Fisher-Freeman-Halton test).
The Pearson chi-squared test.
The Likelihood ratio test.

Practice has often been to use the Fisher exact test when
asymptotic theory is clearly inappropriate and either of the others
when asymptotic results are thought to be acceptable. Despite
differences in numerical value of the relevant test statistics and the
fact that exact permutation distribution theory differs in each case,
there seems no compelling reason to depart from this practice.

Tests based on exact permutation theory, except in the case of
2 x 2 tables (where the Fisher exact test is commonly used) are not
practical without relevant software. StatXact allows exact
permutation tests based on all three methods and some facilities are
also included in Testimate and in more general software, so there is
now less reason to use asymptotic theory when it is of doubtful
validity. This is particularly relevant for 'sparse' contingency tables
in which there are many low cell counts even though N may be
large. That situation is not uncommon in medical applications
where responses may be recorded on a limited number of diseased
patients because resources are in short supply or responses in certain
categories are few in number (see e.g. Exercise 9.23).

9.2.1 The Fisher exact test

The Fisher exact test for 2 x 2 tables based on the hypergeometric
distribution specified in (9.3) was described by Fisher in various
editions of his famous book Statistical Methods for Research
Workers dating from the 1930s and was extended to r x c tables by
Freeman and Halton (1951). In the notation of Table 9.5, the
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generalized hypergeometric distribution relevant to an r x c table
gives the probability of an observed configuration under
conditional upon fixed marginal totals as

(9.6)

The P-value for the test of no association is the sum of all
probabilities for configurations with the given marginal totals that
have the same or lower probability.

Example 9.1

The problem. Scarlet fever is a childhood infection that among other
symptoms gives rise to severe irritation of the nose, throat and ears. In a
developing country in which scarlet fever is still a problem, six districts A to F
were chosen. In each district, patients were located and the parents were asked to
state the site at which they thought their child's irritation was the worst. The
numbers in each response category are:

District
A B C D E F Total

Nose 1 1 0 1 8 0 11
Throat 0 1 1 1 0 1 4
Ears 1 0 0 0 7 1 9

Total 2 2 1 2 15 2 24

Is there evidence of association between districts and sites of greatest perceived
irritation?

Formulation and assumptions. We use the Fisher exact test for independence
and the program in StatXact.

Procedure. 	StatXact gives the probability of observing this configuration
under Ho: no association to be 0.0001 and the probability of this or a less
probable configuration is P = 0.0261. It also gives a probability of 0.0039 of
obtaining a configuration with the same probability as that observed, indicating
that more than one configuration has this probability.

Conclusion. Since P = 0.0261 there is fairly strong evidence against

Comments. 1. It is evident that the main cause of association is the relatively
high number of responses of greatest irritation at the nose or ears (but not throat)
in district E. Clearly, this district has responses out of line with the general trend,
whereas the other districts produce reasonably consistent results for all three
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sites of irritation. It may be that in district E more importance is placed on visual
appearance compared with the other five districts.

2. The finding of dependence is not surprising, so it is relevant to note that
asymptotic theory here does not indicate significance at a conventional 5 per
cent level. We discuss the more commonly used asymptotic statistics in Sections
9.2.2 and 9.2.3, but see also the remarks below under Computational aspects.

3. While it is impractical to compute manually all relevant permutation
distribution probabilities, it is not difficult to verify that for the given
configuration (9.6) shows
StatXact (see Exercise 9.1).

4. We are not testing whether incidence levels differ between districts, but
whether the proportions at irritation sites differ between districts (or
equivalently, whether the proportions for districts differ between irritation sites).
Had there, in addition, been 8 cases of greatest irritation in the throat in district E
we would have found little evidence against the hypothesis of no association,
although clearly the numbers of cases at all three irritation sites would be much
higher for district E.

5.

	

The test of association is essentially two-tail, the situation being broadly
analogous in this aspect to that in the Kruskal-Wallis test where we test for
differences in centrality which may be in any direction, or in different directions
in populations corresponding to different samples.

Computational aspects.

	

1. A program like that in StatXact is invaluable in
situations where asymptotic results may be misleading. Although seldom used in
practice, a statistic is given in StatXact which is a monotonic function of
given by (9.6). Asymptotically this statistic has a chi-squared distribution with
(r - 1)(c - 1) degrees of freedom. This statistic, denoted by
14.30 for this example, and
the result from the exact test, for we do not establish significance at any
conventional level with the asymptotic test. In practice, the asymptotic tests
given in Sections 9.2.2 and 9.2.3 are more widely used.

2. The Fisher exact test for r x c tables is available in Stata. If the table has
many cells and the sample size is large the computation of the P-value may take
several minutes. Many general packages include the Fisher exact test for 2 x 2
tables only.

Example 9.1 is not atypical; the StatXact manual gives very
similar data for location of oral lesions in a survey of three regions
in India. The asymptotic test has (r - 1)(c - 1) degrees of freedom in
an r x c table because, if we allocate arbitrarily cell values in, say,
the first r - 1 rows and c - 1 columns the last row and column values
are fixed to ensure consistency with the row and column totals.

9.2.2 The Pearson chi-squared test

An alternative statistic for testing independence of row and column
categories is the Pearson chi-squared statistic. Its appeal is

= 0.000058, as indicated (after rounding) by

> 14.30) = 0.1597. This is in sharp contrast to
. takes the value
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Ease of computation.
Fairly rapid convergence to the chi-squared distribution as
count size increases.
Intuitive reasonableness.

An exact test is based on the permutation distribution of this
statistic over all sample configurations having the fixed marginal
totals. Computation of P-values is no easier than it is for the Fisher
exact test and only for 2 x 2 tables are the exact tests often
equivalent.

Denoting as before the expected number in cell (i, j) by
then

Example 9.2

The problem. For the data in Example 9.1 calculate
using the asymptotic result that

Formulation and assumptions.

	

We calculate each
formula (9.8) for

Procedure. Using the row and column totals for the data in Example 9.1 we
obtain the following table of expected frequencies (an explanation of how to get
these was given in Section 9.1.1):

A B C D E F Total

Nose

	

11/12 11/12 11/24 11/12 55/8 11/12

	

11
Throat 1/3 1/3 1/6 1/3 5/2 1/3 4
Ears

	

3/4 3/4 3/8 3/4 45/8 3/4 9

Total 
2 2 1 

2 15 2 
24

whence, from (9.8)

is a measure of departure from expectation
It is reasonable to weight this measure inversely by the

then use

18.31. In fact 4.96) = 0.1335.

under
expected count, since a departure of 5 from an expected count of 100
is less surprising than a departure of 5 from an expected count of 6
for any of the models given in Section 9.1.2. Pearson (1900)
proposed the statistic

(9.7)

as a test for evidence of association.
For computational purposes it is easier to use the equivalent form

(9.8)

With 10 degrees of freedom chi-squared tables show that significance at the 5
per cent level requires

has a chi-squared distribution.
. Test for significance
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Conclusion. There is little evidence against

Comment. An asymptotic result may be unsatisfactory with many sparse
cells, but here that using X Z behaves marginally better than that based on F
(Example 9.1). See also Exercise 9.23.

Computational aspects. Nearly all standard statistical packages include a
program for tests based on X2 using the asymptotic result. StatXact also
computes P = 0.1094 using the exact permutation distribution for X 2. This not
only shows that the Fisher exact test and the exact version of the Pearson chi-
squared tests are not equivalent, but suggests that the tests may differ in power.

For 2 x 2 tables the Fisher exact test and the exact tests based on
XZ are often equivalent, though the asymptotic test statistics
generally differ. It is customary to use the latter in asymptotic tests,
and when doing so a better approximation is obtained by using a
continuity correction commonly known in this context as Yates'
correction. With this correction we compute

i. e. we subtract
numerator before squaring.
An alternative form useful for computation is

(9.9)

gives the Xz value without continuity corr-
ection. The correction is used only for 2 x 2 tables.

Example 9.3

The problem. A new drug (A) is only available in a pilot experiment for 6
patients who are chosen at random from a total of 50 patients; the remaining 44
receive the standard drug (B). Of those receiving drug A only one shows a side-
effect, while 38 of those receiving drug B do. Test the hypothesis of no
association between side-effects and drug administered.

Formulation. From the information above we form the following 2 x 2 table:

Side-effect None Total

Drug A

	

1

	

5

	

6
Drug B

	

38

	

6

	

44

Total 39 11 50

We use (9.9) to compute X2 and test using chi-squared with 1 degree of freedom.

Procedure. Substituting in (9.9) gives

Omitting the term

from the magnitude of each difference in the

© 2001 by CRC Press LLC



Tables or software for the chi-squared distribution indicate P =
0.0008.

Conclusion. There is strong evidence against

Comment. The permutation
correction

Computational aspects. Most general statistical packages include a program
for the Pearson chi-squared test for r x c tables, often using Yates' correction (or
providing it as an option) for 2 x 2 tables.

9.2.3 The likelihood ratio test

An alternative statistic for a test of association is the likelihood ratio

(9.10)

where 'log' is the natural logarithm, i.e. to the base 'e'. Asymp-
totically
of freedom if there is no association. For the data in Example 9.1,

= 17.33. Although this does not indicate significance at a
conventional 5 per cent level, it is a better approximation to the
exact P than that given by
for the overall multinomial sampling model and convergence to the
chi-squared distribution under

An exact permutation theory test may be based on
for 2 x 2 tables, the results will generally differ from those for exact
tests based on
based on

In each of the three tests for the data in Example 9.1 the asymptotic
test is an unsatisfactory approximation. Although the three exact
permutation distribution tests are not equivalent, two give strong
indications of evidence that there is association and all give lower
P-values than those for asymptotic theory. The sample has a pre-
ponderance of sparse cell entries and although such situations do arise
in practice, in many contingency tables very few cells have low
expected values under
the literature about when it is safe to use asymptotic results with

Generally speaking, the larger r and c are, the less we need worry
about a small proportion of sparse cell counts. Programs such as
StatXact or Testimate that provide both exact and asymptotic P-
values, so that these may be compared, are invaluable for those who
frequently meet contingency tables with sparse data.

There is a variety of conflicting advice in

11.16) =

is often faster than that of

= 14.95 which over-estimates the evidence against
test indicates P = 0.0012. Without Yates'

The test has some optimal properties

and, except

For the data in Example 9.1 the exact testor
gives P = 0.048.

has a chi-squared distribution with (r - 1)(c - 1) degrees

or

no association.
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Since the tests in Section 9.2 apply to nominal categories,
reordering rows or columns does not affect the value of the test
statistic. As already indicated, for ordered categories there are more
appropriate tests that take account of any natural ordering in rows
and columns.

9.3 ORDERED CATEGORICAL DATA

We consider first nominal row explanatory categories and ordered
column response categories; then ordered row explanatory and
ordered column response classifications or both ordered row and
ordered column response categories.

9.3.1 Nominal row and ordered column categories

Table 9.6 repeats Table 9.1 with the addition of row and column
totals. The explanatory row categories, type of drug, are nominal but
column responses are ordinal. Here the Wilcoxon-Mann-Whitney
( WMW) test is appropriate, but the data are heavily tied, so, e.g. the
65 responses 'tied' as none are allocated the mid-rank 33, the 16
responses tied as slight are given the mid-rank of ranks 66 to 81, i.e.
73.5, and so on. Use of the Mann-Whitney formulation obviates the
need to specify mid-ranks, for we simply count the numbers of
recipients of drug B showing the same or more severe side effects
than that for each recipient of drug A, scoring an equality as
an excess as 1. Thus the 23 responses none for drug A each give rise
to 42 ties, scoring 21 and 8 + 4 higher ranks, contributing a total
score 23(

Table 9.6 Numbers of patients showing side-effects for two drugs.

Side-effect level
None Slight Moderate Severe Fatal

	

Total

Drug A

	

23

	

8

	

9

	

3

	

2

	

45
Drug B

	

42

	

8

	

4

	

0

	

0

	

54

Total 65 16 13 3 2

	

99

x 42 + 8 + 4) = 759 to the Mann-Whitney

and
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Example 9.4

The problem. For the data in Table 9.6 compute the Mann-Whitney statistic
and test for evidence of a difference in levels of side-effects.

Formulation and assumptions. We compute either
described above, and which was also illustrated in Example 5.4. Because the
sample is large we might use an asymptotic result but if a suitable computer
program is available, with so many ties an exact test may be preferred.

Procedure. We calculate
841. Using (5.7) (i.e. ignoring ties) gives Z = 2.63, whereas the appropriate
modification of (5.6) gives Z= 3.118. Using StatXact, the exact permutation test
gives a two-tail P = 0.0019, equal to that using Z = 3.118.

Conclusion. With sample sizes 45 and 54, having allowed for ties, an
asymptotic result should be reasonable and this indicates strong evidence against

(because P < 0.01). This is confirmed by the exact P = 0.0019.

Comment.

	

If we ignore ordering and use the Fisher exact test it gives an
exact P = 0.0127 while for the asymptotic Pearson chi-squared test P = 0.0193.
These results are in line with our general remark that we gain power by taking
account of ordering. Nevertheless, for some configurations we sometimes
observe marginally smaller P-values when we ignore ordering.

Computational aspects. Since asymptotic results appear reasonable here, any
statistical 

package for the WMW test that uses mid-ranks and gives the
significance level based on asymptotic theory that takes account of ties should be
satisfactory. 

A program such as the one in StatXact does, however, give
additional confidence in that it compares not only exact and asymptotic results
for the 

WMW test, but also allows us to perform the Fisher exact test or a
Pearson chi-squared test (exact or asymptotic) and compare results.

In Section 5.3.1 we recommended the Fisher exact test when
using a median test to compare treatments. Since we had ordered
categories, why did we not recommend the WMW test if we have a
program for exact permutation distribution tests? It turns out that it
does not matter which we use for 2 x 2 tables, for the exact tests are
then equivalent, although the asymptotic forms of the two are not
quite the same. The position is more complicated for the median test
in Section 6.2.6, where we have more than two samples. We discuss
this in Section 9.3.2.

Nearly all tests for centrality in earlier chapters can be formulated
as tests involving contingency tables with fixed marginal totals.
This is a key to efficient computation of exact permutation
distributions and is how StatXact handles data for these tests. We
gave an example in Table 9.2 for a data set encountered earlier. In
Example 1.4 we developed a permutation test for what we now
recognize as a specific example of the WMW test. In that example

or in the way
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we had sets of 4 and 5 patients ranked 1 to 9. In contingency table
format we regard the drugs as the row classifications and the ordered
ranks 1 to 9 as column (response) classifications. We count the
number of items allocated to each row and column classification;
e.g. this count will be 0 in row 1, column 4 if no patient given drug
A was ranked 4. It will be 1 in row 2 column 5 if a person given
drug B is ranked 5. There were no ties in Example 1.4, so if we
observed the ranks 1, 2, 3, 6 for the four patients given drug A
(implying those receiving drug B were ranked 4, 5, 7, 8, 9) we may
construct the contingency table:

Rank

1 2 3 4 5 6 7 8 9

Drug A

	

1

	

1

	

1

	

0

	

0

	

1

	

0

	

0

	

0
Drug B

	

0

	

0

	

0

	

1

	

1

	

0

	

1

	

1

	

1

In this table the row totals are 4, 5 (the sample sizes) and in this no-
tie situation each column total is 1. In the Wilcoxon formulation of
the WMW text the test statistic is
In this context j is a column score which here is the rank. The
permutation distribution in Example 1.4 is obtained by permuting all
possible cell entries in the above table consistent with the fixed row
and column totals and calculating
only one possible column score. Replacing the score j in column j
by other appropriate ordered scores
where i = 1 or i = 2, various other statistics discussed in Chapter 5
for testing centrality. For example, the
Waerden scores or the ordered raw data, the latter giving rise to the
raw scores Pitman permutation test. Choices of column scores in 2 x
c tables for many well-known tests are discussed by Graubard and
Kom (1987). In the case of ties in the WMW test, cell entries
correspond to the number of ties in the relevant sample (row) at any
given mid-rank and the column scores are the appropriate mid-rank
values. Each column total is the total number of ties assigned that
mid-rank score. Permutation is over all configurations giving the
fixed row and column totals.

In a 'no-tie' situation, under
zeros over the cells of the 2 x c table. A concentration of ones at
opposite corners of the table indicates association and possible

where either i = 1 or i = 2.

for each permutation. Rank is

we obtain m the form

may be the van der

we expect a good mix of ones and
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rejection of
that indicates rejection is

Rank
1 2 3 4 S 6 7 8 9

Drug A

	

0

	

0

	

0

	

0

	

0

	

1

	

1

	

1

	

1
Drug B

	

1

	

1

	

1

	

1

	

1

	

0

	

0

	

0

	

0

We look more fully at the approach used here in Section 10.2.6.
When there are more than two nominal explanatory categories,

each corresponding to a row and the column responses are ordinal
the obvious extension from the WMW test is to the Kruskal-Wallis
test (with ties if appropriate). Unless some samples are very small or
there is a concentration of many entries in one or two columns
(heavy tying) asymptotic results are usually satisfactory. Except for
fairly small samples, even programs like StatXact cannot cope with
the exact permutation distribution for the Kruskal-Wallis test, but
the Monte Carlo approximation available in StatXact works well in
practice.

Example 9.5

The problem. The following information on times to failure of car tyres due
to various faults is abstracted from a more detailed and larger data set kindly
made available to us by Timothy P. Davis. The classified causes of failure are:

A

	

Open joint on inner lining
B

	

Rubber chunking on shoulder
C

	

Loose casing low on sidewall
D

	

Cracking on the sidewall
E

	

Other causes

One cause of failure, cracking of the tread wall, is omitted from this illustrative
example, for it clearly gave a very different pattern of times to failure from that
for other faults. Depending on one's viewpoint, the row categories A, B, C, D, E
might be regarded as nominal explanatory or as nominal response categories. In
the sense that they are different types of failure they represent different
responses; on the other hand, each tyre failing for a particular reason might be
regarded as one of a sample of tyres doomed to fail in that way and if we are
interested in times to failure at which different faults occur we might regard the
different faults as explanatory variables. For illustrative purposes in this example
we take the latter stance, although the analysis would still be appropriate if we
regarded these as distinct response categories. The column classification is time
to failure recorded to the nearest hour, grouped into intervals <100, 100-199,
200-299, 300+ hours.

e.g. a configuration with the marginal totals above
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Times to failure (hrs)

<100 100-199 200-299 300+
Cause

A
B
C
D
E

2

	

6

	

9

	

0
0

	

1

	

7

	

0
4

	

10

	

6

	

0
1

	

6

	

5

	

0
0

	

8

	

10

	

2

Formulation. We perform a Kruskal-Wallis test with 5 samples. Mid-ranks
are calculated regarding all units in the same column as ties. Thus, the seven ties
in the column labelled <100 are all given the mid-rank 4, and so on. The
Kruskal-Wallis statistic is calculated as in Section 6.2.3 and the statistic has
asymptotically a chi-squared distribution with r - 1 = 4 degrees of freedom.
Computation is tedious without a computer program.

Procedure. The computation outlined above gives the value 10.44 for the
Kruskal-Wallis statistic, and tables or software indicate P =
0.0336.

Conclusion. There is reasonably strong evidence of association between rows
and columns, implying that different types of fault do not all have the same
median times to occurrence.

Comment. Despite heavy tying, in the light of our finding in earlier chapters,
one hopes the asymptotic result is reasonable here. That this is so was confirmed
by the StatXact Monte Carlo procedure for estimating the exact P. This gave an
estimated P = 0.0293, with the 99 per cent confidence interval for the true P
being (0.0256, 0.0330). This suggests the asymptotic result is conservative,
falling just above the upper confidence limit for the permutation distribution
result.

Computational aspects. Many packages compute the Kruskal-Wallis statistic,
so the asymptotic test is readily available. StatXact will compute exact P-values
with small numbers of rows and columns but computation may fail on some PCs
or prove very time consuming for examples with a moderate number of ties. The
Monte Carlo method is relatively fast. The estimate above of P = 0.0293, was
based on 14 000 simulations. Increasing the number of simulations shortens the
confidence interval for the true P.

In a no-tie situation with r samples and a total of N observations
the Kruskal-Wallis test may be formulated in contingency table
terms as an r x N table with rows corresponding to samples and all
cell entries 1 or 0. The columns are ordered by ranks and the
observation of rank j is recorded as 1 in the cell in the 

jth column in
the row corresponding to the sample in which it occurs. All other
entries in that column are zero in the no-tie case. The row totals are

10.44) =
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the sample sizes
used to generate the exact permutation distribution and the statistic
is a function of the rank sums for each row. Permutation is over all
cell entries in the r x N table consistent with row and column totals.

9.3.2 Ordered row and column categories

We consider first the case where row categories are ordinal
explanatory categories; columns are responses. One appropriate test
of no association is then the Jonckheere-Terpstra test with each row
corresponding to one of the ordered samples. Asymptotic results
may be reasonable if allowance is made for ties. We illustrate the
need to allow for ties in a situation not uncommon in drug testing,
where side-effects may not occur very often, but may be serious if
they do.

Example 9.6

The problem. Side-effects (if any) experienced by patients at increasing dose
levels of a drug are classified as none, mild, moderate or severe. Do the
following data indicate that side-effects increase with dose level?

Side-effects
Dose None Mild Moderate Severe

100 mg

	

50

	

0

	

1

	

0
200 mg

	

60

	

1

	

0

	

0
300 mg

	

40

	

1

	

1

	

0
400 mg

	

30

	

1

	

1

	

2

Formulation. The Jonckheere-Terpstra statistic is relatively easy to compute
as an extension of the procedure used for the Mann-Whitney formulation of the
WMW test in Example 9.4, scoring the relevant ties in any column as
in the first column make a substantial contribution to the total.

Procedure. Without a computer program it is tedious but not difficult to
compute the relevant statistic, denoted by U in Example 6.3. It is

The asymptotic test (6.3), with no correction for ties, gives Pr(U > 6834) =
0.2288. The two-tail probability is P = 0.4576 so there is no evidence of
association and the hypothesis
acceptable.

and each column total is 1. Ranks are the scores

Those

side-effect levels are independent of dose is
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Conclusion. We would not reject
justified on the general grounds that increasing dose levels of a drug are more
likely to produce side-effects if indeed there are any.

Comments. 1. A clinician is unlikely to be satisfied with this finding. Side-
effects are not common, but there is to a clinician (and even to the layman) an
indication that these are more likely and more severe at the highest dose level.
Either the evidence is too slender to reach a firm conclusion or our test is
inappropriate; in particular, can we justify an asymptotic result that does not
allow for ties when there is so high an incidence of these?

2. The maximum safe dose of a drug is often determined by giving the drug to
independent groups of healthy volunteers in increasing doses, the first group
receiving the smallest dose. Once a serious side-effect has been observed the
study is stopped; to continue the investigation with healthy volunteers would be
unethical. Higher doses of the drug may have to be used with genuine patients in
order to achieve an improvement. The potential gains would then have to be
balanced against the likely side-effects.

Computational aspects. Some general statistical packages include the
asymptotic Jonckheere-Terpstra test without allowance for ties. We show below
that correcting for ties may have a dramatic effect. StatXact includes an
asymptotic test that allows for ties.

Example 9.7

The problem. Use the exact Jonckheere-Terpstra test on the data in Example
9.6 to determine if there is acceptable evidence that side-effects become more
common as dose increases.

Formulation. The permutation test requires computation of probabilities for
the Jonckheere-Terpstra statistic for all permutations of the contingency table in
Example 9.6 subject to the same marginal totals and with the same or a lesser
probability than that observed.

Procedure. StatXact provides a program for these computations which
indicates Pr(U

Conclusion. There is clear evidence against

Comment. This is an illustration of a situation where an exact permutation test
leads to a markedly different conclusion to a commonly used asymptotic test
despite a large sample size.

We mentioned in Section 6.2.5 an amended formula for Var(U)
which allows for ties. The formula is adapted from one given in
Kendall and Gibbons (1990, p. 66) and quoted by Lehmann (1975,
p. 235). The notation here matches that in Table 9.5.

We calculate

(9.11)

where

with a one-tail P = 0.0168.

6834) = 0.0168.

even in a one-tail test, which might be
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When there are no ties, all
reduces after algebraic manipulation to that in (6.3). In Example 9.6
the relevant values are N = 188,

= 180,
denominator in (6.3),
145.18 (Exercise 9.2). The corresponding Z = 2.125, and standard
normal distribution tables give Pr(Z
with the exact permutation result obtained in Example 9.7.

In clinical trials situations like that in Examples 9.6 and 9.7 are
common. They arise not only for relatively rare side-effects of
drugs but also in other situations where some responses are rare, e.g.
incidence of lung cancer in populations exposed to adverse
environmental factors. We may observe several thousand people in
each explanatory category, yet only a few develop lung cancer.

In Section 6.2.6 we recommended the Fisher exact test for the
median test for r > 2 samples. This ignores the fact that the
responses <M and
nominal an alternative is the Kruskal-Wallis test. If the samples are
ordered so that the natural alternative hypothesis is some systematic
increase or decrease in the median, we may do better using the
Jonckheere-Terpstra procedure. With only two columns (ordered
response categories) there will often be little difference between
results using the Fisher test or Kruskal-Wallis or (if appropriate) the
Jonckheere-Terpstra procedure. If only asymptotic results are used
in this last test a correction for ties is important. In the special case
of only two ordered response categories we show below that the
Jonckheere-Terpstra test is equivalent to the WMW test.

Example 9.8

The problem. In Exercise 6.21 we gave data supplied by Chris Theobald for
blood platelet counts and spleen sizes for 40 patients. The investigators were
interested in whether the proportion of patients with an abnormally low platelet
count increased with increasing spleen size. If a count below 120 is abnormal
the data in Exercise 6.21 give the contingency table below. Does the Jonckheere-
Terpstra test indicate an association between spleen size and platelet count?

Formulation and assumptions. Exercise 6.21 indicated that platelet counts
tend to decrease as spleen size increases: there ties were minimal as the actual
counts were given. Here we must take ties into account in an asymptotic test.

M are ordered. If the sample classifications are

2.125) = 0.0168, agreeing

[Var(U)], from 415.36 (ignoring ties) to
= 2. Substituting in (9.11) reduces the= 3,

= 51, = 61, = 42, = 34,

= 1 and = 0, and Var(U)

© 2001 by CRC Press LLC



Blood platelet count
Abnormal Normal

Spleen size

0

	

0

	

13
1

	

2

	

10
2

	

5

	

6
3

	

3

	

1

Procedure. Proceeding as in Examples 9.6 and 9.7, we find U = 183 and
E(U) = 287.5. Using (9.11) we find the standard deviation of U is
whence Z = -3.407. From tables of the standard normal distribution we find
Pr(Z

Conclusion. There is strong evidence that the proportion of individuals with
abnormal counts increases as spleen size increases.

Comments. 1. Computing Z by the formula on p. 205 ignoring ties gives
Z = -2.551, indicating a one-tail P = 0.0054 (compared with P = 0.0003 obtained
above). An exact test using StatXact with these data gave P = 0.0002 for a one-
tail test, in close agreement with the asymptotic result taking ties into account.

2. In general, ties have a greater effect on Var(U) when they occur between
samples (in columns) than if they occur largely within one sample (in a row).

3. 
Regarding counts of less than 120 as 'abnormal' is arbitrary. Using an

extended data set, Bassendine et al (1985) considered counts below 100 as
'abnormal'. With such arbitrary decisions about categories, one choice may lead
to a result significant at a formal level such as a = 0.05 or a = 0.01 while another
does not. In Section 9.4.2 we discuss a similar problem arising with grouped
continuous data.

4. Since we have only two columns, they remain 'ordered' if we interchange
them. We might look upon 'abnormal' and 'normal' as designating samples
from two populations and spleen sizes as rankings for those populations, and
apply the WMW test as in Example 9.4. Doing so, we get exactly the same
results as we do with Jonckheere-Terpstra.

The expression for Var(U) in (9.11) is unaltered if we interchange
rows and columns in an r x c table. However, the statistic U and the
mean E(U) are affected by this change. It is not difficult to show that
if we write
r x c table and
columns are interchanged then
E(

value given above, their permutation distributions are otherwise
identical, i.e., for all k, Pr(

This equivalence may seem surprising as the Jonckheere-Terpstra
test was introduced as a test for a monotone trend between samples.

=k+=k)=Pr[

and        are identical.

		

Although
. Clearly, the asymptotic tests using

and
for the corresponding statistic when rows and

for the Jonckheere-Terpstra statistic for the original

-3.407) = Pr(Z 3.407) = 0.0003.

[Var(U)] = 30.67,

and differ by the constant
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However, if there are no ties in p samples with
observations respectively the problem may be stated in a
contingency table format with p rows and N =
column all cells except one have zero entries and the remaining cell
has an entry unity. The entries in row i are constrained so that the
sum of the cell entries that are unity (all others being zero) is
we interchange rows and columns the equivalent test problem is one
in which we have N samples each of one observation and these take
only p different values of which there are

tied at the next lowest, and so on. An extreme case is that in
which we have N samples, each of one observation and none of
these is tied. We may represent this situation by an N x N table with
all column totals and all row totals equal to 1. This implies that in
any row or column there is one cell value of unity and all others are
zero. In this case clearly
Jonckheere-Terpstra test procedure is here equivalent to that for
Kendall's tau;
tie' situation, and this is sufficient to determine Kendall's

Any situation with ties, and where the concept of linear rank
association implicit in Kendall's tau is relevant, may be looked upon
as generating an r x c matrix which 'shrinks' an N x Nmatrix of
zeros and ones by super-imposing rows with identical 'x' values and
superimposing columns with identical 'y'. In particular, if the ith
sample has
row by adding all column entries in those
variable values in this situation are effectively labels that distinguish
the (ordered) samples. We have pointed out that in the 'no-tie' case
the Jonckheere-Terpstra statistic is equivalent to the number of
concordances in Kendall's
different counting systems. The Kendall statistic counts concor-
dances as unity, ties as zero and discordances as -1; for the
Jonckheere-Terpstra statistic, concordances count as 1, ties as
discordances as zero. With appropriate adjustments to certain
formulae the two counting systems are interchangeable and, used
correctly, lead to the same conclusions.

If rows and columns are both response categories we may be
interested in whether there is a patterned association (akin to a
correlation) between row and column classifications in that high
responses in one classification tend to be associated with high
responses in the other, or high responses in one are associated with
low responses in the other. Again the Jonckheere-Terpstra test is
relevant.

and

With ties, the two statistics use slightly

adjacent rows. The x
observations we shrink ni adjacent rows to a single

or are the numbers of concordances in this 'no-

. As pointed out in Section 7.1.4 the

tied at the lowest value,

if

columns. In each
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Several statistics are used as measures of association but none is
completely satisfactory in all circumstances. For some of those
suggested, an exact Jonckheere-Terpstra test is appropriate to test
for significant association in the form of a monotonic trend.
However, for non-monotonic associations such tests may fail to
detect patterns of association. For example, in an ordered-categories
contingency table with cell entries

0 17 0
5 0 5
3 0 3

(9.12)

there is a clear - but obviously not monotonic - association. Here it
is easily verified (Exercise 9.4) that the asymptotic Jonckheere-
Terpstra statistic Z takes the value 0, giving P = 0.50 for a one-tail
test! Apart from a small discontinuity effect the exact test confirms
this probability.

A desirable property of a measure of monotonic association, akin
to that of a correlation coefficient, is that it takes the value 1 when
there is complete positive association, the value zero if there is no
rank association, and the value -1 if there is inverse association, e.g.
high category row classifications are associated with low category
column classifications and vice-versa. An appropriate test for linear
rank association using such statistics is often the Jonckheere-
Terpstra test, but to measure degree of association there is a case for
having a statistic that behaves like a correlation coefficient. We
discuss one such coefficient here. This and other measures of
association are described in considerable detail by Kendall and
Gibbons (1990, Chapter 3) and by Siegel and Castellan (1988,
Chapter 9). These and other authors give guidance on relevant
asymptotic tests which take account of the tied nature of the data.

The Goodman-Kruskal gamma statistic is usually denoted by
G. We count the number of concordances and discordances between
row and column classifications as for Kendall's
allowance for ties. When both row and column classifications are
ordered, for each count in cell (i, j) there is concordance between
that count and the count in any cell below and to the right. Thus, if

denotes the sum of all counts below and to the right of cell (i, j),
which itself has count

This resembles the count for the Jonckheere-Terpstra test, except
that for counts in cell (i, j) we ignore ties in column j (each counted
as in Jonckheere-Terpstra).

	

Similarly, denoting the sum of all

the total number of concordances is

but make no
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elements to the left of and below the cell (i, j) by
number of discordances is

The Goodman-Kruskal statistic is G = (C - D)/(C + D). Clearly, if
D=0, G=1. If r
last are zero unless i = j; in the last column they must be zero if i < c.
If c
i =j; in the last row they must be zero if j< r. If r = c, G = 1 if all
entries for which i
confirmation that G = 1 for each of the tables

7 0 0
3 0 0 0

	

0 1 0
0 4 2 7

	

0 0 6
0 0 7
0 0 5

It is easy (Exercise 9.6) to obtain analogous conditions for G = -1.
When there is a good scatter of counts over all cells, C and D will
take similar values and G will be close to zero. Near-zero values of
G are also possible if association is not monotonic. It is easily
verified (Exercise 9.7) that C = D, hence G = 0, in the highly
patterned contingency table (9.12).

Like Kendall's tau (as distinct from Kendall's tau-b), G takes no
account of ties in both x and y, yet unlike Kendall's tau it may equal
1 even when there is heavy tying because the denominator is C + D.
Clearly this falls well short of the denominator in Kendall's tau for
the no-tie case. In Section 7.1.4 we introduced Kendall's
preference to
ignoring them (as in
column as we do in G. Calculation of
straightforward and follows the method outlined in Section 7.1.4.
Other measures of association and some appropriate tests are given
by Siegel and Castellan (1988, Chapter 9); we concur with their
comment that all of them should be useful when appropriately
applied'. Other approaches to exploring association in contingency
tables are given in Chapter 10.

9.4 GOODNESS-OF-FIT TESTS FOR DISCRETE DATA

The Pearson chi-squared test and the likelihood ratio test (Sections
9.2.2 and 9.2.3) may be looked upon as tests of goodness-of-fit of

j are zero. In Exercise 9.5 we ask for

the total

c, G = 1 if all entries in any column except the

r, G = 1 if all entries in any row except the last are zero unless

in
when there are ties. This is a compromise between

and deleting their effect if in the same row or
for contingency tables is
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data in a contingency table to a model of independence (no
association) between row and column classifications. The asymp-
totic chi-squared test is also widely used as a goodness-of-fit test of
data to any discrete distribution. This topic is covered in most
standard courses in statistics so we give only a brief resume here
drawing attention to a few points that are sometimes not covered
specifically in introductory treatments.

Tests of goodness-of-fit to any discrete distribution (often
appropriate for counts) are usually based on the Pearson chi-squared
statistic,
esized distribution which may be binomial, negative binomial,
Poisson, uniform or some other discrete distribution. Sometimes one
or more parameters must be estimated from the data. If we have r
counts or cells the test will have r - 1 degrees of freedom if no
parameters are estimated; if a parameter (e.g. p for the binomial or
for the Poisson distribution) is estimated from data, one further degree
of freedom is lost for each parameter estimated. While tests of the
Kolmogorov-Smirnov type are sometimes also applied for discrete
distributions, generally the test criteria are no longer exact and the
tests are often inefficient.

Example 9.9

The problem. It is often suggested that recorded ages at death are influenced
by two factors. The first is the psychological wish to achieve ages recorded by
'decade', e.g. 70, 80, 90, and that a person nearing the end of a previous age
decade who knows his or her days may be numbered will by sheer willpower or
perhaps even by a change in lifestyle (e.g. by stopping smoking or abstaining
from alcohol) strive to attain such an age before dying. If so, ages at death with
final digits 0, 1 should be more frequent than those with higher final digits. A
second factor is misstatement of age, elderly people may be imprecise about
giving their age, tending to round it; e.g. if they are in the mid-seventies they
tend to say they are 75 if anywhere between about 73 and 77. Similarly a stated
age of 80 may correspond to a true age a year or two above or below. If these
factors operate, final digits in recorded ages at death would not be uniformly
distributed. Table 9.7 gives final digits at age of death for the 117 males
recorded at the Badenscallie burial ground (see Appendix). Is the hypothesis
any digit is equally likely acceptable?

Formulation and assumptions. For 117 deaths the expected number of
occurrences of each of the 10 digits, if all are equally likely, is 11.7. Since the
denominator in

by taking the differences between the observed numbers n; and 11.7, squaring
these, adding and finally dividing the total by 11.7.

is always the expected number, m = 11.7, we may calculate

in (9.7). Expected values are calculated for a hypoth-
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Table 9.7 Recorded last digit of age at death, Badenscallie males.

Digit 0

	

1

	

2

	

3 4

	

5 6

	

7

	

8

	

9
Freq 7 11 17 19 9 13 9 11 13 8

Procedure. The differences
1.3, -2.7, -0.7, 1.3, -3.7. These differences sum to zero - a well-known property
of deviations from the mean. The sum of squares of differences is 136.1.
Division by the expected number m = 11.7 gives
is well below the value 16.92 for
10 - 1 = 9 degrees of freedom; indeed it corresponds to P = 0.235.

	

StatXact
gives the exact permutation P = 0.239.

- m are respectively -4.7, -0.7, 5.3, 7.3, -2.7,

that corresponds to P = 0.05 when there are

Conclusion. There is no real evidence against.

Comments.

	

1. In posing the problem we suggested a possible build-up of
digits 0, 1 and perhaps also 5. The observed variation in digit frequency is not in
line with such a pattern. Any build-up is around 2 and 3. As the overall result is
not significant we must not read too much into this.

2. In this data set ages at death ranged from less than 1 to 96 years. In
particular, there is some evidence of an increased risk of death for very young
children. In all, 41 of the 117 recorded ages at death were less than 60 years; the
influence of elderly people is therefore diluted.

3. Survival until a notable family event (e.g. the birth of a grandchild) may be
a stronger incentive to an elderly person than the completion of an age decade.

4. Misstatement of age occurs across a wide range of ages for a variety of
reasons, discussed in detail by Cox (1978).

the digits may be random.

9.4.1 Goodness-of-fit with an estimated parameter

We often meet data that might belong to a particular distribution
such as the Poisson distribution with unknown mean. We may use
the statistic
distributions alternative parametric tests may be more powerful.

For the asymptotic test using
expected numbers are small. Traditional advice is to group such cells
to give a group expected number close to 5 (but this is only a guide).
There is a corresponding reduction in degrees of freedom.

Example 9.10

The problem. A factory employs 220 people. The numbers experiencing
0, 1, 2, 3, . . . accidents in a given year are recorded

Number of accidents

	

0

	

1

	

2

	

3

	

4

	

5
Number of people

	

181

	

9

	

4

	

10

	

7

	

4

	

5

= 136.1/11.7 = 11.63. This

to test this, although for the Poisson and some other

a difficulty arises if some

© 2001 by CRC Press LLC



Are these data consistent with a Poisson distribution?

Formulation and assumptions. The maximum likelihood estimate,
Poisson parameter
numbers having r accidents are E(X = r) = 220
for a Poisson distribution with parameter

Procedure. To obtain the mean number of accidents per person we multiply
each number of accidents by the number of people having that number of
accidents, add these products and divide the sum by 220, giving

This is approximate because we treat 'six or more' as 'exactly 6'. In practice,
this has little influence on our result, but it is a limitation we should recognize.
To get expected numbers an iterative algorithm may be used, noting that

The expected numbers are

Number of accidents

	

0

	

1

	

2

	

3

	

4

	

5

	

6 or more
Expected numbers

	

124.7

	

70.8

	

20.1

	

3.8

	

0.5

	

0.1

	

0

Grouping results for 3 or more accidents gives an associated total expected
number 4.4. We calculate

There are 2 degrees of freedom since we have four cells in the final test and we
have estimated one parameter,

Conclusion. It is clear even if using only conventional chi-squared tables that
there is very strong evidence that the data are not consistent with a Poisson
distribution since with 2 degrees of freedom Pr

Comment. Accident data seldom follow a Poisson distribution; they would if
accidents occurred entirely at random and each person had the same probability
of experiencing an accident, and having one accident did not alter the probability
of that person having another. In practice, a better model is one that allows
people a differing degree of accident proneness. The negative binomial
distribution assumes that individual proneness has a gamma distribution within
the population; this is very flexible and has been shown to give a good fit to
numbers of episodes of mental illness experienced by adults in a fixed period of
several years (Smeeton, 1986). If an individual experiences an accident, the
probability of a further accident may be reduced if he or she becomes more
careful, or increased if concentration or confidence is lowered, making that
person more accident-prone. These factors may act differently from person to
person, or for individuals exposed to different risks. Multiple accidents, in which
a number of people are involved in one incident, also affect the distribution of
numbers of accidents per person in some accident data.

Computational aspects. Nearly all standard statistical packages include a
program for chi-squared goodness-of-fit tests.

of the
is the mean number of accidents per person. The expected

this follows because

>_ 13.81) = 0.001.

using (9.8) as
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9.4.2 Goodness-of-fit for grouped data

The chi-squared test is sometimes applied to test goodness-of-fit of
grouped data from a specified continuous distribution, commonly a
normal distribution with specified mean and variance, or with these
estimated from the data. This is not recommended unless the
grouped data are all that are available and grouping is on some
natural basis. If the grouping is arbitrary, one arbitrary grouping may
result in rejection of a hypothesis while some other grouping may
not.

A situation where a test for normality based on Pearson's
might be used is that for sales of clothing of various sizes. A large
retailer might note numbers of sales of ready-made trousers with
nominal leg lengths (cm) 76, 78, 80, etc. The implication is that
customers requiring some 'ideal' leg length between 75 and 77 cm
will purchase trousers with leg length 76, those requiring leg lengths
between 77 and 79 will purchase trousers of length 78, and so on.
The sizes are the centre value for each group. To test whether sales
at nominal lengths are consistent with a normal distribution with
unspecified mean and variance, these parameters must be estimated
from the grouped data and 2 degrees of freedom deducted to allow
for this.

Given complete sample data from a continuous distribution it is
better to use goodness-of-fit tests of the Kolmogorov/Lilliefors type
as appropriate or other tests relevant to particular continuous
distributions. If grouping is used, and tests are to be based on
Kimber (1987) points out that when both grouped and ungrouped
data are available anomalies may arise unless parameter estimates
are based on the grouped data.

9.5 EXTENSION OF McNEMAR'S TEST

There is an asymptotic chi-squared approximation equivalent to the
normal approximation to the binomial for McNemar's test (Section
4.2). For the data in Table 4.3, for example, we tested in effect
whether 9 successes and 14 failures (or vice versa) are consistent
with a binomial distribution with  p =
may perform a goodness-of-fit test using
of successes or failures is 11.5 and the test statistic is

= 1.09. This is compared with the relevant
critical value for chi-squared with 1 degree of freedom. Recalling
that the relevant cells in a 2 x 2 table for the McNemar test are the

and n = 9 + 14 = 23.  We
The expected numbers
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off-diagonal cells
of successes or failures

In Section 6.4.4 we introduced Cochran's test for comparing
several treatments with binary (0,1) responses. When t = 2 it can be
shown (Exercise 9.17) that Cochran's Q is equivalent to the form
given above for
of McNemar's test.

Another generalization of McNemar's test is from a 2 x 2
contingency table to an n x n table in which we test for off-diagonal
symmetry. Bowker (1948) proposed a relevant test. The test might
be used if there is a new formulation of a drug which it is hoped will
reduce side-effects. If we have a number of patients who have been
treated with the old formulation and records are available of any
side-effects we might, if there are not ethical reasons to preclude this
course, now treat each of these patients with the new formulation
and note incidence of side-effects. Table 9.8 shows a possible
outcome for such an experiment.

In the table we see that each off-diagonal count below the
diagonal exceeds that in the symmetrically placed cell above the
diagonal, e.g.
i mpression that the trend is towards less severe side-effects with the
new formulation, although a few who suffered no side-effects with
the old formulation do show some with the new formulation.

Bowker proposed a test statistic to determine whether at least one
pair of probabilities associated with the symmetrically placed-off
diagonal cells differ in an n x n table. It is a generalization of the
statistic used in McNemar's test and takes the form

(9.13)

Table 9.8  Side-effects with old and new formulations of a drug

Side-effect levels - new formulation
None Slight Severe

	

Total

Side-effect None

	

83 4 3

	

90
levels - old

	

Slight

	

17

	

22

	

5

	

44
formulation Severe

	

4 9 11

	

24

Total 104 35 19

	

158

(= 4) is greater than (= 3), etc. This gives the

it is easily verified that with these numbers

In this sense the Cochran test is a generalization

= 14 in Table 4.3) then= 9 and
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where the summation is over all i from 1 to n - 1 and j > i. Under
the null hypothesis of symmetry the asymptotic distribution of
(9.13) is chi-squared with

Example 9.11

The problem. Do the data in Table 9.8 provide evidence that side-effects are
less severe with the new formulation of the drug?

Formulation and assumptions. The Bowker statistic given by (9.13) is
appropriate. Here
off-diagonal counts in the table the associated probabilities are such that all

The alternative is that for at least one such pair

Procedure. Substitution of the relevant values in (9.13) gives

Under the null hypothesis,
freedom, and appropriate tables or software establishes that with 3 degrees of
freedom P = Pr

Conclusion. There is evidence of a differing incidence rate for side-effects
under the two formulations. From Table 9.8 it is clear that this difference is
towards less severe side-effects under the new formulation.

Comment. Marascuilo and McSweeney (1977, Section 7.6) discuss an
alternative test based on marginal totals due to Stuart (1955; 1957). Agresti
(1990, Chapter 10) discusses other generalizations of McNemar's test.

9.6 FIELDS OF APPLICATION

We indicate a few situations where tests for independence for
categorical data may be appropriate.

Rail transport

A railway company may be interested in whether its image among
standard class passengers is different from that among first class
passengers. It may ask samples of each to grade service received as
excellent, good, fair or poor, setting up a 2 x 4 table of ordered
response numbers.

Television viewing

A public service broadcasting channel competes with a commercial
service. Samples of men and women are asked which they prefer.
The results may be expressed in a 2 x 2 table, any differences
between the sexes in preference ratings being of interest.

= 17, etc. The null hypothesis is that for all

degrees of freedom.
in

has a chi-squared distribution with 3 degrees of
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Drug addiction

A team of doctors compares 3 treatments allocated at random to
subjects for curing drug addiction. For each subject, withdrawal
symptoms are classed as severe, moderate, mild or negligible. The
resulting 3 x 4 table of counts is tested to see if there is evidence of
an association between treatments and severity of withdrawal
symptoms. If the treatments can be ordered (e.g. by degree of
physiological changes induced) a test for association of the
Jonckheere-Terpstra type might be used. In the absence of such
ordering a Kruskal-Wallis test would be appropriate.

Sociology

A sociologist may be interested in variations in the perception of
stigma related to asthma within white, Afro-Caribbean and Asian
ethnic groups. A 2 x 3 table could be used in a test for lack of
association between ethnic group and presence or absence of
perceived stigma.

Public health

After a contaminated food episode on a jumbo jet some passengers
show mild cholera symptoms. The airline wants to know if those
previously inoculated show a higher degree of immunity. They find
out which passengers have and have not been inoculated; records
also show how many in each category exhibit symptoms, so they can
test for association.

Rain making

In a low-rainfall area rain-bearing clouds are 'seeded' to induce
precipitation. Randomly selected clouds are either seeded or not
seeded on a sequence of occasions and we observe after each
whether or not local rainfall occurs within the next hour, the results
being expressed in a 2 x 2 table, a test being made for evidence of
association.

Educational research

Children are shown a video of a roller-coaster ride. This may
reassure a child who is frightened of such rides but arouse fear in
one who was initially unconcerned. McNemar's test may be used to
indicate whether the video does more harm than good.
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Medicine

To test whether a drug is effective it and a placebo are given to
patients in random order; it is noted which, if either, they claim to be
effective. Some claim both are effective, some neither, some one but
not the other. McNemar's test could be used to see if results favour
the placebo, the new drug, or neither.

Here are examples of goodness-of-fit tests.

Genetics

Genetic theory may specify the proportions of plants in a cross that
are expected to produce blue or white flowers, round or crinkled
seeds, etc. Given a sample in which we know the numbers in each
colour/seed-shape combination, we may use a chi-squared goodness-
of-fit test to see if these are consistent with theoretical proportions.

Sport

It is often claimed that the starting positions in horse racing,
athletics or rowing events may influence the probability of winning.
If we know the starting positions and winners for a series of rowing
events in each of which there are six starters we might test the
hypothesis that the numbers of wins from each starting position is
consistent with a uniform distribution.

Horticulture

The positions at which leaf buds or flowers form on a plant stem are
called nodes. Some theories suggest a negative binomial dist-
ribution for the node number (counted from the bottom of the stem)
at which the first flower forms. Given data, a chi-squared goodness-
of-fit test is appropriate.

Commerce

A car salesman may doubt the value of advertising. Each week he
advertises in either 0, 1, 2, 3 or 4 newspapers. After a long period he
might compare weekly sales with the number of advertisements. He
would expect a uniform distribution for sales if advertising were
worthless. However, in this situation it might be necessary to adjust
for trends in sales over time; the effect of this might be minimized if
weeks were chosen at random for each number of advertisements.
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Queues

Numbers of people entering a bank, post office or supermarket
during one-minute intervals are recorded over a long period. If the
process were completely random with constant mean, the numbers
of such intervals in which 0, 1, 2, 3, . . . people enter should follow a
Poisson distribution. Would you be surprised if a test produced little
evidence against this hypothesis? If so, why?

9.7 SUMMARY

Tests for independence between row and column classifications in
contingency tables are usually based on conditional inference,
regarding the marginal totals as fixed (Section 9.1).

For r x c tables with nominal categories exact tests for association
are commonly based on the Fisher exact test (Section 9.2.1), while
asymptotic tests are usually based on the Pearson chi-squared
statistic XZ (Section 9.2.2) or the likelihood ratio statistic GZ
(Section 9.2.3). Exact permutation tests may also be based on X z and
GZ ; while the permutation distributions differ from that for the
Fisher exact test (except in 2 x 2 tables) conclusions for all three
approaches are often broadly in line.

For categorical tables with ordered rows and columns, tests
equivalent to the Jonckheere-Terpstra test may be used (Section
9.3.2). Adjustments for ties are important if asymptotic theory is
used. If only columns are ordered the Kruskal-Wallis test (Section
9.3.1) may be relevant. The Goodman-Kruskal gamma statistic, G,
(Section 9.3.2) is closely related to Kendall's tau as a measure of
association.

The chi-squared goodness-of-fit test (Section 9.4) is appropriate
for testing goodness-of-fit to discrete distributions. It uses the
Pearson XZ statistic, the degrees of freedom depending on the
number of parameters that are estimated from the data.

McNemar's test for off-diagonal symmetry in 2 x 2 tables may be
carried out using a statistic (Section 9.5) which has an asymptotic
chi-squared distribution. This may be extended to Bowker's test for
off-diagonal symmetry in n x n  tables.
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EXERCISES

9.1

	

Use (9.6) to verify that the probability of the configuration in Example 9.1
given by the Fisher exact test is P = 0.000058.

9.2

	

Using the modified form of Var(U) for the Jonckheere-Terpstra test given
in (9.11) show, for the data used in Examples 9.6 and 9.7, that the standard
deviation of U is 145.18, whereas it is 415.36 if ties are ignored.

9.3

	

Confirm the results quoted in Example 9.8 for association between blood
platelet count and spleen size.

9.4

	

Verify for the contingency table (9.12) that the asymptotic Jonckheere
Terpstra statistic Z takes the value zero.

	

[It is not necessary to calculate
Var(U) to confirm this.]

9.5

	

Confirm that the Goodman-Kruskal statistic G takes the value G = 1 for
each of the contingency tables on p.339.

9.6

	

Determine conditions similar to those given for the case G = 1 to ensure
that the Goodman-Kruskal statistic takes the value G = -1.

9.7

	

Verify that C = D and G = 0 for the Goodman-Kruskal statistic for the
table (9.12) on p. 338.

9.8

	

In a psychological test for pilot applicants, each candidate is classed as
extrovert or introvert and is subjected to a test for flying aptitude that he or
she may pass or fail. Do the results suggest an association between
aptitude and personality type?

Introvert Extrovert

Pass                   14 34
Fail 31 41

9.9

	

A manufacturer of washing machines issues instructions for their use in
English for the UK and US markets, French for the French market,
German for the German market and Portuguese for the Portuguese and
Brazilian markets. The manufacturer conducts a survey of randomly
selected customers in each of these markets and asks them to classify the
instructions (in the language appropriate to that country) as excellent,
reasonable, or poor. Do the responses set out below indicate the
instructions are more acceptable in some countries than in others?

Excellent Reasonable Poor

UK 42 30 
28

USA 20 41 19
France 19 29 12
Germany 26 22 12
Portugal 18 31 21
Brazil 31 42 7
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Note: It is sensible to consider UK/USA separately - also Portugal/Brazil -
because of differences in idiom that may affect understanding of the inst-
ructions: e.g. British houses have 'taps', American houses have 'faucets'.

9.10  In Palpiteria all those who visit a doctor must pay. A political party claims
that this inhibits poorer people from seeking medical aid. Data in the table
below are for a random sample of wage earners, and incomes are stated in
palpiliras (P), the country's unit of currency. Do they substantiate the claim
that the poor make proportionately less use of the services?

Income
Time since last

	

Over 10 000P

	

5000-10 000P

	

Under 5000P
visit to doctor

Under 6 months

	

17

	

24

	

42
6-12 months

	

15

	

32

	

45
Over 12 months

	

27

	

142

	

271
Never been

		

12

	

127

Your test should take into account the fact that the row and column
categories are both ordered.

9.11 Would your conclusions in Exercise 9.10 have been different if the data
had been in only two income groupings, under 5000P and 5000P or more?

9.12  Prior to an England v Scotland football match 80 English, 75 Scottish and
45 Welsh supporters are asked who they think will win. Do the numbers
responding each way indicate that the proportions expecting each side to
win are influenced by nationality?

English Scottish Welsh

English win

	

55

	

38

	

26
Scottish win

	

25

	

37

	

19

9.13 A machine part is regarded as satisfactory if it operates for 90 days without
failure. If it fails in less than 90 days it is unsatisfactory and this results in
a costly replacement operation. A supplier claims that for each part
supplied the probability of a satisfactory life is 0.95. Each machine
requires 4 of these parts and all must be functional for satisfactory
operation. To test the supplier's claim, a buyer runs each of 100 machines
initially fitted with 4 new parts for a 90-day test period. The numbers of
original parts (0-4) still functioning after 90 days are recorded for each
machine as follows:

No. surviving

	

0

	

1

	

2

	

3

	

4
No. of machines

	

2

	

2

	

3

	

24

	

69

Do these results substantiate the supplier's claim?
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9.14  It is claimed that a typesetter makes random errors at an average rate of 3
per 1000 words set, giving rise to a Poisson process. 100 randomly chosen
sets of 1000 words from his output are examined and the mistakes in each
counted. Are the results below consistent with the above claim?

No. of errors

	

0

	

1

	

2

	

3

	

4

	

5

	

6

	

7
No. of samples

	

6

	

11

	

26

	

33

	

12

	

6

	

4

	

2

9.15 Responses to emotive questions may be influenced by factors such as the
age, race, sex and social background of the questioner. A random sample
of 500 women aged between 30 and 40 are further divided into 5 groups of
100, and each group is allocated to one of the following interviewers:

A: A 25-year-old white female with secretarial qualifications
B: A middle-aged clergyman
C: A retired army colonel
D: A 30-year-old Pakistani man
E: A non-white female university student

Each interviewer asks each of the 100 people allocated to him or her: 'Do
you consider marriages between couples of different ethnic groups socially
desirable?' The numbers answering 'yes' in each group are given below.
Assess the evidence that the type of person conducting the interview may
influence response.

Interviewer A B C D E
No. of 'yes'

	

32

	

41

	

18

	

57

	

36

9.16  To measure abrasive resistance of cloth, 100 samples of a fabric are each
subjected to a 10-minute test under a series of 5 scourers, each of which
may or may not produce a hole. The number of holes (0 to 5) is recorded
for each sample. Are the data consistent with a binomial distribution with
n = 5 and p estimated from the data? (Hint: Determine the mean number
of holes per sample. If this is x then an appropriate estimate ofp is x/5.)

No. of holes

	

0

	

1

	

2

	

3

	

4

	

5
No. of samples

	

42

	

36

	

14

	

3

	

4

	

1

9.17  The McNemar test data in Table 4.3 on climbs can be reformulated in a
way that makes the Cochran test given in Section 6.4.4 appropriate with t = 2.
Denoting a success by 1 and a failure by 0, we may classify each of the
108 climbers' outcomes for the first and second climb as either 0 or 1 in a
2 x  108 table. Show that the Cochran Q statistic is in this case identical
with the McNemar X2

 statistic given in Section 9.5.
9.18 Aitchison and Heal (1987) give numbers of OECD countries using

significant amounts of only 1, 2, 3 or 4 fuels in each of the years 1960,
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1973, 1983. Are the proportions in the different categories of use changing
significantly with time?
Think carefully about an appropriate test and the interpretation of your
findings. The data are in no sense a random sample from any population of
countries. The categories are ordered, but do you consider that the
monotonic trends in association implicit in the conditions to validate, say,
a Jonckheere-Terpstra test arc likely to be relevant for these data?

Year
No. of       fuels

	

1960

	

1973

	

1983

1

	

7

	

10

	

1
2

	

13

	

11

	

13
3

	

5

	

4

	

9
4

	

0

	

0

	

2

9.19 Marascuilo and Serlin (1979) report a survey in which a number of women
were asked whether they considered the statement 'The most important
qualities of a husband are determination and ambition' to be true or false.
The respondents were asked the same question at a later date. Numbers
making the possible responses were as follows:

First response

	

Second response

	

Numbers

True

	

True 523
True

	

False 345
False

	

True 230
False False 554

Is there evidence that experience significantly alters attitudes of women
towards the truth of the statement?

9.20  Jarrett (1979) gives the following data for numbers of coal mine disasters
involving 10 or more deaths between 1851 and 1962.

Day of week

	

Sun Mon Tue

	

Wed Thu Fri

	

Sat
Number

	

5 19 34 33 36 35 29

Month

	

Jan Feb Mar Apr May Jun Jul Aug
Number 14 20 20 13 14 10 18 15

Month

	

Sep Oct Nov Dec
Number

	

11 16 16 24
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3 4 17 2 5 1 8 6 4 11 3 0

Test whether accidents appear to be uniformly spread over days of the
week and over months of the year. What are the implications? Do they
surprise you?

9.21 Dansie (1986) gives data for a survey in which 800 people were asked to
rank 4 makes of car A, B, C, D in order of preference. The number of
times each rank combination was specified is given below in brackets after
each order. Do the data indicate that preference may be entirely random?
Is there a significant preference for any car as first choice?

ABCD(41), ABDC(44), ACBD(37), ACDB(36), ADBC(49), ADCB(41),
BACD(38), BADC(38), BCAD(25), BCDA(22), BDAC(33), BDCA(25),
CABD(31), CADB(26), CBAD(40), CBDA(33), CDAB(33), CDBA(35),
DABC(23), DACB(39), DBAC(30), DBCA(21), DCAB(26), DCBA(34).

9.22 Noether (1987b) asked students to select by a mental process what they
regarded as random pairs from the digits 1, 2, 3, repeating that process four
times. Noether recorded frequency of occurrences of the last digit pair
written down by each of 450 students. The results were:

First digit

1 2 3

1 31 72 60
Second digit

	

2

	

57

	

27

	

63

3 53 58 29

What would be the expected numbers in each cell of the above table if
pairs were truly random? Test whether one should reject the hypothesis
that the students are choosing digits at random. How do you interpret your
finding?

9.23 For the following 2 x 12 table calculate the Pearson X 2 and the likelihood
ratio G2 statistics. Explain the basic cause of any difference between their
values. If suitable computer software is available, determine the exact tail
probabilities corresponding to each test statistic.

0 0 0 0 0 0 0 0 0 0 1 1
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Association in categorical data

10.1 THE ANALYSIS OF ASSOCIATION

When we reject the hypothesis of independence in contingency
tables we often want to analyse the nature of the association. In
Section 9.3.2 we considered one aspect of association in tables with
ordered row and column categories, recommending the Jonckheere-
Terpstra test for monotonic association. We consider further aspects
of association in this chapter; the subject is a large one and our
treatment is indicative rather than comprehensive. Approaches used
to assess association range from parametric modelling to
distribution-free methods. Parametric approaches are usually
formulated to reflect knowledge about the mechanism generating the
counts. One such model is the logistic regression model for binary
responses such as success and failure where the proportions
responding depend upon levels of one or more explanatory
variables. General descriptions of that model are given by Agresti
(1990, Chapter 4 and 1996, Chapter 5) and a detailed treatment
covering many applications is presented in Cox and Snell (1989).

In Chapter 9 we considered two-way r x c tables. Three or more
way tables arise in practice and may require detailed and sometimes
subtle analysis to elucidate patterns of association. The techniques
used range from extensions of some of the nonparametric models
outlined for a few special cases in this chapter to analyses based on
generalized linear models. A detailed account of the latter is given
in McCullagh and Nelder (1989); Dobson (1990) gives a more
elementary treatment illustrated by many practical applications.

A common way of presenting data from a three-way classification
is by means of two-way cross-sectional tables. Table 10.1 provides
an illustration where the counts cover 197 patients in a study of
coronary heart disease where the first categorization is into presence
(CHD) or absence (no CHD) of the disorder. The second
classification is at three blood cholesterol levels (A, B, C) and the
third is into five blood pressure groups (I to V).

10
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Table 10.1 
Categorization of 197 patients in a study of coronary heart disease.

Table 10.1 shows two cross-sections of the second and third
classifications determined or 'stratified' by each of the two levels of
the first classification (disease present or absent). 

Marginal totals
relevant to each cross-section and a set of totals for each blood
pressure group across the two strata are also given. The data may be
presented in other ways (Exercise 10.1).

Tests for complete independence extend from two- to multiway
tables, and may also be applied to two-way cross-sectional tables,
but these analyses are usually insufficient (and often inefficient)
because we are more interested in exploring the nature of
associations.

A particular type of three-way classification that has received
considerable attention is the k x 2 x 2 table; the method of analysis
depends on what questions are of interest and the nature of the
categories in each classification. In particular it is often productive
to look upon such tables as representing k strata, each stratum
consisting of a 2 x 2 table, a situation we consider in Sections 10.2.2
to 10.2.5.

For 2 x 2 tables an appropriate measure of association is the odds
ratio or, often better, the logarithm of the odds ratio which we
introduced in Section 9.1.2.

© 2001 by CRC Press LLC



10.2 SOME MODELS FOR CONTINGENCY TABLES

10.2.1

	

The loglinear model

In any r x c table if there is independence the expected frequency in
cell (i, j) is
column totals and N is the total of all counts in the table (Section
9.1.1). Taking logarithms

This means that under independence, for each cell the logarithm of
the expected number is a linear function of the logarithms of the
row, column and grand totals.

Readers familiar with the normal theory linear model for a
randomized block design, basic to many analyses of variance, will
recognise (10.1) as an analogue of the additive model expressing a
response (e.g. an expected yield) as the sum of an overall
experimental mean plus a block effect plus a treatment effect. With
that model the observed yield for any unit differs from the expected
yield by an added amount usually regarded as a random error or
departure from expectation. By analogy, even when there is no
association (i.e. independence) between row and column class-
ifications in an r x c contingency table in general
the observed count
we may look upon the difference
additive 'error' or 'departure' term when the model for no
association is accepted as adequate. This quantity appears in the
likelihood ratio statistic

Association in contingency tables has analogies with interaction
in factorial treatment structures in the analysis of variance and these
analogies are exhibited in extensions of (10.1) that allow for
association. A detailed treatment is beyond the scope of this book
but we illustrate the basic ideas for 2 x 2 and 2 x 2 x 2 contingency
tables and briefly indicate some extensions to simple cases for r x c
tables. Readers not familiar with the analysis of variance for
designed experiments may find the rest of this section difficult. If so
it may be wise at first reading to skim through it briefly to grasp
basic ideas only rather than to try and master detail.

We digress to comment on fundamentals concerning additive
effects and interactions in a simple 2 x 2 factorial treatment structure
where observations are measured variables assumed to have some
continuous distribution. The 2 x 2 factorial treatment structure has
two factors each at two levels. For instance, we may allow a

are the ith row and jth

will not equal
for cell (i, j). For the model based on (10.1)

as an

given in (9.10).
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chemical reaction to proceed for two different times - 2 hours and 3
hours. These are the two levels of a first factor, time. We may also
carry out the experiment at two different temperatures - 75°C and
80°C - the two levels of a second factor, temperature . The
responses or yields are the amounts of some chemical produced by a
given amount of input material for each of the factor combinations

Such an experiment is repeated (or replicated) a specified number
of times and either the average or the total output for the same
number of replicates for each factor combination is recorded. Apart
from random variation in the form of an additive error, which in the
analysis of variance model is assumed to be distributed
output
1, 2) is specified by a linear model. If each factor has purely additive
effects we speak of a no-interaction model.

To clarify these concepts we assume for the moment an
unrealistic state of perfection where there is no random variation to
create error. Suppose we find operating for 2 hours at 75°C gives an
output X and that this increases to X + 3 if we leave time unaltered
but increase temperature to 80°C. In addition, suppose that output
increases to X+ 8 if we leave temperature at 75°C but increase time
to 3 hours. We say we have no interaction if the result of increasing
both time from 2 to 3 hours and temperature from 75°C to 80°C is to
increase yield from X to X + 3 + 8 = X + 11. These results for
expected yield are summarized in Table 10.2.

In general, for a combination of level i of the row factor with level
j of the column factor we denote the true yield (including the additive
error) by
error) by

2 hours at
2 hours at
3 hours at
3 hours at

the
for the first factor at level i and the second at level j (i, j =

and the corresponding expected yield (output apart from
Thus in Table 10.2 = X + 8,

=X+ 3 + 8 =X+ 11. Thus
diagonal or 'cross' sums in Table 10.2 are equal. This is the
fundamental characteristic of an additive (or no interaction) model.

In many real life situations we may find the effect of increasing
both time and temperature is either to boost or diminish the effect of
changing just one of these factors only. This would be the situation
if, for example,
instead of X + 11, the other
then no longer equal. For the 2 x 2 factorial model with no
interaction the key requirement is

i.e. the

in Table 10.2 took the value X + 17 or X + 2
being unaltered. The cross sums are
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Table 10.2 Expected yields in a no-interaction model.

This equality will not hold for the observed mean yields
corresponding total yields, because of random variation. The
standard analysis of variance test for no interaction in this model is
essentially one of testing whether the observed
departs from zero by an amount which is too great to be attributed to
random variation; described in classic statistical jargon as being
'significantly different from zero'. More formally, asserting there is
an interaction implies preference for an hypothesis

over
In Section 9.1.2 we established that for a 2 x 2 contingency table

the condition for no association (independence) between row and
column categories was that the odds ratio
or equivalently that
analogue of (10.2) for the loglinear model, i.e.

as the criterion for no association.
For the observed counts

interaction) in a contingency table becomes one of determining
whether this ratio differs sufficiently from 1 to provide strong
evidence against

to
The model (10.3) is called a first-order or two-factor interaction

model, and it is the only possible kind of interaction with a 2 x 2
factorial treatment structure. The models extend to 2 x 2 x 2

(10.5)

(10.4)

I=0.

(10.3)

(10.2)

or the

Taking logarithms we get the

the empirical odds ratio
does not usually equal 1. A test of association (or

or equivalently in classic terms whether
differs significantly from zero,

i.e. whether we prefer

= I, where

I = 0. Here (10.5) is the analogue of (10.3).
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factorial experiments and to 2 x 2 x 2 contingency tables. The linear
model applies now to 3 factors each at two levels. We now represent
expected yields at level i of the first factor, level j of the second
factor and level k of the third factor by
values 1 or 2. Again the observed yields
additive random errors or departures.

	

If we consider the first two
factors at level k = 1 of the third factor we have a first-order
interaction between factors 1 and 2 at this level of factor 3 if

= I, providing I = 0. Also, we have a first-
order interaction between factors 1 and 2 at level 2 of factor 3 if

= J, providing J = 0.

	

If I = J we say there is
a second-order or three-factor interaction. If I = J and they are not
both zero, there is only a first-order interaction and if I = J= 0 there
is no interaction.

	

If the
general the equalities I = J or I = J = 0 will not be satisfied even it
these are relevant. Appropriate tests are then used to decide whether
departures from such equalities provide sufficient evidence to imply
that the equalities for expected values do not hold. In the context of
a log-linear model we replace the
log
totals in a way described below in Example 10.1. For 2 x 2 x 2
tables the no association (no interaction) model corresponds to that
of independence between classifications and in terms of odds ratios
may be written

Dependence or association may be first or second order (first- or
second-order interaction in the loglinear sense). For a first-order
interaction

and for a second-order interaction

By taking logarithms the analogy with the factorial treatment
structure model outlined above becomes obvious. The reader should
consult a specialist text such as Bishop, Fienberg and Holland
(1975), Fienberg (1980), Plackett (1981), Agresti (1984, 1990, 1996)
or Everitt (1992) for a detailed discussion of loglinear models and
their use in measuring association.

We now consider association when we have a set of k cross-
sectional tables each 2 x 2 with

where i, j, k may each take
differ from these only by

are replaced by the observed in

in the above conditions by
are the expected counts based on marginalwhere the

which may be formed from or

(10.6)

© 2001 by CRC Press LLC

/

/ /



combined as a k x 2 x 2 table. How to answer some typical
questions that may be asked will be illustrated using two specific
data sets, the first given in Tables 10.3 and 10.4 and the second in
Table 10.5. That in Tables 10.3 and 10.4 is a classic set first
discussed by Bartlett (1935). The data are numbers of surviving
(alive) and non-surviving (dead) plum rootstock cuttings in each of
four batches of 240 cuttings. The four batches were subjected to
treatments having a 2 x 2 factorial structure. The first factor was
ti 

me of planting - either early or late - and the second was length of
cutting - either long or short. There are two possible responses at
each level of each factor - alive 

or dead . Tables 10.3 and 10.4
represent two useful cross-sectional tables for comparing survival
rates. Both contain the same information, but it is given in different
order. In Table 10.3 we say the results are stratified by time of
planting since each of the component 2 x 2 tables (left and right) is
for a different planting time. In Table 10.4 stratification is by length
of cutting.

In Table 10.5 we break down a 4 x 2 x 2 table into four 2 x 2
tables where the k = 4 strata correspond to different age groups. In
the 2 x 2 tables within each age group the explanatory variables are
two drugs designated as A and B and the responses to each are the
column categories side-effect or no side-effect. The k age groups
forming the strata are also explanatory variables, often referred to in
the statistical literature as covariates .

Table 10.3

	

Survival numbers for early and late planted long and short cuttings.

Planted early

	

Planted late
Length of cutting

	

Alive

	

Dead

	

Alive

	

Dead

Long

	

156 84

	

84 156
Short

	

107 133

	

31 209

Table 10.4 Survival numbers for long and short cuttings planted early and late.

Long cuttings

	

Short cuttings
Planting time

	

Alive

	

Dead

	

Alive

	

Dead

Early

	

156 84

	

107 133
Late

	

84 156

	

31 209
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Table 10.5 Side-effects of two drugs grouped by ages.

For the data in Tables 10.3 and 10.4 the Fisher exact test, the
Pearson chi-squared test or the likelihood ratio test all indicate
association in each cross-sectional table. Tables 10.3 and 10.4 both
convey the same information though we look at different cross-
sections (stratification by planting time in Table 10.3 but by cutting
length in Table 10.4). A question of interest about association in the
basic 2 x 2 x 2 table is whether there is evidence of only first-order
association or whether there might be second-order association.
Remember that for the 2 x 2 cross-sectional tables independence
implies that the expected odds ratios must each be unity while first
order association implies they should be equal but the common
value is not unity, while second-order association indicates they
should not be equal. For the data in Table 10.5 the possibilities are
more varied. However, the ones likely to be of most interest are
whether or not there is evidence of association and if there is any
association whether or not it appears to be similar in nature, i.e.
imply a common odds ratio, over all strata. Further questions of
interest arise if the odds ratio appears to change between strata. For
instance, in Table 10.5 do the odds ratios of the cross-sectional 2 x 2
tables relating drugs and side-effects tend to increase with age (the
stratification covariate)? Sometimes, with small numbers in
individual strata a test for independence applied separately in each
strata may give no evidence to indicate association; however it is
then wise to consider whether, collectively, there may be some
evidence of association if we use appropriate tests. We consider the
case of only two strata in Section 10.2.2 and the more general case
of

Age group

	

Drug

	

Side-effect status
(yr)

	

No side-effect

	

Some side-effect

20-29 A

	

8

	

1
B

	

11

	

1

30-39 A

	

14

	

2
B

	

18

	

0

40-49 A

	

25

	

3
B

	

42

	

2

over 50

	

A

	

39

	

3
B

	

22

	

6

strata in Sections 10.2.3 to 10.2.5.

© 2001 by CRC Press LLC



10.2.2 Analysis of two cross-sectional 2 x 2 tables

Although some more general methods given in the next section
apply to the case k = 2, once it has been established that there is
evidence of association the main point of interest is often whether a
first-order model adequately describes the association. When k = 2
this implies that (10.6) holds. We do not of course know the values
of the expectations
estimates
satisfy the condition

The
separate cross-sectional tables under the hypothesis of indep-
endence. However, it is easily verified that if we retain the condition
that all marginal totals in the complete 2 x 2 x 2 table are fixed,
there is only one degree of freedom and once we determine one of
the
are determined an associated P-value may be found using either a
likelihood ratio test or a Pearson chi-squared test. Exact permutation
tests are possible using these statistics but the asymptotic chi-
squared distribution results may be used for large samples. In
practice the likelihood ratio statistic
we generalize from k = 2 to k > 2, a situation where there is more
than one degree of freedom. We show in Section 10.3.2 that this
latter statistic may be partitioned into additive single degree of
freedom components in a sense that is not in general true for the
Pearson

Example 10.1

The pro blem.

	

Determine whether the data in Table 10.3 are consistent with a
model that specifies only first order association.

Formulation and assumptions. We postulate a first-order association model
(10.6) after first establishing that a `no association' or independence model is not
appropriate. If (10.7) holds the condition that the marginal totals are fixed
means that relationship can be used to calculate a value x for

(9.10) and summing over all 8 cells of the two 2 x 2 subtables in Table 10.3.

Procedure. For convenience we reproduce below the data in Table 10.3. The
Fisher exact test, a Pearson chi-squared test or a likelihood ratio test applied to
the two 2 x 2 constituent tables show clear evidence of association with all
P < 0.0001.

in (10.6) but we may obtain from the data
of the expected counts where these are chosen to

no longer have the simple values that they have for the

in (10.7) all the others are fixed. Once these expected values

has some advantages when

statistic. The procedure is best illustrated by an example.

under
statistic may then be calculated usingassociation is first-order only. The

(10.7)
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Calculating the likelihood ratio statistic
over all 8 cells gives
gives P = 0.1294. The Pearson chi-squared statistic is
0.1319.

Conclusion. There is insufficient evidence to reject the hypothesis that there
is only a first-order interaction.

Comments. 1. Accepting that there is only a first-order interaction is equi-
valent to saying that the odds ratios for the cross-sectional tables do not differ
significantly.

2. We would reach exactly the same conclusion had we worked with the
cross-sectional tables in Table 10.4 (Exercise 10.3). This is because each table
contains essentially the same information.

3.

	

We give an alternative analysis of these data in Example 10.2 and other
methods developed in Section 10.2.3 to 10.2.5 for the case
applied to this example where they are relevant.

Computational aspects.

	

General statistical packages, e.g. SPSS, are tending
to increase coverage of loglinear models giving at least asymptotic results.
StatXact includes exact permutation tests for several of the methods described in
the next section.

This cubic equation in x may be solved numerically with an appropriate
computer algorithm. The relevant solution is one that gives expected numbers
that are all positive and turns out to be
expectations may be calculated using the relationships given above and are
summarized as

Planted early

	

Planted late
Length of cutting

	

Alive

	

Dead

	

Alive

	

Dead

Long

	

156 84

	

84 156
Short

	

107 133

	

31 209

If we denote
condition implies

by x it is easily shown that the fixed marginal totals
= 240 - x,

= 365 -x and thus (10.7) is satisfied if x is chosen
so that

= 240 - x,

= 161.1. The remaining

Planted early

	

Planted late
Length of cutting

	

Alive

	

Dead

	

Alive

	

Dead

Long

	

161.1 78.9

	

78.9 161.1
Short

	

101.9 138.1

	

36.1 203.9

using (9.10) where summation is
= 2.30 (Exercise 10.2) which, with 1 degree of freedom

= 2.27 giving P =

may also be
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Example 10.2

The problem. For the data in Table 10.3 show that the hypothesis
implying equal association (or independence if both equal 1) is plausible.

Formulation and assumptions. We evaluate
base the test on (10.8) and (10.9).

Procedure. For Table 10.3 we find

has a standard normal distribution.

We pointed out in Section 9.1.2 that the odds ratio or its logarithm
contains all the information on association in a 2 x 2 table. Example
10.1 showed one way of using that information. We also pointed out
in Section 9.1.2 that for asymptotic tests normality is approached
more rapidly if we use
natural logarithms and denote the empirical log odds ratio by

then (see e.g. Agresti 1990, Section 3.4.1)
is asymptotically normally distributed under the hypothesis of

independence with mean zero and

If any
is avoided if we replace all
in inference based on

are small when most
and that the empirical odds ratio

distributed with mean
If we have two 2 x 2 tables with expected odds ratios

that asymptotically

= log rather than itself.

	

If we use
i.e.

(10.8)

= 0 both and Var become infinite. This difficulty
(i, j = 1, 2) by 

+ 0.5 and differences
and

are moderate or large. Association implies
is asymptotically

and variance given by (10.8).
and then

implies = 0. Thus, under it follows

(10.9)

fork= 1,2 and

whence

Conclusion. Since Z = 1.51 corresponds to a two-tail P = 0.1310 we have no
strong evidence against
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10.2.3 Analysis of 2 x 2 tables for several strata

We saw in Section 9.1.2 that binomial sampling with two levels o
an explanatory variable is one model often associated with a 2 x 2
table. A typical situation where this happens is one where presence
or absence of side-effects (responses) is noted for each of two
medicines (explanatory categories). Another example arises in a
production process where two types of machine (explanatory
categories) are being investigated in manufacturing runs from each
of which the numbers of satisfactory and of flawed items (responses)
are noted. We may introduce further explanatory variables or
covariates leading to situations like that exemplified in Table 10.5
where each of the k = 4 covariates is an age group. These groupings
are usually referred to as strata. In that table each stratum consists of
a 2 x 2 table of counts classified by drugs and side-effects. An
informal inspection of Table 10.5 suggests that side-effect incidence
tends to increase slightly with age for drug B, but there is no such
tendency for drug A. Apart from this there looks to be little
difference in side-effect incidence between the drugs.

Two obvious questions that may be of interest are:

Is there an association between drugs and side-effects?
If there is an association does it change with age, i.e. does the
odds ratio change between strata?

An intuitive approach is to test for evidence of association within
each stratum and if there is no evidence to accept the hypothesis of
independence. A disadvantage is that if the counts in some cells are
small the tests may have low power against alternatives that specify

For the above data the interval is (-0.1369, 1.0423). Because zero is in the
interval a hypothesis of equal odds ratios is acceptable.

Comments 1. This result is in line with that in Example 10.1 where we found
= 2.30. Under

freedom. The value
2.

	

In view of the large counts in each cell, having accepted the hypothesis
that the odds ratios do not differ it is reasonable to use the normal approximation
to test for each table the hypothesis
standard test statistic Z =
association (Exercise 10.4).

3. The method used here avoids the need to estimate the expected values
needed in Example 10.1

4. An asymptotic confidence interval for the true difference
obtained in the usual way. For example, the approximate 95 per cent interval is
of the form

the distribution of
is close to that of

= 0, i = 1, 2 implying independence. The
shows strong evidence that there is

may be

is chi-squared with 1 degree of
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a slight association. Intuitively one feels that if the information
could be combined in some way for all strata the larger sample size
may detect such associations if these are similar for all strata. Care is
needed in such analyses, for they may give misleading results
especially if the degree of association or type of association differs
between strata, a matter we explore further in Section 10.3.1.

In Examples 10.1 and 10.2 we considered the special case of only
two strata (i.e. k = 2) and the large numbers in each cell enabled us
to detect strong evidence of association within each stratum.

The situation is different for the data in Table 10.5, where exact
tests applied to each of the four strata specified by age show no
evidence of association. However, as we shall see in Example 10.4
the suspicion aroused by a visual inspection of the data that there are
more side-effects for drug B among older patients is not without
justification, although the evidence for this is not strong.

We proceed by first assessing whether there is evidence that the
odds ratios are equal for all strata. If there is strong evidence that
these ratios are not all equal, a test for independence across all strata
(i.e. that the within-strata odds ratios
value unity) is then not appropriate since we have already decided
they are probably not all equal.

Thus a sensible procedure is to test first whether the hypothesis of
equality of odds ratios holds and only if there is little evidence
against this should we test whether the common value may be unity.

The methods used in Examples 10.1 and 10.2 for the case k = 2 do
not generalize easily to the more general k > 2. Further, we gave
only asymptotic results and these are not appropriate if there are
many cells with small counts. They are unlikely to be satisfactory
for the data in Table 10.5, for example. The approaches using
asymptotic and exact results are somewhat different so we consider
them separately.

10.2.4 Asymptotic tests about odds ratios in k 2 x 2 tables

For any

Is there evidence of association (i.e.
If there is association are all
If all

Several asymptotic tests help answer these questions and when
these are not adequate exact permutation tests are possible using
packages like StatXact. We outline some basic ideas behind these
procedures, quoting relevant formulae without derivation. Some

have a common

three common questions are

are equal how do we estimate the common value?
equal?

,s = 1, 2, ..., k)?
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asymptotic tests are provided in general statistical packages and may
even be conducted manually in simple cases. Many inference
procedures in this and the next section rely heavily on the fact that
once we have the observed or expected count for cell (1, 1) in any
2 x 2 table this fixes the observed or expected odds ratio if marginal
totals are fixed.

We pointed out above that it is desirable to test whether a
hypothesis of equality of odds ratios is tenable before testing
whether that common ratio may be unity. If we reject the first of
these possibilities the second is automatically rejected.

Data often suggest that if there is any association then it may be
similar within all strata, e.g. all the empirical odds ratios

might take values slightly greater than 1.
Care is needed in choosing an estimate of a common odds ratio

appropriate for testing the hypothesis that there is indeed such a
common ratio. With different stratum sizes as in Table 10.5, and
perhaps different allocations of numbers to rows or columns within
strata, a simple average of all stratum odds ratios is too naive.
Mantel and Haenszel (1959) proposed the estimator

This is a weighted mean of the strata odds ratios
where

motivation for choosing these weights is that when all
unity they are nearly the reciprocals of the variances of the

Breslow and Day (1980) proposed a test for whether data were
consistent with an estimated common odds ratio given by (10.10).
We first compute the expected count
the k stratum conditional upon the common odds ratio being
given by (10.10).

	

This amounts to choosing for each stratum s an
which is the positive root not exceeding

equation

If odds ratios are equal across all strata the differences
s = 1, 2, . . . , k should all be small and Breslow and Day (1980,
Chapters 4 and 5) discuss appropriate tests for homogeneity of odds
ratios in detail. They proposed a statistic

(10.10)

with weights
is the total count for the cells in stratum s. The

are close to

in cell (1, 1, s) for each of

of the

(10.11)
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For all but small data sets (where asymptotic procedures are not
appropriate) a computer program is highly desirable for testing and
estimation, but we illustrate salient features of the computation in
Example 10.3. Approximate confidence limits for
by back-transformation. Everitt (1992, Section 2.8.1) develops an
alternative formula basing the interval on

Approximate 95 per cent asymptotic confidence limits for

then write

and

then

Asymptotically
of freedom under
the expression for var(
for stratum s given

If we accept
common value
distribution of
that of
proposed for
by Robins, Breslow and Greenland (1986) and has been shown to
work well for small k and large counts or for large k even if some of
the 2 x 2 tables are fairly sparse. The expression for this estimate is
complicated but we give it for completeness. For each stratum s we
define

where

(10.12)

(10.13)

has a chi-squared distribution with k - 1 degrees
all are equal. The expected frequencies in

are subject to the fixed marginal totals

Asymptotically the
we may obtain a confidence interval for the

which we estimated by
approaches normality more rapidly than
log and several estimates have been

That recommended in StatXact was proposed

can be obtained

directly.

are

(10.14)
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Table 10.6 Production counts for two machines with three raw material sources.

Example 10.3

The problem. For the data in Table 10.6 explore whether the hypothesis of
equality of odds ratios is acceptable. If it is, obtain an approximate 95 per cent
confidence interval for the common odds ratio

Formulation and assumptions. The material sources form three strata (k = 3)
and the two machine types are explanatory categories and the output categories
represent two responses. The solution requires the following steps: (1) estimation
of a common odds ratio using (10.10); (2) calculation of
in an asymptotic test of
(3) if
back-transformation from the interval for

Procedure. Although we recommend using widely available software for this
test we outline the main steps in the computation. The reader should verify all
quoted numerical values (Exercise 10.5). Using (10.10) gives

The expected value

This gives x =
column marginal totals). Similarly, we find
(10.13) gives

Var(

Material source

	

Machine

	

Output status
Satisfactory Faulty

A

	

Type I

	

42

	

2
Type II

	

33

	

9

B

	

Type I

	

23

	

2
Type lI	 18

	

7

C

	

Type I

	

41

	

4
Type II

	

29

	

12

from (10.12) for use
all are equal against

is accepted, a confidence interval for the common value
for at least one

is obtained by
given by (10. 14).

is the relevant root of (10. 11), which here is

= 41.68 (the other root x = 100.54 exceeds both row and
= 23.07 and = 41.25. Then

_ (1/41.68 + 1/2.32 + 1/33.32 + 1/8.68)

	

- 1.6660

and in like manner Var(

	

-

	 

--= 1.3181, Var( = 2.4550, whence (10.12) gives
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Assuming an asymptotic chi-squared distribution with k - 1 = 2 degrees of
freedom there is clearly no evidence against
good (P = 0.96). To obtain the relevant confidence interval we note that

giving an interval (0.7059, 2.3901). Taking natural antilogarithms gives an
interval (2.0256, 10.9145) for

Conclusion. We accept the hypothesis of a common odds ratio and estimate it
(after sensible rounding) to be
(2.03, 10.92).

Comments. 1. The confidence interval appears rather wide and is not
symmetric about the point estimate. This reflects the markedly skew distribution
of

2. Since independence or lack of association implies
evidence of association;

Computational aspects. 1. The above results are confirmed by the program in
StatXact but the estimate and confidence limits given there are the reciprocals of
those given here. This is because StatXact defines the odds ratios as reciprocals
of those we give. This leads to similar inferences because, as we pointed out,
ratios
directions.

2. Some software may give a different confidence interval to that obtained
here, because, as indicated above, there are alternative estimates of variance to
that given by the Robins, Breslow and Greenland formula.

The method in Example 10.3 tests whether a common odds ratio
across all strata is an acceptable hypothesis, and if it is we may then
decide with the aid of a confidence interval whether that common
value may be
used test for independence known usually as the Mantel-Haenszel
test as it was proposed by Mantel and Haenszel (1959) although
Cochran (1954) proposed an effectively identical test. The latter is
described by Everitt (1992, Section 2.7.2). We give the test in the
Mantel-Haenszel formulation as we find this intuitively appealing
because of similarities to the Breslow-Day test given above.

Basically the test requires the calculation in each stratum of the
cell (1, 1) expectations under the hypothesis of independence in that
stratum, i.e.

(10.15)

The statistic is

where and

= 1 implying independence. There is another widely

represent the same degree of association, only in opposite

= 1 is clearly outside the above confidence interval.
= 1 there is strong

referred to in Section 9.1.2.

= 4.70 with a 95 per cent confidence interval

as
= 1.5480; tedious but otherwise straightforward computation gives
= 0.1846 whence (10.14) gives the 95 per cent confidence limits for

indeed, the fit is remarkably
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Conclusion. The extremely small value 0.0049 means there is no evidence
against the hypothesis of independence.

Comments. 1. Some writers recommend a continuity correction subtracting
from

against
2. The small differences between corresponding

independence. However, as we indicated above situations arise where these
differences may be large and of opposite sign in different strata but the
numerator in (10.15) remains small. This is why we prefer the Breslow-Day test

Example 10.4

The problem. For the data in Table 10.5 compute
strata have the same expected odds ratio
hypothesis

Formulation and assumptions. Assuming all
using (10.15) and obtain a P-value assuming a chi-squared distribution with 1
degree of freedom.

Asymptotically (10.15) has a chi-squared distribution with 1 degree
of freedom under.
in the cell of each table differ appreciably and these differences are
all in the same direction this suggests odds ratios are consistently
above or consistently below 1 and large values of
Circumstances may arise however where differences between
expected and observed values in cell (1, 1) for each table are in
opposite directions in some tables to that in others. In this case we
may still get small values of
association (albeit in opposite directions) within some strata. For
this reason the Mantel-Haenszel test is not recommended without
first using a test such as the Breslow-Day test for equality of odds
ratios. However, if the asymptotic theory is accepted for the
Breslow-Day test we may, as shown above, compute approximate
confidence intervals for a common odds ratio and accept or reject a
hypothesis of independence on the basis of these, making the
Mantel-Haenszel test somewhat superfluous. Since it is widely used
we do however illustrate how it works.

all = 1. If the expected and observed values

are likely.

even when there is clear evidence of

and assuming all k = 4
is it reasonable to accept the

= 1?

are equal we compute

before squaring. This may avoid over-weighing of evidence
in borderline cases.

and point towards

Procedure. We find
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with confidence intervals for a common
data in this example it can be shown (Exercise 10.6) that
associated P = 0.0898 so there is no substantial evidence against equality of odds
ratios, although room for a little doubt. The point estimator of the odds ratio is

= 1.0334 with a 95 per cent confidence interval (0.4036, 2.6462). In the light
of these findings it is not surprising that the Mantel-Haenszel test strongly
supports independence. The Breslow-Day test, however, does raise a small
doubt about the hypothesis of equality of odds ratios.

10.2.5

	

Exact tests for equality of odds ratios in k 2 x 2 tables

Zelen (1971) gives an exact permutation test for a common odds
ratio and Gart (1970) gives a method for obtaining confidence
intervals if a hypothesis of a common odds ratio is accepted.
Stafact includes programs for both procedures. Unlike many other
nonparametric tests the asymptotic procedures described in the
previous section are not based on the asymptotic properties of the
statistics used in the exact test. As computing facilities such as those
provided by StatXact are needed to apply the exact methods, we
only sketch their nature. The rationale for both procedures is
illustrated for small data sets by Sprent (1998, Section 12.5) and is
explained more fully in the StatXact manual.

Zelen's test for homogeneity of the ratios is based on a property
of the hypergeometric probabilities arising in the Fisher exact test
for 2 x 2 tables. Subject to the condition that all
the observed marginal total
probabilities over all possible k 2 x 2 tables satisfying this condition
is a maximum when the observations strongly support a common
odds ratio
steadily as that support weakens. Under the hypothesis that all odds
ratios are equal, the actual probability
set of within-stratum outcomes in which the cell (l, 1) entries sum to
the observed
probabilities for those outcomes divided by the sum of all such
products over all possible cell (1,1) values consistent with marginal
totals for the relevant 2 x 2 tables and which sum to
denote the probability for our observed tables by
corresponding P-value is the sum of the probabilities
with all outcomes for which
data in Table 10.5 StatXact gives the probability associated with the
observed outcome as
compared with the asymptotic Breslow-Day value P = 0.0898 given
in Comment 2 on Example 10.4.

the product of the hypergeometric

whatever the value of

if that hypothesis is accepted. For the
= 6.497 with an

sum over s to

and this product decreases

of observing any particular

is given by the product of the k hypergeometric

If we
the

associated
If the test is applied to the

= 0.008213 and the relevant P = 0.0689

© 2001 by CRC Press LLC



10.2.6 The linear-by-linear association model

The procedure proposed by Gart for estimating the common odds
ratio if the Zelen test supports that hypothesis uses a different
approach. We noted in the asymptotic Breslow-Day procedure that
if we estimate expected values under an assumption that the
common odds ratio takes a particular value

Large discrepancies indicate that such a value of
unsatisfactory value for the common odds ratio and of course there
may be no value of
hypothesis that there is a common odds ratio is not supported.
Gart's procedure for obtaining a confidence interval for a common
odds ratio
the observed
of all possible values that this statistic might take if each observed

totals for the sth 2 x 2 table; i.e. the values are no longer constrained
to sum to
which would just be accepted as hypothetical estimates of the
common odds ratio in a test at the 100(
level and these provide 100(1 -
Some modifications are needed to these arguments if the data
indicate acceptance of either a zero or infinite common odds ratio.
Details of many subtle aspects of the Gart procedure are given in the
StatXact 4 manual, Section 15.3.2.

For the data in Table 10.6 the exact 95 per cent confidence
interval given by Gart's method is (1.9149, 12.306), slightly longer
than the asymptotic interval (2.0256, 10.9145) obtained in Example
10.3. The latter depends on the validity of certain variance estimates,
involves a back-transformation from natural logarithms and assumes
a reasonable rate of convergence to normality. From the practical
viewpoint the difference between the asymptotic result and that for
exact permutation theory should not cause alarm bearing in mind
that there are also questions of discontinuity in the distribution of
Gart's T statistic so the interval may not be an exact 95 per cent
interval.

is in essence to compute a statistic T which is the sum of

say, that in general if
is the expected value in cell (1, 1) of table s then

is an

for which this discrepancy is not large if the

One then considers its position in the distribution

were replaced by any possible value consistent with the marginal

. We may then find values that give values of T

per cent significance
per cent confidence limits for

The linear-by-linear association model is a relatively simple yet
versatile loglinear model with only one additive interaction term to
represent association. For an r x c table a score
i, i = 1, 2, . . . , r subject to constraints

is allocated to row
and a score
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to column j, j = 1, 2, . . . , c subject to constraints
If m;; is the expected count in cell (i, j) the model may be written

log = independence terms + (10.16)

log = independence terms (10.17)

Example 10.5

where
(no association) between row and column categories when
is sometimes convenient to use the modified form

is a constant. The model reduces to that for independence
= 0. It

A number of standard nonparametric test statistics have exact
permutation distributions based on this model. It is relevant to tables
of counts where both row and column categories are ordered and
when, if the classifications are not independent, they show a
monotonic trend across row and column categories. When the scores
are ranks they are often referred to as unit interval scores because
the difference between the scores associated with any pair of
neighbouring rows or of neighbouring columns is in each case unity.

The parameter
relevant departure from independence. We do not discuss estimation
of
10.5. Cells for whic
departure from independence.

h

may be estimated to reflect the extent of any

but indicate what we mean by relevant departures in Example
is large show the greatest

Table 10.7

	

Interaction terms in log
contingency table.

for rank scores in a 5 x 7

The problem.

	

For the case r = 5, c = 7 with rank scores, i.e.
determine for each cell in the r x c table the contribution to log
interaction term in (10. 17).

of the

where
Clearly (10.17) is equivalent to (10.16) if in the latter we replace

are the means of the and of the respectively.
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Formulation and assumptions.

	

In this example
interaction term in cell (i,j) in (10.17) is

Procedure. For any

Conclusion. If
cells at the top left and bottom right of Table 10.7 and less for cells at the top
right or bottom left. If
association.

The name linear-by-linear association reflects the characteristic
that within any row, say row i, for any chosen
contribution across columns is a linear function of the

across rows is a linear function of the
The relevance of this model to permutation theory is that many

permutation tests depend upon a statistic, S, that may be written

with appropriate choices of
to the null hypothesis; we reject
expressed in the appropriate contingency table format indicates a
general pattern of the form exemplified for a particular case in Table
10.7 when
(10.18) whereas intermediate values indicate lack of association.

Example 10.6

The problem.

	

In Example 5.1 we applied the WMW test to a data set we
presented in a contingency table format in Table 9.2. Show that if, in that
format, we use row scores 0, 1 corresponding to Group A and Group B
respectively and column scores corresponding to the ranks of the observations in
the combined groups, then S is a statistic for the Wilcoxon rank sum test.

Formulation. In Table 9.2 the columns were ordered by increasing times
taken to complete the task. We now allocate to the columns in that table the rank
scores 1, 2, 3, . . . , 21 and compute the Statistic S in (10.18) using these scores.

Table 10.8    The information in Table 9.2 with times replaced by corresponding
ranks for column scores and 0, 1 assigned as row scores.

= 3 and = 4 so the

the interaction term in each cell is given in Table 10.7.

> 0, log is greater than its value under independence for

< 0 the situation is reversed. If = 0 there is no

the interaction

and that within any column j the interaction contribution
with slope

with slope

(10.18)

Independence corresponds
if our observed outcome

This corresponds to extreme values of S given by
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Case A

	

x-ranks

	

1

	

2

	

3

	

4

	

5
y-ranks 4 2 5 3 1

Case B

	

x-ranks

	

1

	

2

	

3

	

4

	 

5
y-ranks 2 1 3 5 4

Case C

	

x-ranks

	

1

	

2

	

3

	 

4

	 

5
y-ranks 1 2 3 4 5

These are represented by the 5 
x 5 tables (10. 19), (10.20), (10.21).

Case A

	

y-ranks

	

1

	

2

	 

3

	 

4

	 

S
x-ranks

1 0 0 
0 1 0

2 0 
1 0 0 0

3 0 
0 0 0 1

	

(10.19)
4 0 0 1 0 0
5 1 0 0 0 0

Procedure. With the above formulation by referring to Table 9.2 it is easy to
obtain the relevant Table 10.8 with the scores shown. It follows immediately that
S given by (10.18) is the sum of the ranks for Group B and here S = 155.

Conclusion. The Wilcoxon rank sum test is one for independence in a linear-
by-linear association model if the above row and column scores are used.

Comments. 1. If we interchange Group A and Group B, i.e. swap rows and
retain the same row scores, the statistic S becomes the sum of the Group A ranks,
the alternative Wilcoxon rank sum statistic used in Example 5.1. Hence in this
two-sample situation the ordering of the groups does not matter; there is an
'opposite' association with the two different orderings .

2.

	

In the context of the WMW test independence or lack of association
corresponds to a situation when there is no difference between group medians
and is associated with a broad scatter of zeros and ones in the cells of a table like
Table 10.8. There is strong linear-by-linear association if the ones (corres-
ponding to an observation) tend to concentrate towards the left or right in the
first row and towards the opposite extreme in the second row, a situation we saw
in a simpler case in Section 9.3.1.

The Spearman rank correlation coefficient provides a more
informative illustration. If there are n paired observations without
ties the rank outcome pattern can be presented as an  n x n

contingency table with rows and columns representing x ranks and y
ranks respectively. If an x-rank i is paired with a y-rank 

j we enter 1
in cell (i, j). All other entries in row i or in column 

j are 0. The row
and column totals are all 1. We illustrate the pattern for three cases
when n = 5.
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In case A, the 1s are well scattered over rows and columns.

	

In
case B there is a discernable tendency for the 1 s to drift towards the
top left and bottom right, hinting at some association between x- and
y-ranks. Case C clearly represents the closest possible association
and corresponds to
diagrams (with conventional axes rotated clockwise through 90°) is
apparent if we imagine the Os to be deleted and the 1s to be replaced
by dots.

It is implicit from our remarks in Section 7.1.1 about permutation
tests for the Pearson coefficient that the sum
as a test statistic for the Spearman coefficient in an exact
permutation test. It immediately follows that if we take the ordered
x-ranks and y-ranks as scores for a linear-by-linear association test in
contingency tables of the form (10.19) to (10.21) that S given by
(10.18) equals
such possible 5 

x 5 tables with row and column sums of unity. It is
easily seen that there are 5! such tables in each case.

Similar arguments show that for n paired observations
no ties in either variable the statistic
permutation test for the Pearson product moment correlation
coefficient (Section 7.1) is equivalent to (10.18) with scores

The relevant permutation is over all n x n tables with row
and column sums all unity.

Case B

	

y-ranks

	

1

	

2

	

3

	

4

	

5
x-ranks

1 0 1 0 0 0
2 1 0 0 0 0
3 0 0 1 0 0

	

(10.20)
4 0 0 0 0 

1
5 0 0 0 1 0

Case C

	

y-ranks

	

1

	

2

	

3

	

4

	

5
x-ranks

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0

	

(10.21)
4 0 0 0 1 0
5 0 0 0 0 1

= 1. The resemblance of these tables to scatter

may be used here

The relevant permutation distribution is over all

and
appropriate for an exact
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Example 10.7

The models extend easily to tied situations. For example, using
mid-ranks for the Spearman coefficient with ties consider the case:

The relevant contingency table with mid-rank scores is now:

To generate the relevant permutation distribution we calculate S
using mid-rank scores for all permutations of this table with the
given marginal totals. We may alternatively, if we wish, use the
centralized scores

StatXact has a program to compute relevant P-values for any
linear-by-linear association model based on permutation of such
tables subject to fixed marginal totals for arbitrarily assigned scores.
This is a powerful tool but it is important to choose relevant and
sensible scores. We consider such scores in a re-analysis of the data
in Example 9.6. The tests are essentially applications of the
permutation test for a Pearson product moment correlation
coefficient with many ties and scores (x, y values) chosen to reflect
what may be regarded as appropriate measures of 'distance' between
categories.

The problem. Given the data on side-effect of dose levels of a drug in
Example 9.6, i.e.:
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Comments. 1. In Example 9.6 the Jonckheere-Terpstra test indicated strong
evidence of association. As we pointed out in Section 9.3.2 that test is equivalent
to one using Kendall's tau. Using ranks for row and column scores is more like
using Spearman's rho without taking ties into account, while other row and
column scores give a test equivalent to that for a Pearson coefficient with those
scores playing the roles of x, y values.

2. One might have performed a test exactly equivalent to that for Spearman's
rho by allocating mid-rank scores for ties. Because there are 51 patients 'tied' at
the 100 mg dose the score for row 1 would then be 26, that for row 2 would be

(52 + 112) = 82, and so on. A valid criticism of the use of these mid-ranks in
this highly tied situation is that the mid-ranks depend heavily on the number of
subjects allotted to each treatment (here dose levels). There must be some unease
about such a scoring system, especially if the numbers allocated to each
treatment differ substantially. There is a better case for basing scores on the
nature of treatments or responses rather than upon the number of patients
allocated to each treatment. Possible unsatisfactory influences of mid-rank
scores with heavy tying and unbalanced row and column totals have been
pointed out by a number of writers including Graubard and Kom (1987).

3.

	

In a group of tests on the same data each using different but plausible
scores P-values often differ more substantially than they did in this example. An
important caveat about any scoring system is that it should be chosen for its
relevance to the problem at hand and not on a hint inspired by an inspection of
the data that suggests that a particular scoring system may enhance the prospects
of getting a small P-value. The speed of modern computers tempts one to try
many analyses for the same data. The temptation is best avoided for linear-by-

allocate appropriate scores and perform a linear-by-linear association test for
evidence of association between dose level and side-effects.

Formulation and assumptions.

	

One reasonable choice of scores would be
row and column ranks. For rows this corresponds to dose levels in 100 mg units.
For columns it represents an ordering of side-effects consistent with limited
information. Another possibility would be to allocate column scores in a way a
clinician might interpret the data. He or she might accept 1 and 2 as reasonable
scores for no and slight side-effects but regard moderate side-effects as 10 times
as serious as slight ones and severe side-effects as 100 times as serious as slight
ones, giving logical column scores
linear-by-linear association program will perform the relevant tests using either
of these (or any other chosen) scoring system. If no suitable program is available
we give below an asymptotic result but this should be used with some
reservations when, as here, there are many cells with small counts.

Procedure. Using the StatXact linear-by-linear association program with row
and column rank scores gives a one-tail P = 0.0112 and doubling this gives a
two-tail P = 0.0224. With the alternative column scores 1, 2, 20, 200 the
corresponding tail probabilities are P = 0.0071 and P = 0.0142.

Conclusion. A one-tail P-value is relevant as it is logical to expect side-
effects to increase rather than decrease as dose increases. Whichever scoring
system we use there is strong evidence that side-effects increase with dose.

200. The StatXact
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linear association tests by choosing a scoring system before data are obtained.
Once again we refer the reader to the penultimate paragraph in Section 1.5.

We do not prove it, but it can be shown that for S given by (10.8)

and

Example 10.8

The problem.

	

Apply 
an asymptotic test to the data in Example 10.7 using

rank scores for rows and columns.

Formulation and assumptions. E(S) and Var(S) are computed by the formulae
given above and the value of Z is calculated.

Conclusion. There is strong evidence against

Comment. This result is in line with that for the exact test. In Exercise 10.7
we establish with the second choice of scores that the asymptotic P = 0.0101.
Despite many ties and many small cell counts in this example the asymptotic
results are not misleading.

Many other tests already encountered may be formulated as
linear-by-linear association tests. If the rank column scores in
Example 10.6 are replaced by raw data scores this leads to a Pitman
test. Other alternatives might use the van der Waerden scores or, if
appropriate, log-rank scores.

A test for trends in r x 2 contingency tables known as the
Cochran-Armitage test may also be formulated as a linear-by-
linear association test. The test applies basically to a situation where
the rows represent explanatory variables and the columns two
mutually exclusive and exhaustive outcomes. Typically the rows are
ordered explanatory variables such as age groups or increasing doses
of a drug. It is assumed that columns represent binomial responses,
the first for an event A and the second for an event B. For the ith
row, i = 1, 2, . . . , r for each of the

and asymptotically
distribution.

Procedure. 
The ranks scores are

51,
For the given data simple calculations give S = 484, E(S) = 469.7 and

Var(S) = 35.797 whence Z = 2.39, and P = Pr(Z > 2.39) = 0.0084.

has a standard normal

= j and we easily verify that

units in the counts to that row
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t 
he probability of the event A is

The Cochran-Armitage test proposed independently by
Cochran (1954) and Armitage (1955) is used to test the hypothesis

against
inequality is a strict inequality (or a similar inequality with all signs
reversed). Effectively Cochran and Armitage proposed a test which
is a linear-by-linear association test with column scores 0, 1 and row
scores 1, 2, 3, . . . , r. In Example 10.9 we apply it to a set of data
given by Graubard and Korn (1987); these data are also used to
illustrate the procedure in the StatXact Manual.

Example 10.9.

The problem. Table 10.9 indicates whether or not congenital sex organ
malformation was found among children born to mothers whose stated alcohol
consumption (number of drinks per day) during pregnancy fell within various
ranges. There is a slight indication that the probability that malformation is
absent may decrease with increasing maternal alcohol consumption since the
maximum likelihood estimates of pi, for each row are
0.9972 and similarly

Formulation and assumptions. Our alternative to equality of the
decreasing trend and we perform an exact Cochran-Annitage test as a linear-by-
linear association test with row scores 1, 2, 3, 4, 5 and column scores 0, 1.

Procedure. Using StatXact the exact one-tail P = 0.1046.

Conclusion. There is not strong evidence against

Comments.

	

1. A one-tail test is appropriate on the grounds that there is no
medical or other evidence to suggest a beneficial effect of increased alcohol
uptake in this context. The situation may be different for other health issues.
There is some evidence, for example, that moderate consumption of red wine
may protect against the onset of heart disease.

Table 10.9 Numbers of children with or without malformations in
relation to mother's stated alcohol consumption (Graubard and Korn,
1987).

where at least one

and of the opposite event B is

= 17066/(17066 + 48) =

is one of a

all pi are equal.
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2. The choice of row scores is arbitrary. While there may be a temptation to
use mid-rank scores for rows as an intuitively reasonable scoring system the
disadvantage noted in Comment 2 on Example 10.7 is more marked in this
example. It is easily verified that the mid-rank scores for rows are 8557.5,
24365.5, 32013, 32473 and 32555.5. The final three rows (where most of the
changes in malformation probability, if any, would seem to take place) get
almost identical scores. For this scoring system P = 0.2861.

3. Temptation to experiment with many scoring systems should be avoided.
When no other system is obviously appropriate the default scoring system 1, 2,
3, 4 ... has much to commend it. However, if there are clinical grounds for
adopting some other scoring system it is sensible to do this. For this example
Graubard and Korn suggest using the mean alcohol intake for row scores, i.e. 0,
0.5, 1.5, 4 and 7 where the choice of 7 is arbitrary but not unreasonable. This
results in an exact one-tail P = 0.0168, suggesting that there is indeed some
evidence against
system that might well get clinical support. It gives a P-value not very different
from that using the mean intake scores and this is comforting because it suggests
that the analysis is not too sensitive to differences between scoring systems that
may appear realistic under what most people would regard as rational
assumptions.

Computational aspects. Availability of programs like that in StatXact for
exact linear-by-linear association tests with arbitrary scores adds flexibility to
the Cochran-Armitage test as originally proposed with the restricted row scores
1,2,3,4,...

10.2.7 Capture-recapture techniques

Capture-recapture analysis was originally proposed to estimate the
number of animals in a population when it was impracticable or
even impossible to do this using a complete count or census. For
example, to estimate the total number of squirrels in a wood one
might use a benign form of trapping to capture 25 animals which
are then marked for identification and released to the wild. At a later
date a further 40 animals might be trapped and these might include 5
marked, i.e. recaptured, animals, the remaining 35 being unmarked.
If the unknown number of animals in the wood is N the first sample
marking procedure may be looked upon as dividing the population
into two sub-populations - the first consisting of the 25 marked
animals and the second of the N - 25 unmarked animals. If all
animals have the same probability of being included in the first and
second trapping then the ratio of the number of marked animals to
unmarked animals in the second sample is an intuitively reasonable
estimate of the proportions in the population. Equating these ratios,
i.e. setting 25/(N- 25) = 5/35 and solving gives N= 200. It is easily
verified that this is equivalent to using the ratio of marked to total

Sprent (1998, Section 13.5) suggests yet another scoring
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populations, i.e. 251N = 5/40. More generally if the first or capture
sample size is
in this second sample there are b marked animals then we estimate N
by equating the ratios

The assumptions that all animals have an equal probability of
being included in each sample and that the population size N
remains constant between the capture and the recapture sample are
crucial but may not hold in practice. Some animals may be more
inquisitive than others and thus more likely to be trapped;
sometimes the probability of a marked animal being retrapped may
be decreased by some aspect of the marking process such as being
frightened by the initial trapping or marking procedure or increased
because the bait used in the trap was a desirable food item. These
factors 

negate the equal probability assumption. Further, the
population size may vary between samples due to births, deaths or
migration. We show below that when the model leading to the
simple estimate given above is valid approximate confidence limits
for the true population size may be obtained by formulating the
problem using an incomplete 2 x 2 contingency table. When the
basic assumptions needed for validity of the simple estimate break
down it is well known to users of capture-recapture methods that
some of these can be dealt with by taking more than two samples.
This leads to a multiple capture-recapture process where in each
succeeding sample one identifies which animals have been captured
previously and at which sample or samples this happened. Analysis
of such data is often based on loglinear models to describe
interactions or associations. A detailed treatment is beyond the scope
of this elementary text but we outline the basic ideas behind a
contingency table approach. We see in Example 10.10 and the
subsequent discussion that the basic ideas of capture-recapture
analysis have been taken beyond the estimation of animal
populations and are now employed in wider contexts. The use of
loglinear models for capture-recapture analysis is described by
Bishop, Fienberg and Holland (1975) while Seber (1982) provides a
comprehensive review of basic capture-recapture procedures.
Cormack (1989) gives a detailed description of practical uses of log-
linear models in this context.

For the two sample procedure outlined at the start of this section
we may express results in a 2 x 2 table like Table 10.10 where rows
represent numbers from the total population of unknown size N that
are included or are not included in the first sample, and columns
represent similar information for the second sample. It is easily seen

and

giving the estimate

and the second or recapture sample size is
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Table 10.10 A contingency table for a simple capture-recapture.
model. Interrogation marks indicate an entry to be estimated.

that in the standard notation
numerical entries in Table 10.10 are
and the first row and column totals are respectively
particular application these all have known numerical values.
However, we do not know
of squirrels that are not observed in either sample. This means we do
not know the second row and column marginal totals nor do we
know the grand total, N. The unobservable number
a structural zero. If we denote the unknown population number by
N an intuitively reasonable estimate of N is obtained by choosing it
so that the observed number in each cell
number

Remember that in a 2 x 2 table knowing
ensure correct marginal totals. We know
10.10 it follows for any unknown total N that

start of this section. This may look like using a sledgehammer to
crack a nut, but the approach opens up useful ways to obtain a
confidence interval for N and also has implications for developing
loglinear models allowing for interactions when applied to more
than two samples. Sekar and Deming (1949) derived an express-
ion for the asymptotic variance of

and asymptotic 95 per cent confidence limits for N are given by

For populations not much bigger than the combined sample sizes
these asymptotic limits are sometimes unsatisfactory, giving a lower
limit less than the total count of distinct units in the two samples.

for the count in cell (i, j) relevant

In any

which in our example is the number

is often called

equals the expected
under the assumption of independence.

fixes all other
= b and from Table

to

Setting
= b implies an estimate the same as we got at the

namely

(10.22)
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Regal and Hook (1984) suggest an alternative approach that uses
the likelihood ratio statistic
the total number of cases is used in the 2 x 2 table,
the method effectively equates observed to expected numbers under
independence. They suggested forming a 95 per cent confidence
interval that included all N for which the fit of the independence
model is adequate in a significance test at the 5 per cent level. As
is associated with a chi-squared distribution with one degree of
freedom, values of N giving a
confidence interval. Unlike the interval calculated from the standard
error, this gives a confidence interval that is asymmetric around
with the lower limit being closer to
the total observed distinct number of population members).

Capture-recapture methods have a valuable role to play in the
needs assessment of the most marginalized members of society such
as the homeless (Fisher et al., 1994) and drug abusers (Hay and
McKeganey, 1996). In addition they can, as the following example
shows, be used to correct for underestimation of the prevalence of a
medical problem in human populations when several incomplete
registers (each corresponding to a capture or a recapture sample of
patients) exist (Hook and Regal, 1982; Smeeton et al., 1999).

The problem.  Guillain-Barré   syndrome is a paralyzing neurological
condition due to inflammation of the peripheral nerves. In the UK patients are
listed on various registers, none of which is complete. Rees et al. (1998)
estimated the number of such cases in the south east of England. Two lists were
obtained, one from the British Neurological Surveillance Unit (BNSU) and
another from hospital activity analysis (HAA); 23 patients were on the BNSU
list, 68 were on the HAA list and 17 were on both. Find an estimate of the total
number of cases in the south east of England, along with a 95 per cent
confidence interval.

Formulation and assumptions. The relevant data can be presented in a 2 x 2
table in the format of Table 10.10:

. If the capture-recapture estimate of
is zero, since

< 3.84 form the 95 per cent

(and necessarily no less than
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As there are only two registers, interactions cannot be investigated; the two lists
are assumed to be independent. We have
appropriate estimate

The asymptotic variance of this estimate given by (10.22) is

This leads to 95 per cent confidence limits for N of 92 ± 1.96
lead after integer rounding towards the estimate
interval is clearly unacceptable since we know from the lists there are at least
69 + 23 - 17 = 74 cases. Using the likelihood ratio statistic
limit for N of 79 and an upper limit of 121. These limits do not include the total
number of known cases and the corresponding interval is therefore more
appropriate than the earlier one.

Conclusion. The estimated total number of cases is 92. On the basis of the
approximate 95 per cent confidence interval the likely number of 'hidden' cases
of Guillain-Barré syndrome in this area of England is between 79 - 74 = 5 and
121-74=47.

Comments 1. With small samples, caution is needed when using the
asymptotic standard error method to obtain a 95 per cent confidence interval for
N. The lower limit of the interval should always be checked against the number
of known cases to see if it makes sense.

2. Confidence intervals for small samples will almost certainly be wide and
in this example may not shed much light on the number of cases missed by both
lists. The upper limit of the confidence interval may exceed any reasonable
estimate expected by individuals working in the field of study.

3. Additional registers are invaluable for improving the estimate of N. Using
these extra 'samples', log-linear models allowing interaction terms can be
investigated. Rees et al. had access to two further registers - a research database
containing 22 cases and 5 death certificates giving this syndrome as a cause of
death. This brought the total number of known cases to 79 with an estimate for N
of 98. The new likelihood ratio 95 per cent confidence interval for Nwas (86, 120).
As one would expect, further registers increased the number of known cases. Note
that the 95 per cent confidence interval is less wide; the upper limit for N is slightly
smaller. An interaction term was required for an acceptable model; this casts doubt
on the unavoidable assumption of independence in our example.

4. A problem arises if the count b of numbers in both samples is zero, for the
estimate of N using the above approach is infinite. Adjustments are available in
these circumstances but it is usually better, when possible, to overcome the
problem by taking larger samples.

Computational aspects. Nearly all programs that provide the chi-squared test
for 2 x 2 tables quickly give the likelihood ratio statistic
provide a basis for a trial and error process for forming a confidence interval
based on this statistic. An improved interval might be based on that of the Fisher
exact test.

The contingency table approach generalizes to three or more
samples in a multiple capture-recapture program. For three samples

The
of N is = 68 x 23/17 = 92.

to the interval (73, 111). This

gives a lower

and these at least

(97.41) which
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the outcomes may be presented in an incomplete 2 x 2 x 2 table
where the three dimensions refer to the respective samples and the
categories in each are presence or absence. We write the observed
cell count in cell (i, j, k) as
population unit is observed in the corresponding sample and a
subscript 2 that it is not observed. Thus, for example,
number of animals, patients, or whatever observed in samples 1 and
3 but not in sample 2 while
samples. Because we do not know N there is one unobservable or
structural zero cell count corresponding to the unknown
number in the population that are never seen.

The expected numbers
structural zero can be modelled by a log-linear model that allows for
possible interactions due to factors such as varying probabilities of
capture for individual animals within or between samples,
population changes due to births, deaths, immigration or emigration,
etc. The detail is beyond the scope of this book and the interested
reader should refer to Cormack (1989). In the rest of this section we
make some general remarks about the method that indicate the
versatility of the approach.

The modelling process differs from that considered in Section
10.2.1 due to the lack of a specific count in cell (2, 2, 2). This means
that in the three-sample case we can no longer make inferences
about or test for a second-order interaction. We can however test
hypotheses about first-order interactions. If samples are taken on k
occasions the results can be presented in a
one structural zero cell and inferences may be made about
interactions up to order k - 2 .

The loglinear models appropriate to such analyses are a special
case of an important class of models known as generalized linear
models. How well a model fits the data can be examined using the
likelihood ratio test statistic
deviance. For the independence model with k samples,
associated with a chi-squared distribution having 2 k - k - 2 degrees
of freedom. If the P-value from this goodness-of-fit test is low, the
model has an inadequate fit to the data so a more complex model is
sought. If an extra interaction term is added to the model, the
number of degrees of freedom is reduced by one. To create models
that are as simple as possible, it is usual to accept the extra term only
if the decrease in the deviance is statistically significant (P < 0.05);
in other words the deviance has to decrease by at least 3.84. If a

is
which is often referred to as the

contingency table with

in any cell other than the one with a

the

is the

where a subscript value 1 implies a

is the number observed in all three
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model provides a very poor fit this is invariably the case. As extra
terms are added the P-value rises (the fit is better).

The estimate for N should be given with an appropriate
confidence interval. Asymptotic formulae for the calculation of
confidence intervals in the case of multiple samples have been
developed (Bishop, Fienberg and Holland, 1975; Selvin, 1995).
However, as with the basic two-samples-only situation, these may
lead to confidence intervals that contain values less than the number
of known cases. To avoid this problem, Regal and Hook (1984)
suggest the calculation of
ratio statistic for the loglinear model under consideration. This is
obtained when using the capture-recapture estimate for N. Using
similar reasoning to the two-sample case, the appropriate confidence
interval for that particular model contains all those values of N for
which

In applying capture-recapture methods to real data, it is some-
times necessary to introduce a subjective element in the model
selection process. A more complex model is sometimes preferred if
this allows the P-value of the overall fit to rise above 0.05, even if
the decrease in the deviance is modest. One should bear in mind,
however, that additional terms in a model may lead to wider
confidence intervals for N. A more complex model may need to be
rejected even if there is a statistically significant decrease in the
deviance if the confidence interval contains implausible values from
an ecological or clinical point of view (Hay, 1997).

Smeeton et al. (1999) used capture-recapture methods in order to
estimate the prevalence of congenital malformation of the heart in
the first year of life. All such infants are severely ill and doctors
would in the light of experience question a predicted rate of more
than 20 cases per 1000. In a practical study, a model with three
interaction terms gave an estimate of 14.5 cases per 1000 and a 95
per cent confidence interval for the rate from 5.7 to 79.9 cases per
1000. Such findings would not be taken seriously by the medical
profession. The removal of one of the interaction terms reduced the
estimate to 6.8 cases per 1000 and the upper limit of the confidence
interval to a much more realistic rate of 13.3 cases per 1000.

A further discussion of interval estimation of population size
using overlapping lists or records is given by Regal and Hook (1999).

Capture-recapture analysis of constant populations can be
performed with SPSS which allows definition of the missing cell
value referred to as a structural zero. The estimate for N is calculated
from the coefficients of the loglinear model. If N varies and birth,

the minimum value of the likelihood

is no more than +3.84.
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death and migration need to be taken into account the package
GLIM can be used in the way described in Cormack (1989).

10.3 COMBINING AND PARTITIONING OF TABLES

Intuitively one may feel that if several tables refer to the same row
and column categories then combining these into one table to get
larger counts in cells may be helpful, for example, in increasing the
power of tests for detecting association. In other circumstances one
may feel that some breaking down or partitioning of tables, perhaps
by combining certain rows and columns or breaking down into strata
may reveal information not easily discernable in the original table.
Combining or partitioning should be done with caution. Detailed
discussions are given by Agresti (1990, 1996). The treatment here
covers only certain aspects of these topics to give some indication of
when they can be useful and points out some of the pitfalls that may
go with incautious use of the methods.

10.3.1 Simpson's paradox and combining tables

Suppose we are given the information in Table 10.11 for numbers of
individuals in urban and rural areas responding to a standard cough
medicine and a new medicine where for each person it is recorded
whether there is no effect or it cures the cough.

Visual inspection of Table 10.11 shows that the proportion of
cures in both urban and rural areas is higher with the new medicine
than it is with the standard. This is confirmed if we carry out the
Fisher exact test on each table separately giving P < 0.0001 for
urban areas and P = 0.0017 for rural areas, both providing strong
evidence against a hypothesis that the medicines are equally effect-
ive. If we now ignore the split into urban and rural areas and
combine the data for each giving the 2 x 2 table

and apply the Fisher exact test to this table we find P = 0.0946. So
much for a hope that combining the information would enhance the
evidence of association. Indeed if we look at this table we see that
the cure rates do not look very different for the two medicines,
roughly a third of all those treated being cured, irrespective of which

No effect

	

Cure

Standard medicine

	

837

	

444
New medicine

	

1167

	

557
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Table 10.11 Responses to two cough medicines in urban and rural areas.

medicine they are given. If anything, the standard medicine appears
to do slightly better! This situation where the individual tables
indicate association (and here association in the same direction) but
the combined table does not indicate association (or even suggests
that any association might be in the opposite direction) illustrates
Simpson's Paradox, first described formally by Simpson (1951).
This paradox may arise when we combine data for two strata where
different models hold, especially when, as here, the sample sizes in
each stratum are different. In the above example the models for
urban and rural areas are clearly different because the proportion of
cures for each medicine in these areas are markedly different; indeed
the percentages in each calculated from Table 10.11 are

Agresti (1990, Section 5.2.2) gives an excellent real data example
of this paradox. The moral is that one should only combine tables if
one is confident the relevant identical distributional model is valid
for each table. It is probably only worth doing this if counts are
small in corresponding cells in all tables that are to be combined.

10.3.2

	

Partitioning of tables

We saw in Sections 9.2.2 and 9.2.3 that both the Pearson
and the likelihood ratio
squared distribution with (r - 1)(c - 1) degrees of freedom. It is well
known that a variate having a chi-squared distribution with v
degrees of freedom may be expressed as a sum of v independent
variates each with 1 degree of freedom. The
partitioned similarly into components, each of which has
asymptotically a chi-squared distribution with 1 degree of freedom.
Rules for partitioning are complicated in the general r x c case and

Urban

	

Rural
No effect

	

Cure

	

No effect

	

Cure

Urban Rural

Standard medicine

	

17.14

	

50.15
New medicine

	

26.05

	

60.32

Standard medicine

	

498

	

103

	

339

	

341
New medicine

	

1042

	

367

	

125

	

190

statistic

statistic may be

statistic have asymptotically a chi-
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this partitioning gives the four tables

It is easy to verify (Exercise 10.14) that this partitioning satisfies
the above necessary conditions. The partitioning is not unique. For
example, if rows and columns of the original table are permuted the
chi-squared statistic for the whole table is unchanged but clearly the
partitioning above will be altered numerically. Although under the
null hypothesis of independence asymptotically the chi-squared
statistics for subtables are independent and additive the Pearson
statistics computed for each of the 4 tables (i) - (iv) above do not in
general add to the corresponding statistic for the original table.
However, if the likelihood ratio statistic
are additive.

Partial partitioning where not all components correspond to single
degrees of freedom is also possible. In practice one should choose a

For example, for a 3 x 3 table

there is usually more than one possible partitioning. Necessary
conditions for the single degree of freedom components to be
additive are given by Agresti (1990, Sections 3.3.5-7) and are:

•

	

Subtable degrees of freedom must sum to the degrees of
freedom of the original table.

•

	

Each cell count in the original table must appear in one and
only one subtable.

•

	

Each marginal total of the original table must be a marginal
total for one and only one subtable.

Lancaster (1949) suggested partitioning an r x c table into a total
of (r - 1)(c - 1) tables each 2 x 2 with 1 degree of freedom having
the form

is used the components
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partitioning that helps to answer relevant questions about
association.

Example 10.11

The problem. Two drugs used in chemotherapy are tested on 100 patients, 60
receiving drug A and 40 receiving drug B. Numbers treated with each drug who
exhibit the presence or absence of two specific side-effects, hair loss (HL) and
visual impairment (VI) are as follows:

Partition
and double side-effects and between overall side-effect status for the two drugs.

Formulation and assumptions. We may show that the necessary conditions
for additivity given above are satisfied if we compare column 1 with column 2,
then columns 1 + 2 with column 3, then columns 1 + 2 + 3 with column 4.
These components represent appropriate tests for association (i) between single
side-effects for each drug, (ii) between a single side-effect (either HL or VI) and
a double side-effect (both HL and VI) and (iii) at least one side-effect and no
side-effect. Tests for each may be carried out using the
exact or asymptotic test if the latter is felt appropriate.

Procedure. The relevant partitioned 2 x 2 tables are

It is easily verified (Exercise 10.15) that for the complete table
for the partitioned 2 x 2 tables that for (i)
(iii)

2 x 4 table

	

(i)

	

(ii)

	

(iii)

Exact P

	

0.0001

	

0.0035

	

0.0010

	

0.8384
Asymptotic P

	

0.0001

	

0.0018

	

0.0005

	

0.6830

(i)

	

HL

	

VI

	

(ii)

	

HL or VI HL + VI

Drug A

	

9

	

4

	

Drug A

	

13

	

16
Drug B

	

3

	

16

	

Drug B

	

19

	

2

Side-effect None

Drug A

	

29

	

31
Drug B

	

21

	

19

Side-effect status
HL

	

VI

	

HL + VI

	

None

Drug A

	

9

	

4

	

16

	

31
Drug B

	

3

	

16

	

2

	

19

to examine association between single side-effects, between single

statistic in either an

= 22.13 and
= 12.24 and for

= 0.17. The sum of these components is 9.72 + 12.24 + 0.17 = 22.13, the
value for the complete 2 x 4 table. StatXact may be used to compute both

exact and asymptotic P-values for the original table and each of the 2 x 2
components and gives the following values:

= 9.72, for (ii)
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Conclusion. The extremely low P-value for the full table indicates strong
evidence of association between drugs and side-effect status. The low P for
subtable (i) reflects the fact that if there is only one side-effect then it is more
likely to be hair loss for drug A and visual impairment for drug B. The low P
for subtable (ii) reflects the fact that occurrence of both side-effects is more
common with Drug A, while the high P for subtable (iii) shows there is no
evidence of association between drugs and the incidence of some side-effect, i.e.
that both drugs seem equally likely to give rise to some side-effects.

Comments. 1.  The action a clinician might take in the light of these findings
depends upon the importance of each side-effect. If visual impairment were
slight and temporary it might be rated less serious than hair loss and this would
indicate a preference for drug B.

	

If visual impairment were severe and
permanent it would be more serious than hair loss, but again if both are moderate
two side-effects may be regarded as more serious than just one.

2. The above partitioning is not unique; we might reorder the columns, e.g.
place column 4 first and then combine columns in the order used above. The
order we have used leads to more logical interpretation of the components of

3.

	

We have used a particular case of a rule for partitioning
additive components each with I degree of freedom when we have a 2 x c table.
The rule is to first form the subtable with columns 1 and 2, next the subtable
with column 1 + 2 as the first column and column 3 as the second column, next
the subtable with the sum of columns 1, 2, 3 and column 4, and so on until the
final table uses the sum of columns 1, 2, 3,. . . , c -1 and column c.

4. Although the Pearson
distributions under
Pearson statistic will not in general sum to

Best (1994) used a partitioning of chi-squared into components
analogous to linear and quadratic components in a regression type
analysis of variance. He was specifically interested in looking at
centrality and dispersion differences for data obtained in tasting trials,
but appropriate use of this partitioning extends to other types of data
and it can also be generalized to look at other features such as
skewness. Best's approach uses a partitioning proposed by Lancaster
(1953) and an account together with a comparison with some
alternatives is given by Sprent (1998, Section 13.2).

10.3.3 Partitioning in a different kind of contingency table

To compare preferences for competing brands of a product like
tomato soup, or for similar types of wine made from the same grape in
different countries, or for different varieties of peas or beans, a widely
used procedure is to ask a number of potential consumers, N, to rank
each of k brands of the product from 1 to k in order of preference. In
practice the ranking is usually in descending order of preference, the

into c - 1

statistic and
is partitioned as above the component values of theif

have the same asymptotic
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brand ranked 1 being the first choice. The results might be expressed
in a k x N table like Table 7.7. If there are no tied rankings the results
may also be expressed in a k x k table like Table 10.12 with each row
corresponding to one of the k brands and each column to a rank, the
ith column corresponding to rank i. Here the rows have no natural
ordering but the columns are ordered. The entry in cell (i, j) is the
number among the N tasters who gave rank j to brand i. A classic
paper on this topic by Anderson (1959) gave data for a study in which
123 consumers were each asked to rank three varieties of snap beans
in order of preference. Table 10.12 is a similar table for rankings by
90 potential purchasers for three models of broadly similar cars.

The basic difference between this contingency table and those
considered earlier in this chapter is that the cell entries are not
sampled independently from 270 units. Instead, each of the 90 would-
be purchasers independent of one another allocates the ranks 1, 2, 3 to
each of the three models. Since each purchaser uses each rank he or
she is represented once in each column. This means one may validly
carry out a goodness-of-fit test to see, for example, if the hypothesis
that there is the same probability of each variety being ranked 1 is
supported by considering only the data in column 1, because what
happens in the allocations in the remaining columns is irrelevant to
that question. The appropriate test is one for a uniform distribution
using the methods of Section 9.4 leading to an
asymptotically a chi-squared distribution with 2 degrees of freedom.
If there is no preferred first choice the expected numbers in column
1 are each 90/3 = 30. A similar argument could be applied to column
2 or column 3 but clearly these tests would not be independent of
one another for if they were we could add the components and get a
chi-squared with 6 degrees of freedom for the whole table, whereas
with fixed marginal totals there are only 4 degrees of freedom

Table 10.12 
Numbers of potential purchasers giving various rankings to

each of three models of car.

statistic that has
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Linear ranking effect for model II.
Difference between linear rankings for
models I and III.
Quadratic ranking effect for model II.
Difference between quadratic rankings for
models I and III.

Interpretation of

Equivalence is established by noting that
Anderson also establishes that each single degree of freedom

component of
one must take into account correlations between the various
arising because the same observers are involved in all counts. The
calculations of the
paper and outlined in Sprent (1998, Section 13.3) and we only quote
the result, viz.

associated with Table 10.12. A moment's reflection will show that if
we performed a conventional Pearson
marginal totals the value of
exactly the same as that obtained by adding the goodness-of-fit
statistics for the no-preference goodness-of-fit test applied to each
row with 6 associated degrees of freedom. Anderson conjectured
that if we reduced the usual
4 to 6 of the degrees of freedom) we might get a statistic that had
asymptotically a chi-squared distribution with 4 degrees of freedom
under a hypothesis of independence. He proved this was so and that
the result extended to the case of  k items to be ranked where we have
a k x k table where our conventional Pearson
by a factor (k-1)/k . The modified statistic is
the data in Table 10.12 we find
squared statistic for the overall test is
4 degrees of freedom. It is easily verified that P < 0.0001 indicating,
not surprisingly in view of the data pattern, strong evidence of
association between models and purchaser preferences.

Anderson discusses partitioning
of freedom but as in the previous section these are not unique and
the important thing is to choose a partitioning that has a sensible
interpretation. For a 3 x 3 table one partitioning into contrasts
proposed by Anderson and the interpretation of each contrast is:

test with these fixed
(with 4 degrees of freedom) would be

statistic by a factor 2/3 (i.e. the ratio

statistic is reduced
For

= 42.8. Since k = 3 the chi-
= 2 x 42.8/3 = 28.53 with

into single additive degrees

is clearer if we write it in an alternative form:

takes the form In determining

are explained in Anderson's original

= 2N/3 and = 2N.
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An interesting feature of these contrasts is that if we add the
components
Friedman statistic T given by (6.5) based on the rank sums for each
variety 

given by all 90 purchasers, equivalent to Kendall's
coefficient of concordance. We illustrate these points in an example.

The components
rankings (of main interest in this approach) while the remaining two examine
differences in the second and third rankings.

for the first two contrasts their sum is equal to the

The problem. For the data in Table 10.12 partition the statistic
components corresponding to the contrasts
the assertion that addition of the first two components gives the Friedman
statistic T in this case.

Formulation and assumptions. The necessary computations are based on the
description of components given above.

Procedure. We see immediately from Table 10.12 that
since

found to be 6.05, 0.05 and 20.42 summing to
above apart from rounding error. To calculate the Friedman statistic for these
data we note that the sum of the ranks given by all 90 purchasers for model
I is 27 + 2 x 47 + 3 x 16 = 169 and similarly the sums for models II and III are
169 and 202 whence the Friedman statistic is easily found to be T = 8.07, equal
to the sum 2.02+ 6.05 = 8.07 of the first two components above of

Conclusion. Clearly if an asymptotic chi-squared test is applied to each
component there is strong evidence of association between models and con-
sumer preference for components

Comments. 1. Components
linearity of ranking. Linearity broadly speaking represents average rankings and
departures therefrom represent differences in dispersion. For the data in Table
10.12 it is clear that there is a monotonic fall-off for rank preferences for model
II, but that the pattern is different for models I and III. Model I is most
frequently ranked 2, and least frequently ranked 3. On the other hand model III is
seldom ranked 2; a large number rank it 3, but it gets one more first ranking than
does model I. Thus model III shows a greater dispersion of ranks than do the
other models.

2. Anderson (1959) suggests that in many practical situations the
experimenter may be more interested in model or varietal contrasts at the more
favourable ranks, 1 and 2, in which case a more useful set of contrasts would be

Example 10.12 

into
to described above and verify

=35-24= 11 and
= 2N/3 and N = 90 it follows that the corresponding component of
x 90/31 = 2.02 and in like manner the remaining components areis

= 28.54, the value quoted

and but not for

and are associated with departures from

Problems similar to those briefly discussed in this section have
been considered by Scholz and Stephens (1987), Best (1994), Best
and Rayner (1996) and others.

and are linear and quadratic comparisons for the first
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10.4 POWER

 
sample size relationship for tests involving contingency tables.
Exact power computations in practice are limited to fairly restricted
and clearly defined models such as the comparison of binomial
populations in 2 x k (or k x 2) tables, particularly when there is
ordering in the k categories. The subject is a complex one. An
account of the practical difficulties involved together with examples
of applications is given by Mehta and Patel (1999, Chapter 25).

We showed in Section 5.7.1 where we considered power
calculations for the median test that exact power calculations were
possible if we could determine the binomial probabilities relevant
under
probability was in that context dependent upon what assumptions we
made about the population distributions giving rise to our samples.
However, exact power computations are feasible once that binomial
probability, p

1
, is ascertained, the procedure then being one for

determining power of the Fisher exact test of
The procedure generalizes easily to any

StatXact (version 4.0) includes a facility for exact power
calculations for 2 x k tables where the columns correspond to k
binomial samples or the rows correspond to two multinomial
samples each with k possible outcomes. These cover many potential
situations of practical importance providing we can specify
meaningful binomial or multinomial probabilities for the alternative
hypothesis of interest. When we can the programs may be applied to
tests such as the Cochran-Armitage test and the extensions to it with
arbitrary scores given in Section 10.2.6 as well as to two-
independent sample permutation tests including WMW, normal
scores, logrank scores or even the Pitman raw data test. The reader
should refer to the StatXact manual for technical details and to see
examples of what can be achieved.

An example of how relevant binomial probabilities may be
assigned for power calculations for a Cochran-Armitage test in a
clinical trial context using a logistic regression model is given in
Mehta, Patel and Senchaudhuri (1998).

10.5 FIELDS OF APPLICATION

Tests of association may be relevant in any situation where
independence may not be an acceptable hypothesis. In three-way or

and a specific alternative of interest. The latter binomial

against
specified in
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Administration of justice

Sociology

There has been considerable interest in recent years in differences in
criminal trends and in the way the courts treat offenders in different
ethnic groups. Agresti (1984, p. 32) considers the analysis of counts
of death penalty verdicts based on ethnic grouping of victims and
defendants using data given by Radelet (1981). In civil proceedings
relating to redundancy there have often been claims that company
policy on laying off staff differs between age groups or between
ethnic groups, or perhaps gender, even when staff are performing
similar functions. Many examples illustrating the use of nonpara-
metric methods in a legal context are given by Gastwirth (1988).

Many studies have been made of association between socio-
economic background and educational or career achievement and
between that background and attitudes towards social problems.
Loglinear models are often relevant to studies of such associations.

In medical research it is often felt that physiological abnormalities
may produce undesirable responses and that the seriousness of these
may increase with the severity of the disorder. An example of such a
trend occurred with the spleen size/blood platelet count data
considered in Example 9.8. Similarly, responses to environmental
factors such as different levels of a known carcinogen nearly always
show an ordered response and again linear-by-linear association
models may be appropriate.

Medicine

Drug testing

Situations like that in Example 10.7 where side-effects of drugs are
of interest are common in clinical trials. In such cases the nature of
association between dose level and side-effects is often the main
interest in the study. An appropriate linear-by-linear association
model with suitable choice of row and column scores adequately
describes many such associations.

higher dimensional tables especially, the nature of association is
often of special interest.
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Ornithology

In order to obtain information on the number of birds of a particular
species in a defined area, samples of birds can be caught, ringed and
released on several occasions. A study of the overlap between the
samples can be used to obtain capture-recapture estimates of the
population size.

Consumer preferences

While the Kendall coefficient of concordance is adequate for a study
of many linear (averaging) aspects of consumer preferences more
sophisticated aspects such as dispersion often require an approach
based on partitioning into contrasts that give rise to additive
components of the
interested in ascertaining whether the degree of sweetness that
consumers of soft drinks prefer shows different patterns in different
countries, or whether men and women show different preferences.

10.6 SUMMARY

The loglinear model (Section 10.2.1) is used for the study of many
aspects of association. It has close parallels to the linear model for
treatment comparisons such as those arising in the analysis of
factorial treatment structures in the analysis of variance. A no-
interaction model corresponds to independence and a model with
interactions to patterns of association. These can be applied to
capture-recapture analysis (Section 10.2.7) in which one of the
cell values is missing (the unobserved cases).

Sets of k tables each 2 x 2 (Sections 10.2.2 to 10.2.5) are often
associated with comparisons of binomial responses to each of two
treatments at each of k levels of an explanatory variable (e.g.
different age groups or different sources of a raw material). This
explanatory variable is often called a covariate. Both asymptotic and
exact test procedures are available to test whether the odds ratios
may be supposed equal for all 2 x 2 tables and if they are whether or
not they all take the common value unity. The latter implies
independence. Equality at a value other than unity implies a first-
order interaction.

statistics. For example, one might beor
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EXERCISES

10.1

	

Prepare cross-sectional tables for the data in Table 10.1 to show
(i) separately for each cholesterol level, presence or absence of CHD at
each blood pressure level;
(ii) separately for each blood pressure level, presence or absence of CHD
for each cholesterol level.

10.2

	

Verify the value
10.3

	

Verify that an analysis similar to that in Example 10.1 applied to Table
10.4 in place of Table 10.3 leads to identical conclusions about the nature
of any association.

The linear-by-linear association model (Section 10.2.6) is a log-
linear model of special importance in nonparametric methods as
many well-known tests may be formulated as special cases and may
also be extended by modification of the scoring system used in the
original test. The Cochran-Armitage test for monotonic trends
provides a good example of the possibility for such modifications in
binomial probability models with the parameter p changing mono-
tonically with covariate values.

Combining and partitioning of contingency tables (Section 10.3) is
often a useful tool. The former must be used with caution as is
illustrated by Simpson's paradox (Section 10.3.1). Partitioning into
subtables each corresponding to a single degree of freedom in a
statistic having an asymptotic chi-squared distribution is often useful
in elucidating the structure of associations but most partitionings are
not unique and certain necessary conditions must be met to ensure
additivity of components (Section 10.3.2).

In tasting tests where panels of N tasters are each required to rank in
order of preference a range of similar products such as k different
brands of tomato soup or varieties of apple or plum the numbers
allocating each rank to each product may be presented in a k x k
contingency table. Cell entries are the numbers of tasters allocating
each designated rank to each product. The appropriate analysis for
association (consistency between tasters) or no particular
preferences (independence) requires a modified analysis that takes
account of the fact that although there are only N tasters the total
number of counts (entries in all
squared statistic associated with such tables is often informative
about the nature of any association (Section 10.3.3).

cells) is  Nk. Partitioning of a chi-

= 2.30 obtained in Example 10.1.
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10.4

	

Use an asymptotic test based on
2 

x 2 subtables in Table 10.3 there is strong evidence against the
hypothesis of no association.

10.5

	

Verify the numerical results stated in Example 10.3.
10.6

	

Perform the computations requested in Comment 2 on Example 10.4.
10.7

	

Confirm the result stated in the comments on Example 10.8 that with
column scores 1, 2, 20, 200 the linear-by-linear test gives an asymptotic
P = 0.0101.

10.8 O'Muircheartaigh and Sheil (1983) gave the following data for the
numbers of players with scores (i) par or better
low and high handicap golfers under two wind conditions,
Does a first-order interaction model adequately describe the data?

Use at least two different methods of analysis and compare your results.
Also obtain a 95 per cent confidence interval for the common odds ratio
if you accept the hypothesis that they are the same for each 2 x 2 table.

10.9

	

Howarth and Curthoys (1987) give numbers of males and female students
in English and Scottish universities in the years 1900-01 and 1910-11.
Are proportions in the sexes independent between countries for each
year? Is a first-order interaction model (i) necessary and (ii) sufficient to
explain the observations?

10.10 Considering only the data for coronary heart disease (CHD) in Table 10.1
and assuming that blood pressure levels and cholesterol levels are both in
increasing orders, use an appropriate test to decide if there is evidence of
an association between blood pressure and cholesterol levels.

	

If you
were told also that the blood pressure levels were I = normal or below
normal, II = between 1 and 10 per cent above normal, III = 11 to 20 per
cent above normal, IV = 21-50 per cent above normal and V = more than
50 per cent above normal and that the cholesterol levels are A = normal
or less, B = up to 50 per cent above normal, C = over 50 per cent above
normal and including some patients as much as 200 per cent above
normal, how might you take this information into account in your
analysis?

10.11 In an English parliamentary electoral constituency a random sample of
400 voters are classified by age and political affiliation as follows:

to show that for each of the

), (ii) over par for
and
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Age group
Political

	

30 or under

	

31-40

	

41-55

	

56 or over
affiliation

Conservative 31 
32 39

	

34
Liberal Democrat 16

	

19

	

25

	 

31
Labour 36 27 58

	

52

Attitude towards abortion
Disapprove 

Neutral Approve
Schooling 

Preference ranking
1 

2 3

A 12 2 16
Brand B 9 12 9

C 
9 16 5

Is there evidence of an association between political affiliation and age?
It is generally (though not universally) accepted that the Conservative,
Liberal Democrat and Labour parties represent an ordering of right,
middle and left in the political spectrum.

10.12 Agresti (1984) 
quotes the following data on cross-classification o f

attitudes towards abortion and amounts of schooling based on the US
General Social Survey, 1972. Test these data for evidence of association
between attitudes and educational background.

10.13 
Use a Pearson chi-squared test or a likelihood ratio test to determine
whether either of the 

2 x 2 subtables in Table 10.11 indicates association ,
and if so whether it is reasonable to suppose a first-order association
model is adequate.

10.14

	

Verify that the partitioning shown on p. 391 for a 3 x 3 table into four 2 x 2
tables satisfies the necessary conditions quoted on that page.

10.15

	

Verify the value of
10.16 Thirty adults are each asked to indicate their preferences for each of three

brands of competing detergents by ranking them 1, 2, 3. The results are
presented in the following tables of numbers giving each rank:

Partition the Anderson statistic into components
given in Section 10.3.3. (Note that if we had four type of detergent we
would get a 4 x 4 table with an adjusted chi-squared statistic with 9

and each component thereof in Example 10.11.

similar to those

Less than high school

	

209

	

101

	

237
High school

	

151

	

126

	

426
More than high school

	

16

	

21

	

138
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degrees of freedom which could be split into 9 contrasts.

	

Choice of
appropriate contrasts and calculation of the variance of each is
appreciably more complicated than it is for a  3 x 3 table.)

10.17 The Scottish Office Statistical Bulletin, Nov. 1995 published by the UK
Government Statistical Service gave for the academic years indicated the
number of first-year undergraduate student awards in Scotland for
students aged under 21 and those aged 21 or over. Do these data indicate
an increasing trend in the proportion of adult students who receive
grants?
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11

Robust estimation

In Section 1.1.2  and elsewhere we have emphasized that
distribution-free does not mean assumption free, pointing out that
some procedures need stronger assumptions than others for validity.
Sometimes we assumed all samples were from populations whose
cumulative distribution functions differed if at all only in their
centrality measures, e.g. in means or in medians. In other cases we
assumed only that the population distributions were symmetric, in
yet others that samples came from populations where any
differences were in some sense ordered. Independence both between
observations within a sample and between different samples was
often of major importance. Our most 'relaxed' assumption was that
associated with the sign test applied to a single sample where the
null hypothesis required only that each observation came from
unspecified distributions (not necessarily all the same) provided
only that each had the same median and that all were independent.
In many examples we either showed, or mentioned in comments,
that some procedures were more sensitive than others to breakdowns
in assumptions. The 'breakdown' often took the form of a few
sample values being inconsistent with the pattern associated with the
bulk of the observations. Such observations are often referred to as
outliers  and they may arise in several ways. They may be:

values that are incorrectly measured or recorded;
measurements made on units that are atypical of the bulk of
those in the population under study;
measurements made with less accuracy or precision than the
bulk of the observations.

There are many causes of incorrect data. A measurement of 3.6
cm may be recorded as 33.6 cm or as 36 cm. Repeating a digit is a
common error with keyboard data entry, as is omission of a decimal
point. A temperature measurement might be incorrectly reported in
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degrees Fahrenheit when it should have been in degrees Centigrade.
An observer who forgets to take a measurement at a critical time and
fears a reprimand might cheat and insert a faked or guessed value.
Such incorrectly reported data are not always easy to detect. For
temperature measurements in a hot climate a reading given in
degrees Fahrenheit when it should have been given in degrees
Centigrade is readily picked up. This is not the case in polar
climates, however, where the readings on either scale can be
plausible.

It is not always easy to find the cause of incorrectly recorded but
atypical data. One machine among many may produce poor quality
goods because it is operating at an abnormal temperature, a factor
that may not be observed, or thought to be relevant, by the person
collecting the data. The milk production of one cow in a herd may
be exceptionally low because it suffers from a yet-to-be-diagnosed
illness that affects yield.

A frequent complication when data from several sources are
combined is that those from some sources may be less reliable than
those from other sources. For example, if the calcium content of
milk samples is measured in several laboratories, most may make
very precise and accurate determinations while one or two may
make less precise measurements (increasing dispersion about the
correct values). Another possibility is that a laboratory may
consistently return values that are inaccurate, nearly all being too
high (or too low). Higher dispersion around a similar mean could
indicate the use of an incorrect scale, for instance at a polar research
establishment where temperature measurements are recorded using
the Centigrade scale at all sites apart from one where the Fahrenheit
scale is used. The Fahrenheit readings will have a greater spread of
values, a factor that might draw attention to the different scales in
use.

How one proceeds in such circumstances depends to some extent
on one's objectives. Clearly one should eliminate or correct
measurement or recording errors as far as possible, but some such
errors nearly always sneak through especially in large routine data
collections. Although one might also try and reduce the other
sources of outliers such as atypical experimental units or poor
laboratory performance one often has to live at least in part with
these, but it is often important to draw attention to them and to state
clearly what action, if any, one takes regarding them.

Recognition of these problems has led to several major statistical
developments especially since the 1970s. Generally referred to as
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robust methods these aim to minimize the influence of outliers or
other anomalous observations when these lead to a breakdown in
basic assumptions while at the same time performing almost as well
as the optimum methods when relevant assumptions hold. Alter-
natively robust methods may be highly efficient while requiring only
minimal assumptions.

We give a brief introduction to two approaches that have proved
valuable in the context of possible outliers and refer briefly to some
others in passing.

The first of these - known as the bootstrap  - has the added
benefit that it is also valuable in situations where existing theory is
intractable or difficult to apply. It has both a parametric and a
nonparametric form, but we consider only the latter here. An
interesting feature of the nonparametric version is that it often comes
close to being assumption free. The one key assumption always
needed is that the sample cumulative distribution function, which we
met in Section 3.3.1, is a reasonably good approximation to the
population cumulative distribution function. When compared to
some longer-established nonparametric methods there is a price to
be paid for this relaxation of assumptions, but that price is often less
than any that may arise from making unjustifiable assumptions.

The second main approach we consider is known as M-estimation
with the key property that the resulting estimators behave like
conventional maximum likelihood estimators when the latter are
appropriate while protecting against certain types of outliers in the
sense that they reduce the influence of these in determining the
outcome of the analysis.

The basic ideas behind both the bootstrap and M-estimation are
straightforward, but their practical application often requires care if
some not-always-obvious pitfalls are to be avoided. We only outline
a few basic principles here, referring the reader to more detailed
texts for practical details. As a preliminary, we give a brief
description of a feature called influence which helps to clarify the
relationship between outliers and estimation and we also say
something about detecting outliers.

11.2 OUTLIERS AND INFLUENCE

11.2.1

	

Nature and detection of outliers

This topic is discussed fully by Barnett and Lewis (1994). In broad
terms an outlier is an observation so remote from other observations
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as to cause surprise. Whether an observation surprises us is
subjective and may depend upon what we know about the source of
the data. For example, given the data set 0, 5, 9, 8, 3, 0, 125, 9, 17
without further information most people would say the observation
125 was sufficiently remote from the others to cause surprise.
However, an entomologist who knew these were counts of numbers
of aphids on each of 9 plants of the same rose species may not
consider 125 to be odd, for in many situations involving insect
populations heavy infestation on just one or two among a large
number of plants is common. Barnett and Lewis (p. 16) quote even
more extreme data from Fisher, Corbet and Williams (1943) for
numbers of moths caught in a light trap, viz:

11  54  5  7  4  15  560  18  120  24  3  51  3  12  84

Given the observations 2.7, 3.3, 3.5, 2.8, 4.1, 4.3 and no other
information none may seem surprising, but if we are told that these
are weights in kg for a growing animal recorded at fortnightly
intervals, a zoologist would have doubts about the validity of the
fourth observation 2.8. A growing animal may suffer weight loss at
some growth stage but the decrease is unlikely to be as large as this.
If a loss of this magnitude were recorded the animal would probably
be dead a fortnight later; it would certainly be unlikely to return to a
weight consistent with a normal growth pattern within a further two
weeks. This observation is not an outlier in the sense of being
extreme but it is probably a contaminated observation, the contam-
ination being a measurement error, one possibility being that a true
weight of 3.8 was recorded as 2.8. This might happen if, with the
balance used for weighing, the 1 kg and 2 kg weights placed in the
scale pan were similar in size and design (differing mainly in
density), or if the weights were read from a digital display it could
be a careless misreading.

Clearly outliers or contaminated observations are a nuisance that
must or should be taken into account when making inferences.
Criteria have been evolved that give a basis for excluding outliers
from an analysis. The aim here is often to make the remaining data
more consistent with some parametric inference model. Barnett and
Lewis (1994, Section 6.3) list 48 tests for outliers in normal
distributions alone, most of these being optimal only for fairly
specific alternatives to the null hypothesis that all data belong to the
same normal distribution where neither or one or both parameters
may be known. Difficulties are often caused by a masking effect
whereby the power of a test for one outlier is reduced by the
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presence of others. Sprent (1998, Section 3.3) illustrates some of
these points using just four of the tests described by Barnett and
Lewis in appropriate examples.

If an outlier can be shown to be an error clearly this should be
corrected if possible; if it cannot be corrected it should be rejected.
When there is no clear indication that an outlier is a measuring or
recording error the appropriate course of action is less clear. It
depends upon the population of interest and on what questions are
being asked about that population. For example, in an experiment to
test a drug for reducing blood pressure it may be known that it is
ineffective if the recipient drinks alcohol and all recipients might be
instructed not to drink alcohol while taking the drug. If, in a group
of 25 patients receiving the drug the decreases in systolic blood
pressure in mm Hg are

-3 0 2 5 6 21 23 23 27  30  32  35  37
39   41   43   47  47   49    52   54    57   59  60  64

a clinician might suspect that the first five readings were for patients
who had almost certainly ignored the alcohol ban. How firmly the
clinician held that view would be a matter of experience; if it were
known, for instance, that the drug is ineffective for about 1 person in
50 whether or not they drink alcohol, it would be reasonable to
suppose that one or two of the first five readings might be for such
cases, but rather unlikely that all five would. If, on the other hand,
there were strong grounds for believing it was almost certain that a
substantial reduction in blood pressure would take place if alcohol
was not consumed, and what was of interest was the mean or median
reduction in blood pressure in such cases it makes sense to omit the
five lowest readings. To assume these five had all ignored the
alcohol ban might be unfair. It would be a matter of clinical
judgement whether to ask those, or perhaps all, participants if they
had taken alcohol and if so how much (a dose-response relationship
may mean that a little alcohol does not have the same impact as a
larger intake). There may of course be doubts about the truth of the
answers given to such a question!

If there were indications that between 5 and 10 per cent of the
population might not respond positively to the drug (perhaps for
some genetic reason) the above results are consistent with that
hypothesis. In that case if one were interested in the whole
population one should not reject any observations when making
inferences. If one were interested only in the population other than
those who clearly did not respond positively, the five observations
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should be rejected. The purpose of this hypothetical example is to
show that there are no easy answers to dealing with outliers. It is of
course important, and ethically sound, to indicate clearly what has
been done - and why - if outliers are present or suspected.

11.2.2

	

A test for outliers

Many tests for outliers lack robustness. Some are notoriously bad at
detecting more than one outlier in the same tail; others tend to miss a
pair of outliers in opposite tails. A simple and reasonably robust test
is to classify any observation x* as an outlier if

Here med(xi) is the median of all observations in the sample and the
denominator is a measure of spread called the median absolute
deviation , often abbreviated to MAD. The choice of 5 as a critical
value is motivated by the reasoning that if the observations other
than outliers have an approximately normal distribution, it picks up
as an outlier any observations more than about three standard
deviations from the mean.

Example 11.1

The problem. Use the above test to detect any outliers in the data set

8.9 6.2 7.2 5.4 3.7 2.8 22.2 12.7 6.9 3.1 29.8

Formulation and assumptions. It is easiest to determine the median and MAD
after ordering the observations. We first test the observation furthest from the
median then stop if this is not an outlier. If it is an outlier we test the next most
extreme in either tail proceeding until we find an observation that is not an
outlier.

Procedure. The ordered observations are

2.8 3.1 3.7 5.4 6.2 6.9 7.2 8.9 12.7 22.2 29.8

The median is 6.9 and the absolute deviation of the observed 2.8 from this
median is |2.8 - 6.9| 

= 4.1. Similarly the remaining absolute deviations are 3.8,
3.2, 1.5, 0.7, 0.0, 0.3, 2.0, 5.8, 15.3 and 22.9. Ordering these we easily find that
their median, the MAD, is 3.2. Setting x* = 29.8, the left-hand side of our
statistic is 22.9/3.2 = 7.16 so we class 29.8 as an outlier. Setting x* = 22.2 we
find 15.3/3.2 = 4.78 so we do not class this or any other observation as an
outlier.

Conclusion. The data set contains one outlier, x* = 29.8.

Comments. 1. Having decided 29.8 is an outlier we still have to decide what
to do about it. An obvious line to follow is to check (a) whether it may be an
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error and if it is whether it can be corrected; if it is not obviously an error then
(b) is there anything peculiar about the experimental unit giving rise to that
value?

2. The data look likely to have come from a skew rather than a normal
distribution. The test we have given is not a test for normality, however. A test
such as Lilliefors' test should be used to assess normality if that is relevant.

11.2.3 Influence and robustness

In robustness studies a key role is played by influence functions.
We consider only briefly two simple influence functions both of
which are discussed more fully in Sprent (1998, Section 3.4). A
detailed treatment of influence functions including applications in
various fields is given in Barnett and Lewis (1994, Section 3.1.3).
The idea is due to Hampel who describes their role in robust
estimation in Hampel (1974).

We consider first the effect of a single outlier in relation to the
mean. Suppose we have n uncontaminated observations
which we call 'good' observations and one contaminated obser-
vation z which is an outlier in the sense that it takes a value greater
than any good observation. Let
observations and
z.

	

It is easily seen that

is the asymptotic influence function, but it is often referred to simply
as the influence function as it is the form of greatest interest.

As
and the limiting function

whence it follows that the effect of z on the sample mean
good observations is a linear function of z and that it tends to infinity
as
observation on the sample mean may be infinite! While (11.1) is a
measure of the influence of one contaminated observation the
influence function
multiplying by n + 1, i.e.

for a sample of n is obtained from (11.1) by

the population mean for the good observations,

In other words the effect of just one contaminated

for the

the mean of the augmented set that also includes
be the mean of the good
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Broadly similar and easily modified arguments apply if z is an
outlier in the lower tail, i.e. has a value markedly less than all good
observations.

In contrast to the situation with the mean where one outlier may
have an appreciable, indeed unbounded, influence the effect of a
single outlier upon the median is usually small and indeed bounded
providing
depending upon whether the number of good data is odd or even.
Consider first the case where we have n = 2m good data. If the
observations are arranged in ascending order and we denote by
the ith largest sample value then the median of the good
observations is
than
only to
to x(m) . If the number of good observations is odd and n = 2m + 1
giving a median
shifts the median to
median to

Because the underlying population distribution influences the
values of the order statistics a different approach to that used for the
mean is needed to determine the asymptotic influence function.
Details are given in Barnett and Lewis (1994, Chapter 4) who show
that an appropriate expression is

The situation is slightly but not essentially different

If an outlier z has a value greater
the effect is to shift the median of the combined sample

. Similarly an outlier below only shifts the median

it is easily seen that an outlier z >
while any z < shifts the

where m is the median for the good observations that are distributed
with a frequency function
depending upon whether z is greater than, equal to, or less than m.
Clearly I(z) given by (11.3) is bounded for a continuous distribution
and the supremum or greatest value of
supremum is called the gross error sensitivity.

It is clear from the above that if we have a large sample from a
distribution and just one contaminated observation is added

that the possible effect upon the sample mean is unbounded while
the maximum effect upon the sample median cannot exceed

since the median of the normal
distribution of the good values is

It is not difficult to see that if there are n = 2m + 1 good obser-
vations and two contaminated observations are added, then whatever
their magnitude the greatest effect upon the adulterated sample
median is to shift it from

(11.3)

and sgn(z - m) = + 1, 0 
or -1

is 1/2f(m). This

to either or The argument

only
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easily extends to 4 contaminants with bounds at most
and proceeding in this way, when 2m contaminated observations are
added the bounds are
2m + 1 contaminants is it possible for the median to include some of
the contaminated observations and thus become unbounded if some
of the contaminated values are unbounded. Thus, at least 50 per cent
of the observations must be contaminated in a way that makes them
outliers before the median becomes unbounded. A broadly similar
argument may be used for an even number of good observations.
The number of contaminated observations needed to make a mean or
median unbounded determines what is called the breakdown point.
This is sometimes expressed as a percentage, i.e. 50 per cent for the
median, but more usefully as a fraction, i.e.
have seen, the breakdown point is 1/(n+1) for the mean, since only
one contaminated observation need be added to a sample of n to
make the sample mean potentially unbounded. The breakdown point
is an important measure of robustness because in many practical
situations there is a strong suspicion, or even direct evidence, that an
appreciable proportion of observations may be contaminated. It
should now be intuitively clear why in earlier chapters we often
found that estimators based on medians are more robust against
outliers than are those based on means.

11.3 THE BOOTSTRAP

11.3.1 Motivation

We indicated that the motivation for the bootstrap is that the sample
cumulative distribution function S(x) introduced in Section 3.3.1
should for all but small samples reflect many characteristics of the
population cumulative distribution function, F(x), for the population
from which the random sample was obtained. This was implicit in
the Kolmogorov test introduced in that section where we used S(x)
in deriving a statistic to determine whether a sample was consistent
with some given F(x). For the bootstrap we are often less concerned
with hypotheses about any particular F(x) but more often with
making inferences simply on the assumption that S(x) is a good
approximator to some F(x) without being specific about what that
F(x) is. The more vague our assumptions about a population
distribution the more useful the bootstrap becomes.

The method is based on repeated resampling of data to tell us
more about characteristics of the population from which the data are

or

and Only when there are at least

for the median. As we
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a random sample. Resampling, as we saw as early as Example 1.4,
and in numerous other examples of permutation test procedures
throughout this book, is at the heart of permutation or randomization
test theory. Permutation tests are based on resampling without
replacement and where appropriate lead to exact tests and estimation
procedures. Bootstrapping uses sampling with replacement and
leads to approximate tests and estimation procedures; however, it is
also applicable in many situations where no permutation test is
available or appropriate. Although the method can be used without
specification a priori of any distributional model the procedure itself
can only be justified by fairly complicated mathematics. The main
practical requirement for its application is suitable computing
facilities. Although bootstrapping results are by their nature usually
only approximate they are often more reliable and informative than
those obtained by fitting a wrong model, e.g. assuming normality
when that is not valid or is not justified by some asymptotic result
like the central limit theorem. There is seldom a unique or best
solution to a bootstrap problem. In practice the method is used
mainly either because there is no tractable analytic solution, when a
permutation test or the facility to carry it out is not available, or
when there is doubt about whether conditions needed for a particular
analytic solution or permutation test actually hold.

The approach is intuitively reasonable in many applications and
confidence in the method is enhanced because when it is correctly
used inferences are usually similar to those given by analytic or
permutation solutions when these exist or are relevant. Important
applications include those to complex data structures or ones that
involve inferences about concepts such as correlation or ratios of
variables where analytic results are not readily available except
under very restrictive distributional assumptions.

Use of the bootstrap stems largely from work by Efron (1979). A
straightforward introduction to it and related techniques is given by
Efron and Gong (1983). A more detailed account of the elements of
the bootstrap is given by Sprent (1998, Chapter 2) and full
treatments at the elementary and intermediate level with many
examples are given by Efron and Tibshirani (1993), Davison and
Hinkley (1997) and Chernick (1999).

11.3.2 Bootstrap samples

Given a random sample of n observations
some population a bootstrap sample is a random sample of size n

from
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where each
sampling is with replacement some of the original sample values
(the
the
5.1,

	

5.3, 5.9, 6.7, 7.2, and 10.5 a typical bootstrap sample might
be

obtained from these data by sampling with replacement. Thus some
of the
bootstrap sample. It is notionally possible to determine the dis-
tribution of all possible bootstrap samples and the distribution for
many associated statistics such as the means or medians of the
bootstrap samples. Such distributions are called true bootstrap
distributions to distinguish them from estimates based on a random
subset of all possible bootstrap samples. The latter are important in
practical applications because determining true bootstrap distrib-
utions analytically is a formidable task for all but small n except in
the case of a few statistics where some general analytic results hold
(and in this latter case inferences can usually be made easily without
bootstrapping). Sprent (1998, Section 2.3) investigates the complete
bootstrap distribution for the mean and median for a sample of 3
observations. This is useful for illustration, but trivial in practice
because so small a sample is not very informative about the
distribution associated with a large population.

In practice useful bootstrap inferences are nearly always based on
Monte Carlo sampling to generate a predetermined fixed number, B,
say, of bootstrap samples. We denote a typical bootstrap sample by

may occur more than once and others not at all in a

may not appear and others may occur more than once among
. For example, if n = 9 and the observations are 2.5, 3.1, 4.2,

is equal to one of the original observations. Because

= 5.1. If B bootstrap samples are generated
Vector notation provides

for any bootstrap sample and
for the bth sample. In bivariate or multivariate situations such as

those in correlation or regression each
each bootstrap sample
sample mean or median or sample variance and use these to estimate
the corresponding population distribution characteristic. For illus-
trative purposes we denote the parameter or other population
characteristic we are interested in by
estimate it from the bootstrap sample
estimate
the numerical value of
the statistic has a distribution. As the number of bootstrap samples,

the bth may be written
a convenient shorthand if we write

we often compute statistics such as the
may itself be a vector. For

and the statistic used to
by which gives an

Because we are sampling with replacement
changes from sample to sample and so

of
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which is the usual estimator of a population standard deviation based
upon a random sample of B from some population and tends to the
true bootstrap standard deviation for the statistic s as
practice the approximation is often good for B as low as 20
providing n is not too small. Even for small n reasonable estimates
may be obtained with B = 100, although again we caution against
indiscriminate use of the bootstrap with very small samples because
then the sample distribution may not truly reflect a population
characteristic of interest.

Pitfalls to watch out for when using the bootstrap with small
samples include difficulties with bias that carry over to moderate or
large samples in some contexts and are discussed with numerical
examples in Sprent (1998, Section 2.4) and much more generally for
a range of applications by Efron and Tibshirani (1993). It is
important to realise that in applications using only a finite number,
B, of bootstrap samples there are two sources of error. The first is
the usual sampling error applicable to all sampling based inferences
about a population no matter what method of inference is used. For
example, in parametric inference about the mean of a normal
population based on a sample of n the sample mean
not equal the population mean

source of error specific to bootstrap sampling is that made when we
approximate to the true bootstrap standard error using only a finite
number B of bootstrap samples. Although we do not prove it here, it
can be shown that the true bootstrap standard deviation is
approximately equal to the estimated population standard deviation
for the corresponding estimator. Example 11.2 sheds some light on
the way sampling variation is reflected in bootstrap estimates.

B, tends to infinity the mean of any statistic
mean computed for the true bootstrap sampling distribution,
although as pointed out above, this is only known in a few special
cases or can only be worked out for general cases for small values of
n. Practical experience however shows that in many (but not in all)
situations even for small n the mean of B bootstrap samples
converges rapidly to the limiting value that holds when

If we generate B bootstrap samples and denote the mean of the
then the appropriate

estimator of the true bootstrap standard error of
by

will tend to the

In

will in general
but the sampling 'error' in taking

is measured by the standard error. The secondas an estimator of

which we denote
is

(11.4)
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Example 11.2

The problem. For the following sample data explore the use of a bootstrap for
estimating the population median.

0.04 0.06 0.27 0.32 0.33 0.40 0.50 0.63 0.69 0.92
1.09 1.10 1.35 1.61 1.66 1.69 1.71 1.80 1.98 2.65
2.83 3.50 3.72 3.75 3.99 5.16 5.49 6.31 7.05 16.05

Formulation and assumptions. The data are in fact a random sample of 30
from a known distribution, but they are not unlike some that may arise in
practice. They might for example be the percentages of some pollutant in
various water sources, a situation where it is not uncommon to find small levels
of pollution in many of the sources but quite high and wide ranging levels in
others. The data have been arranged in ascending order to indicate more clearly
the skewness with a long upper tail including the value 16.05 that might suggest
itself as an outlier (Exercise 11.2). The sample median is
1.675. We explore the information available by generating B = 40 bootstrap
samples and obtaining the median of each for use in estimating the bootstrap
standard error of this statistic.

Procedure. We used Minitab to generate the 40 bootstrap samples using the
facility therein for sampling with replacement. The median was computed for
each of these 40 samples and ranged from 0.805 to 3.17. The estimated bootstrap
standard error given by (11.4) was 0.4116.

Conclusions. To help interpret these results we now disclose that the data are
a computer generated random sample from an exponential distribution with
mean
`rule of thumb' indication used in bootstrapping is that we should accept a
hypothetical value of a parameter
sample median) lies within two standard deviations of that hypothesized value.
Taking the estimated bootstrap standard error as a reasonable estimate of this
standard deviation in this example the difference 2.079 - 1.675 = 0.404 is less
than this estimated standard error, which here is 0.4116.

Comments. 1. There may be some unease as to whether 40 bootstrap samples
give a reliable estimate of the true bootstrap standard error. That it does so is
also an implicit requirement for validity of the crude rule of thumb used above as
this is based on the assumption that the true bootstrap standard error is
reasonably close to the best estimated standard error where this is known.

In this example where we sampled from a known distribution there is an
analytic expression for the standard error of a median estimator from a sample of
n, namely

where f is the ordinate of the probability density function at the median. For an
exponential distribution with mean 3 it can be shown that f = 0.1667 and when
n = 30 that se(median) = 0.5476. Here we see that our estimate of the bootstrap
standard error, 0.4116, is an underestimate of the true standard error. This is a
bias introduced by the fact that our chosen sample has a median m = 1.675 which

(11.5)

= 3. The theoretical median of that distribution is = 2.079. A crude

if the sample equivalent estimator (here the

(1.66 + 1.69) =
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is appreciably below the population median
sample values are less than the population median. This is not an alarmingly
departure from the expected number 15. The situation is not very different from
that with many familiar tests. Recall that when sampling from a normal
distribution the usual sample estimator
latter in many samples. This is why, when
allow for such uncertainty. It is interesting to note that if we assumed the
population median was in fact equal to the sample median of 1.675, then the
standard error of the median estimator assuming our sample was from an
exponential distribution with this median would now be 0.4412, close to the
bootstrap estimate of 0.4416 obtained above.

2.

	

The bootstrap may also be used to obtain an estimated confidence interval
for a parameter such as the median. There are a number of practical difficulties
in obtaining such intervals but we briefly outline one approximate procedure in
Section 11.3.4.

3. In this example we considered a sample from a known distribution and so
were able to invoke some theoretical results for the standard error of the median
because f was known in (11.5). Had we not known f or we suspected the sample
was from a mixture of distributions or that some observations may be outliers
the bootstrap might be a serious competitor to, say, sign test procedures. We
explore this point further in Example 11.5.

11.3.3 Bootstrapping versus permutation procedures

We have suggested that the bootstrap is most useful when no
simple analytical procedure or no permutation procedure exists.
However, the method may still provide an approximation to certain
permutation procedures although its application in these
circumstances is in general not as straightforward as that of exact
procedures or even that for Monte Carlo approximations in
permutation tests. A key difference between a permutation test and a
bootstrap procedure is that the former is based on sampling without
replacement while the latter is based on sampling with replacement.
The consequences of this apparently small difference are far
reaching and here we illustrate some of them for two-independent-
sample problems.

Although we did not consider the Pitman permutation procedure
for two independent samples from continuous distributions in much
detail in Chapter 5 because it lacks robustness, for hypothesis testing
it is in theory straightforward and as in the case of most permutation
tests there are many equivalent statistics. Given samples

= 2.079.

	

In fact 19 of the 30

of may differ appreciably from the
is unknown the t-test is invoked to
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it is well known and easily verified that equivalent permutation test
statistics for the hypothesis
against the usual one- or two-tail alternatives under the assumption
that the samples are from populations with otherwise identical
distributions include the usual t-statistic, the first sample sum
the second sample sum
sample mean
This equivalence follows from the fact that under permutation both
the denominator in the usual t-statistic and the sum of the combined
sample values remain constant so that all the above statistics are
linear functions of one another and have the same ordering and the
same P-value is associated with each corresponding value in that
ordering. We must remember that if this permutation t-statistic is
used it does not have the tabulated t-distribution relevant to the
normal parametric test.

The above equivalences all assume sampling is without
replacement and they do not carry over to the bootstrap where we
sample with replacement. Then the sum of all m + n values will
change between bootstrap samples depending upon which of the
original sample values do not appear at all, appear only once, or
appear more than once in a given bootstrap sample. Thus we will
arrive at different conclusions if we base our bootstrap inferences on
each of the above possible permutation distribution statistics. We
have already pointed out that there is in general no unique and best
bootstrap for a particular situation. What is important is to use a
statistic that is intuitively reasonable in a particular case. If we
believe our samples come from identical distributions that differ
only in mean it makes sense to base bootstrap inferences on the
sample mean difference
Examples 11.3 and 11.4.

the population means are identical

the secondthe first sample mean
and the difference between sample means

How we might proceed is shown in

Example 11.3

The problem.

	

In Example 5.1 we considered two data sets giving times to
perform some calculations. These were

Group A

	

23

	

18

	

17

	

25

	

22

	

19

	

31

	

26

	

29

	

33
Group B

	

21

	

28

	

32

	

30

	

41

	

24

	

35

	

34

	

27

	

39

	

36

Assuming that these are from populations with distributions that differ if at all
only in their means
evidence against the hypothesis

Formulation and assumptions. The analysis in Example 5.1 was based on the
Wilcoxon rank sum test. However here we base our analysis on the raw data so
that the bootstrap may be regarded as an approximation to a Pitman permutation

when the alternative is
and use a bootstrap analysis to assess the strength of
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test. We consider 1000 bootstrap samples and for each we compute
the way described under Procedure below. We estimate the relevant P-value as
the proportion of the

Procedure. In a Pitman permutation test where sampling is without replace-
ment each permutation sample of size m is obtained by drawing a sample of m
observations from the combined sample of m +  n observations. The n
observations not selected automatically form the complementary permutation
sample of size n. In this example m = 10 and n = 11. To obtain an analogous
bootstrap sample we first select a sample of m + n = 21 with replacement from
the combined Group A and Group B data. The first 10 values chosen for this
sample are designated as a bootstrap sample of size m. The remaining n sample
values constitute the bootstrap sample of size n. For each such bootstrapped
samples we compute
observed

Using this procedure, one sample of 21 we obtained by sampling with
replacement from the given data was

17 22 22 27 31 25 41 34 26 17 30 23 28 21 33 21 27 34 23 33 19

leading to bootstrap samples of 10 and 11 values respectively

17 22 22 27 31 25 41 34 26 17
30 23 28 21 33 21 27 34 23 33 19

whence it is easily verified that
An estimate of the two-tail test P-value based on B bootstrap samples is then

given by
such samples we found
a second sampling again with B = 1000 we found

Conclusion. There is strong evidence against the hypothesis that the means
are equal.

Comments.

	

1. For these data a Pitman permutation test gives the exact
P = 0.014, in close agreement with the bootstrap result obtained above. We
pointed out in Section 5.1.2 that the Pitman test usually gave similar results to
the Mest even when assumptions relevant to the latter did not hold. For the
above data few statisticians would have reservations about use of the parametric
t-test and indeed for these data the two-tail P-value given by that test is P = 0.011,
again in broad agreement. Also in Example 5.1 we showed that using the exact
WMW test for these data gave P = 0.016, so there is good agreement between all
tests considered here.

2. Using the bootstrap statistic
assumption that the only possible population distributional differences involved
the means. A different approach is appropriate if we drop the assumption of
identical distributions under
problem is discussed briefly by Sprent (1998, Section 2.7) and more fully,
together with some alternatives to the approach used in this example by Efron
and Tibshirani (1993, Chapters 15 and 16). We remind readers that even in
simple parametric situations choice of appropriate procedures depends even
more strongly on relevant assumptions; for instance validity of the t-test depends

in

that exceed the observed in magnitude.

and compare its magnitude with that of the
= -7.245 for the given data.

= 26.2 - 26.545 = - 0.345.

= (number of samples for which 7.245)/B. For 1000
7.245 in 15 cases implying = 0.015. For

= 0.016.

is intuitively reasonable under the

We do not pursue this further here but this
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not only on an assumption of normality but also upon one of equal population
variances.

Computational aspects. Nearly all major statistical packages have a facility
for random sampling with replacement and even if no direct bootstrapping
program is included for the simple example considered here it is usually easy to
write a macro to form many bootstrap samples quickly. We used Minitab. For
more sophisticated applications of the bootstrap the package S-PLUS is especially
well suited.

Bootstrapping following the broad pattern in Example 11.3 may
also be applied in situations where WMW methods are used. With
one possible modification the situation is essentially the same as that
for the raw data except that these are replaced by ranks. The one
modification that might be considered is that if we proceed in this
way we are not strictly using a WMW procedure in the bootstrap.
Why this is so is illustrated by a trivial example. We consider the
situation in Example 1.4 where patients were ranked 1 to 9 in
response to two drugs, four of them having received one drug and
the remaining 5 another. We learnt in Chapter 5 that essentially what
we did in that example was a WMW test. If we follow the procedure
in Example 11.3 given the combined sample raw data l, 2, 3, 4, 5, 6,
7, 8, 9 we may obtain a combined bootstrap sample, say, 1, 2, 9, 2,
8, 1, 3, 3, 9. Continuing as we did in Example 11.3 we would split
this into bootstrap samples 1, 2, 9, 2 and 8, 1, 3, 3, 9 of size 4 and 5.
To do so is not unreasonable but proceeding in this way we are not
performing a strict WMW bootstrap because we have not reranked
the combined sample bootstrap data to allow for ties induced by the
resampling. Doing so using appropriate mid-ranks would replace 1,
2, 9, 2, 8, 1, 3, 3, 9 by 1.5, 3.5, 8.5, 3.5, 7, 1.5, 5.5, 5.5, 8.5 giving
bootstrap samples 1.5, 3.5, 8.5, 3.5 and 7, 1.5, 5.5, 5.5, 8.5. In
practice the difference tends to be small for samples of reasonable
size although it may be appreciable in small samples. We do not
recommend the bootstrap for small samples for a reason already
explained - namely that a small sample may not be a good
representation of an underlying distribution (in itself a limitation in
any form of inference) and in the case of the bootstrap this is
compounded by the bootstrap sampling error.

Example 11.4

The problem. For the data in Example 11.3 explore the use of a bootstrap in
the estimation of a P-value using ranked data.

Formulation and assumptions. Bootstrap sampling may be used to obtain an
approximation to the exact P = 0.016 for a two-tailed test obtained in Example
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11.3.4 Bootstrap confidence intervals

Bootstrapping is often used to obtain approximate confidence
intervals and much has been written about their interpretation and
properties. Simplistic approximations suffer from two defects, the
first being one of bias which we cover briefly in Section 11.3.5 and
the other is that they often tend to provide less than the claimed
coverage, e.g. an interval computed in a manner that purports to give
a 95 per cent coverage may only give about 91 or 92 per cent
coverage. At a basic level Efron and Tibshirani (1993, Section 14.2)
list 5 different ways to compute confidence intervals using the
bootstrap. Each works tolerably well when appropriate but it is hard

5.1 using the WMW procedure. The process used follows broadly the pattern in
Example 11.3.

Procedure. When the combined samples are ranked we established in
Example 5.1 that the rank sums were
inappropriate for bootstrapping since for bootstrap samples the corresponding

and
general. Analogous to the situation in Example 11.3 we used the difference
between means of our bootstrap samples as the appropriate statistic proceeding
for 1000 samples in the manner described in Example 11.3 using (a) the data
obtained by resampling ranks directly and (b) that obtained by modification by
reranking the resampled data to allow for ties introduced by resampling with
replacement. The respective two-tail P-values obtained in the way described in
Example 11.3 were P = 0.012 for (a) and P = 0.008 for (b). While the result
using (a) is close to the exact result that for (b) is disappointing. We took a
second sample of 1000 bootstrap estimates using (b) and this time we found
P = 0.022. Combining the two samples gave an estimated P = 0.015 in close
agreement with the WMW result (see Comment 1 below).

Conclusion. There is strong evidence against

Comments. 1. The quite marked disagreement between the two estimates of P
from two different samples of 1000 using method (b) suggests that our chosen
statistic may be somewhat unstable in its properties. This phenomenon is
familiar to serious users of the bootstrap especially with small samples. It may
arise from two causes; we may simply be unlucky with the way the sampling
scheme is working for the particular samples that were selected, but in this
particular example we conjecture that the effect may in part be due to
introducing the extra step of modifying the resampled values by reranking them
to allow for ties. It is possible that some modification of the statistic we used
(difference in means) might not then be the most appropriate statistic; however
we have not explored this further.

2. Despite the discrepancy discussed in Comment 1 the results lead to
essentially the same conclusion as that using an exact WMW test and in practice
would be comparable to those obtainable using the same number of Monte Carlo
samples for a permutation test.

= 76 and = 155. These statistics are

no longer satisfy the condition (m + n)(m + n + 1) in
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to know which is appropriate if little is known about distributional
properties of the population from which the data are obtained - a
situation when we are particularly likely to want to use the
bootstrap. Another approach to bootstrap confidence intervals due to
Hall (1992) is described by Manly (1997, Chapter 3).

We start our discussion from the well-known result that given a
sample of n from a normal distribution with variance
cent confidence limits for the population mean
where
standard error
the appropriate quantile of the t-distribution with n - 1 degrees of
freedom where
the t-distribution quantiles closely approach those of the standard
normal distribution. Modifications for other confidence levels are
straightforward. In practice the above limits are widely used even if
there is little evidence that the sample is from a normal distribution,
faith in the outcome relying on the central limit theorem holding,
despite its asymptotic nature, even for moderate n.

This fundamental result for parametric inference stimulated two
approaches to forming bootstrap confidence intervals. The first is
that for reasonably large samples approximate 95 per cent
confidence limits for a parameter
estimator
estimate of the true bootstrap standard error based on B bootstrap
samples. For samples from a normal population this works for the
mean because it can be shown that in that case the bootstrap
standard error is a good approximation to the usual estimated
standard error (although it shows a small bias). However, as we have
emphasized the bootstrap is most useful when analytic theory is non-
existent or is highly distribution dependent and therefore any
parametric theory may not hold for a particular sample. Experience
has shown that this bootstrap method does not translate well to such
situations. This is partly due to potential bias in bootstrap standard
errors but more importantly because confidence intervals based on
symmetry about an estimator
a skew distribution.

A more fruitful and relatively easy to apply approach to bootstrap
confidence intervals is based on the distribution of appropriate
bootstrap estimators,
is large, then providing the
distribution of
of the estimator of the parameter

the 95 per

and 1.96 by
is the sample mean. If

by its usual sample estimate

For values of n  > 30,

may be based on a sample
where is anof and are given by

are inappropriate if that estimator has

of each of B bootstrap samples. When B
are reasonably free from bias the

is likely to approach the sampling distribution
we are interested in. An obvious

is unknown we replace the true
are
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way to estimate a 95 per cent confidence interval is to take the 0.025
and 0.975 quantiles of the distribution of the B computed
Thus if B = 1000 for a 95 per cent confidence interval the limits are
the 25th and 975th largest values of the
(1 -2
the
nonintegral values of such quantiles it usually suffices to round to
the nearest integer. Confidence intervals formed in this way are
called quantile-based intervals  . The main defects of these intervals
are that they may be misleading due to bias and they tend to give
less than the nominal coverage. The effect of bias is that the true
probabilities associated with each tail are not equal to each other,
and which is the greater depends upon the direction of bias. Efron
and Tibshirani (1993, Chapter 14) present two commonly used
corrections to remedy these weaknesses, but we do not discuss these
here-

Example 11.5

The problem. For the data in Example 11.2 obtain 95 and 99 per cent quantile
based confidence intervals for the population median using 2000 bootstrap
samples. The data are

0.04 0.06 0.27 0.32 0.33 0.40 0.50 0.63 0.69 0.92
1.09 1.10 1.35 1.61 1.66 1.69 1.71 1.80 1.98 2.65
2.83 3.50 3.72 3.75 3.99 5.16 5.49 6.31 7.05 16.05

Formulation and assumptions. For each of 2000 bootstrap samples we obtain
the median and these are arranged in order and the appropriate limits are
obtained in the way described under Procedure.

Procedure. We obtained 2000 medians of bootstrap samples using Minitab
and arranged these in ascending order. The 95 per cent limits were the 50th and
1950th largest. For our sample these turned out to be 0.92 and 2.83. Similarly
99 per cent limits are given by the 10th and 1990th largest and turned out to be
0.69 to 3.50.

Conclusion. Estimated quantile-based 95 and 99 per cent bootstrap
confidence intervals for the population median are (0.92, 2.83) and (0.69, 3.50).

Comments. 1. It is interesting to compare these with confidence intervals
based on the sign test procedure. Under that procedure the interval (0.92, 2.83)
has an exact 95.72 per cent coverage and the interval (0.69, 3.50) has an exact
99.48 per cent coverage, so there is virtually no evidence here of the potential
undercoverage of quantile-based intervals that we referred to above. This may be
fortuitous for another sample of 2000 bootstrap medians would be unlikely to
lead to the same intervals.

2. For our 2000 samples the estimated standard error of the bootstrap median
turned out to be 0.4213, in close agreement with the estimate 0.4116 obtained in

) 100 per cent interval with B bootstrap samples the limits are
More generally for a

Bth and the (1 - )Bth largest sample value of For
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Example 11.1 from only 40 samples. It is common experience with boot-
strapping that while samples of 100 or less give good estimates of standard
errors, samples of 1000 or more are needed for satisfactory quartile-based or
related estimates of confidence intervals.

3. Because of the asymmetric sample [which we in fact know came from an
asymmetric distribution (see Example 11.2)] approximate confidence intervals
based on the estimated bootstrap standard error are not appropriate even if that
standard error estimate is itself good. In this example using this approach
approximate 95 per cent confidence limits are 1.675
unsatisfactory interval (0.83, 2.52).

Computational aspects. See remarks under this heading in Example 11.3.

When a statistic of interest is calculated for a large number of
bootstrap samples it is often useful to examine the distribution of
these bootstrap statistics informally, perhaps presenting them in a
histogram or as a box and whisker plot - techniques familiar in what
are often called exploratory data analyses.

Although the data set is too small to give bootstrap results likely
to be relevant to a larger population we consider some bootstrap
samples using the data in Example 8.1 to show what we mean.

Example 11.6

The problem. In Example 8.1 we gave the data set

Hours from start of thaw (x)
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5
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(y)

	

2.5

	

3.1

	

3.4

	

4.0

	

4.6

	

5.1

	

11.1

which was displayed in Figure 8.1. In that example and in Example 8.3 least
squares and Theil-Kendall estimates of the regression line slope
obtained. Use a bootstrap with 1000 samples to obtain approximate 95 per cent
inter-quartile based confidence intervals for each of these estimates. Use
histograms to illustrate the main characteristics of bootstrap estimates of
each case and explain the main characteristics of and differences between the
forms of these histograms.

Formulation and assumptions. One (but not the only) basis for bootstrapping
in a bivariate regression problem with n observed data points
samples of n of these points with replacement. Using this approach for least
squares bootstrap estimates b* of
each bootstrap sample. Similarly for the Theil-Kendall estimator our bootstrap
estimator for each sample is the median of the pairwise
8.1.3) for that sample.

Procedure. For each bootstrap sample of data points we may compute the
bootstrap least-squares or Theil-Kendall estimator of
above. For 1000 samples the least squares estimators in one run gave a quantile-
based 95 per cent confidence interval for
agreement with the classic least squares interval (0.23, 1.98). The Theil-Kendall

2 x 0.4213, giving the

were

is to take

(as defined in Section

in the way described

as (0.49, 2.01), in reasonable

we obtain the usual least squares estimate for

in
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estimator for a different sample of 1000 gave an interval (0.50, 2.37), rather
longer than the theory-based interval (0.50, 1.93) obtained in Example 8.3.
Figures 11.1 and 11.2 show histograms of the 1000 bootstrap estimators of
obtained for each method using a class interval of 0.1. The class interval for 0.8
to 0.9, for example, contains all b* such that 0.8 < b*
inequalities applying to other intervals.

Conclusions. Owing to appreciable discontinuities in possible values of the
b* (especially in the case of the Theil-Kendall estimator) not too much reliance
should be placed in confidence intervals for so small a value of n. The most
interesting feature of the histograms is the evident bimodality (or in the case of
the Theil-Kendall estimator perhaps multimodality). A moment's reflection
would suggest that nearly all bootstrap samples that do not include the aberrant
point (6, 11.1) give a b*
0.8 in both Figures 11.1 and 11.2 suggest that values of b* > 0.8 arise from
samples where the point (6, 11.1) occurs at least once. The fact that b*
only 36.2 per cent of the samples for least squares while b*
cent of all samples using Theil-Kendall reflects the more robust nature of the
Theil-Kendall estimator. Most samples in which the point (6, 11.1) occurs only
once are likely to have little influence upon the median of the
one occurrence of this point in a sample will influence the least squares estimator
appreciably. In Section 8.1.4 we pointed out that the least squares estimator can
be expressed as a weighted mean of the
here are broadly in line with our findings on influence in Section 11.2.2.

Comments.

	

1. In the case of the bootstrap because of resampling the number
of
sample because of repeated values and also many of the pairwise estimates will
be identical if there are several repeated values. These factors may also influence
robustness in a rather complicated manner. With either estimator in a very
extreme case the bootstrap sample may consist of 7 replicates of the same point
in which case the estimate of
Kendall method.

2. The results discussed here are based on one sample of 1000 for least
squares estimators and on another sample of 1000 for Theil-Kendall estimators.
It would of course be feasible and indeed interesting to compare both estimators
for the same sample. We referred above to discontinuities in the Theil-Kendall
estimators. Table 11.1 indicates the extent of these for the particular sample we
used. These arise because a variety of samples give rise to the same sampling
median (which must be an observed

The simple illustrations of bootstrapping given here are meant to
convey no more than the flavour of this approach and to indicate in
an intuitive way some of its strengths and weaknesses. As we have
pointed out the method is most useful in situations where there is no
simple analytic method or we are dealing with data that are samples
from essentially unknown distributions. Correlation problems and
inferences based on ratios of two variables are situations often met

0.9, with similar

0.6 and the breaks in the histograms between 0.6 and

0.6 for
0.6 for 71.5 per

whereas only

and the robustness properties noted

in many bootstrap samples will be less than the total of 21 for the original

is undefined both for least squares and the Theil-

or the mean of two observed
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Figure 11.1

	

Histogram for 1000 bootstrap least squares slope estimators for
data in Example 11.6. Eight values of b* exceeded 2.4.

where theory is generally intractable unless very simple
distributional assumptions can be made. An elementary example of
use of the bootstrap in correlation is given in Sprent (1998, Section
9.5) and several detailed examples of its use in problems involving
both correlation coefficients and ratios are given by Efron and
Tibshirani (1993) and by Davison and Hinkley (1997). Efron (1981)
and Robinson (1983) applied the bootstrap to censored data while
Hall and Hart (1990) used the bootstrap to test for differences
between means expressed as very general regression functions.

11.3.5 Related techniques

Although it was not apparent in our examples the bootstrap
frequently leads to biased estimators.

	

In a few cases theoretical
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b* 
r b* r b* r b* r

0.3 4 0.535          1 0.583 12 1.762        3
0.45 17 0.537 17 0.6 183 1.9            1
0.5 132 0.546 10 1.017 18 1.925 29
0.51 6 0.55 63 1.1 3                 1.983          1
0.512 4 0.558 18 1.433 125 2.146            3
0.52 90 0.562 4 1.517 7 2.367       6
0.522 13 0.567 86 1.6 64 3.25           5
0.525 52 0.575 3 1.679 5 6.0            5

Figure 11.2 Histogram for 1000 bootstrap Theil-Kendall slope estimators for
the data in Example 11.6. Ten values of b* exceeded 2.4.

Table 11.1 Values of 1000 bootstrap slope estimates b* and number of
times (r) that each occurs using the Theil-Kendall estimator for Example
11.6 data.
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adjustments may be made to remove bias and bootstrap methods
exist for estimation of bias but in many practical applications bias is
more easily estimated by a related but older technique called the
jackknife. The idea was introduced specifically for bias estimation
by Quenouille (1949), but the name jackknife is due to Tukey
(1958). The jackknife will not always work; in particular it will not
work well when the median is used as an estimator. Many
commonly used estimators are biased except perhaps when rather
strong distributional assumptions are made. Indeed one of the few
universally unbiased estimators in common use is the sample mean,
which is unbiased when used as an estimator of the population
mean. A well-known example of a biased estimator is the sample
variance
Here the bias is easily estimated because it is well known that

so the bias is
Given a sample of n, for any parameter

the sample analogue of the parameter being estimated and is denoted
by
by a set of samples identical with the original except that one
observation is omitted from each in turn. These are called jackknife
samples. Thus the ithjackknife sample is

We denote the estimator of
and the mean of the

jackknife estimator,

and the jackknife estimator of bias is

The motivation for (11.6) and (11.7) is that for both the sample
mean and the sample variance as estimators of the corresponding
population parameters equation (11.6) gives unbiased estimators of
these parameters and (11.7) correctly estimates the bias of the
sample mean as estimator of the population mean as zero and that of
the sample variance as estimator of the population variance as
These results are easily verified by calculating expectations. In
general (11.7) does not reduce the bias of every estimator to zero nor

as an estimator of a population mean

for which an estimator is

we form n further estimators by replacing the original sample

(11.6)

(11.7)

based on the sample with
by

isof
Finally, the
omitted by
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11.4 M-ESTIMATORS AND OTHER ROBUST ESTIMATORS

Throughout this book we have met estimators that show varying
degrees of tolerance to breakdowns in assumptions especially those
associated with a few observations being out of line with the general
patterns. We indicated in Section 11.2 and elsewhere that the median
is generally more robust than the mean in the presence of a few
rogue observations - behaviour explained by the influence

does (11.6) always provide an unbiased estimator of anv parameter.
However, the latter will usually reduce any bias in

The jackknife and its use in association with the bootstrap to
reduce bias and make other improvements to bootstrap estimation is
discussed in detail both by Efron and Tibshirani (1993, especially
Chapter 11) and by Davison and Hinkley (1997).

Another widely used technique that bears some resemblance to
the bootstrap is cross-validation. In fields like regression and
classification methods, parameter estimation is often a part of the
model building process to produce a model that will be used to make
predictions when new data become available. One source of concern
is how good these predictions will be when applied to the new data.
Ideally we should aim to use all available data to fit a model and
then take further samples from the original population and see how
well our fitted model acts as a predictor. This may be costly or
impossible, in which case an alternative is cross-validation. For this
the data are divided into two or more portions and a model is fitted
in turn to all but one of these portions. The prediction error of the
fitted model when it is fitted to the omitted portion is then
calculated. Each portion is omitted in turn and a combined estimated
prediction error is obtained. An extreme case especially suited to
relatively small data sets is the leave-one-out cross-validation
procedure where each of n observations is omitted in turn and a
model is fitted to the remaining n - 1 data, a predicted value is then
obtained for the omitted observation using that model. For example,
in a regression context if, when the ith observation is omitted the
predicted value of
defined as
that for the jackknife but the objective is different. A more detailed
description of cross-validation and its relationship to the bootstrap is
given by Efron and Tibshirani (1993, Chapter 17).

is the cross-validation prediction error is
The computational procedure is similar to
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where the
sample mean. If n is odd say n = 2m + 1 and we put

=0ifi
median is the mean of the middle pairs of values so the weights are

and
k largest and k smallest observations are trimmed the weights are

=0ifi
patterns of trimming are possible (see e.g. Exercise 11.6). For
Windsorization if k values in each tail are shrunk to
respectively then
(k + 1)/n, otherwise
L-estimators are not necessarily robust. They tend to gain robustness
when extreme order statistics are downweighted. In passing we note
that the median is a special case of the trimmed mean in which all
but one observation is trimmed if n is odd and all but two are
trimmed if n is even.

Inevitably there are often doubts about whether certain
observations are or are not in some way distorted relative to the bulk
of the observations. Even if there are reasonable models to cover
such discrepancies there may still be either one or two gross
departures from the general pattern or alternatively a large number
of small perturbations, these often arising as a consequence of
rounding or using measuring devices of limited accuracy. This has

functions. The price to be paid for this robustness may be an
increase in the standard error of our estimator or perhaps the
introduction of bias in procedures such as the bootstrap. There are
several compromise estimators that retain some of the desirable
properties of the mean as an estimator but either down-weigh or
eliminate the more extreme observations. Two such estimators are
the so-called trimmed mean   in which we eliminate a proportion
(typically the 10 per cent most extreme observations) and base
inferences on the mean of the remaining observations and the
Windsorized mean   where extreme observations are shrunk to the
value of the largest remaining observation. We do not discuss these
methods in detail but these and related ones are fully covered in
Barnett and Lewis (1994) in a range of contexts. The mean, median,
trimmed mean and Windsorized mean are members of a class of
estimators sometimes called L-estimators  . Here L stands for linear,
the name being given because if we write the ith ordered sample
value then any of these estimators take the form

are weights. Putting = 1/n for all i gives as the

m + 1 then is the sample median. For 
n = 2m the

= 1 and

= 0 otherwise. For a trimmed mean where the

k or if i n-k+ 1, and = 1/(n - 2k) otherwise. Other

and
=0ifi korifi n - k + 1, while

= l1n. Clearly since they include the mean
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led to the development of procedures that are almost as good as the
best available procedures when there are no such disturbances and
are little affected by just a few major or many minor disturbances.

The Huber-Hempel M-estimators are one such class. The 'M'
indicates that they are like optimal maximum likelihood estimators
when these are appropriate and are little disturbed by either a few
grossly aberrant observations or by small perturbations in many
observations. For all but trivial problems their use requires adequate
computer programs. We demonstrate the basic ideas for estimation
of the mean of a symmetric distribution where the maximum
likelihood estimator is the sample mean.

In particular given a sample of n observations
a normal distribution this is equivalent to least squares estimation
where the estimator

i.e. the sum of squares of deviations of the
function (11.2) shows that for any one observation
dependent on the distance of that observation from the true mean.
Thus an outlier z lying six standard deviations from the mean will
have twice the influence of one lying three standard deviations from
the mean.

Huber (1972) and others developed M-estimators to cope with the
possible presence of a few outliers where one really wanted
inferences applicable to the remaining data in situations where
specific maximum likelihood estimators were available for the
remaining data. The proposed estimators have a built-in mechanism
for reducing the effect of any outliers but apart from this they are
exactly or almost identical to maximum likelihood estimators.

The function
distance measure because it is a measure (the square) of the
distances of the
a distance function. Another example of a distance function is the
function
which is minimized by setting
the case of U in (11.8) we find the minimum by differentiating with
respect to
normal or estimating equation

with solution the sample mean.

(11.8)

from

is the value of that minimizes

from The influence
is linearly

in (11.8) is an example of what is called a

i.e. the sum of the absolute distances,
= med( ). It is well known that m

from The complete function in (11.8) is called

and equating that derivative to zero leading to the
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(i) 
d(t)

(ii)

	

d(t) = d(-t),
(iii) the derivative

all t.

In general a distance measure is defined as a function d(t) such
that for any t

However, condition (iii) is relaxed for some M-estimators.
For estimating the mean,

(1972) proposed a function d(t) such that for some fixed k > 0,

If k
mean as the appropriate estimator, equivalent to the maximum
likelihood estimator in the normal case. For finite k the form of d(t)
implies that for all
equivalent to that for least squares while for
a linear function of absolute differences. A suitable value for k needs
to be chosen. In this simple problem practical experience has
indicated that a useful choice is one such that the interval with end
points given by med
all observations. In general (11.9) must be solved iteratively, and
when k is chosen we proceed by first rewriting that equation in the
form

0,

= d'(t) is a nondecreasing function of t for

of a symmetric distribution Huber

then for all x, and (11.9) gives the sample

The derivative = d'(t) is

We estimate by the value that satisfies the normal equation

(11.9)

for which we minimize a function
we minimize

contains between 70 and 90 per cent of

(11.10)

= 0 with

(11.11)

(11.10) becomesSetting wi =
solution
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The weights are functions of the unknown
estimate
(11.11) to calculate a new estimate
convergence, which is usually achieved in a few iterations. For even
moderate sample sizes computation is tedious without a suitable
computer program, but we illustrate the steps for small data sets.

Example 11.7

The problem. Obtain and compare Huber M-estimators of the mean for the
three data sets

0, 1.2, 2.3, 3.8, 5.2, 7.1, 7.9, 8.5
0, 1.2, 2.3, 3.8, 5.2, 7.1, 7.9, 

19.7
0, 1.2, 2.3, 3.8, 5.2, 7.1, 7.9, 115.5

Formulation and assumptions. A suitable choice of k is required after which
the iterative procedure outlined above is carried out for each data set.

Procedure. We illustrate the procedure for the second data set, leaving the
reader to follow through the similar steps for the other sets (Exercise 11.7). The
median of the second set is
estimate of
observations and if we choose k = 5 the interval 4.5
Both are within the suggested range 70 to 90 per cent. We illustrate the
procedure with k = 5. Only the last point falls outside the interval 4.5
-0.5 to 9.5) and since we set
(-0.5, 9.5) it follows that
observation
new estimator,

For the next iteration we retain the same 
k = 5. This gives full weight w = 1

to all observations in the interval 4.554 ± 5, i.e. (-0.446, 9.554). The weight for
= 19.7 is now

that above gives a new estimate
that only

= 5/(19.7 - 4.639) = 0.3320 and with this weight our next estimate

	

_
The new adjusted weight for
new estimate
the previous iteration so we conclude

Conclusion. The M-estimator of the population mean based on the second
data set is 4.643.

Comments. 1. With the same choice of sample median and 
k for the first data

set it is immediately clear that there are no observations for which
that our estimator is thus the sample mean, i.e.

so we need an
and use these into calculate initial weightsof

repeating this procedure until

(3.8 + 5.2) = 4.5.

	

If we take this as our first
and choose k = 4 the interval 4.5 4 includes 75 per cent of all

5 includes 87.5 per cent.

5 (i.e.
for observations in the interval

= 19.7. For that= 1 for all but the observation
= k = 5, so that = 5/(19.7 - 4.5) = 0.3289, whence our

is

= 5/(19.7 - 4.554) = 0.3301 whence a similar calculation to
= 4.639. For the next iteration it is again clear

has a weight less than 1 and this weight is easily seen to be
= 4.643.

is 
= 5/(19.7 - 4.643) = 0.3321, leading to the

= 4.643. To this degree of accuracy there is no improvement on
= 4.643.

1 and
= 4.5. For the third data set
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similar calculations to that for the second set with
lead after several iterations to the estimate

2. As indicated under Procedure a choice k = 4 may not be unreasonable. In
Exercise 11.7 we ask that this choice be used.

3. For the three data sets here sample means are respectively 4.5, 5.9 and
17.875 indicating the strong influence of the outliers. The above M-estimation
procedure leads to 4.5, 4.643, 4.643, as estimates of the population mean
indicating a dramatic effect of downweighting the 'outliers'.

4. Other possible estimators in this case include trimmed means,
Windsorization or the median. The sample median for each set is 4.5, while a
trimmed mean excluding k = 1 observation from each tail is easily shown to lead
to estimators 4.58 in each case. Similarly, in each case the Windsorization
estimates are 4.575 (Exercise 11.8).

Different choices of k or different amounts of trimming or
Windsorization will give different estimates but in practice if
estimators are robust against the outliers in the data there should be
little difference between rational choices, i.e. choices that
downweigh rogue observations substantially or even eliminate them
from the computation while directly or indirectly giving strong
support to good observations. We might at first thought conclude
that the median does not obey these criteria, its computation taking
into account at most two observations; however all observations do
have a role in determining the median because the ordering of the
observations determines which observations enter computationally
into the calculation of the median. Only if the observations are
sampled from a symmetric distribution, however, will the sample
median be a sensible estimator of the population mean (and then
only if the latter exists!). In many practical situations, even in the
absence of any rogue observations the median estimator will,
however, have a greater standard error than that for the mean.

Sprent (1998, Section 3.5) outlines several practical con-
siderations that should influence the choice of k when using
M-estimators. In particular if k is too small only a few observations
get full weight and the estimator may be strongly influenced by
rounding or grouping effects in those fully weighted observations.
Also there may be unsatisfactory features relating to change of scale
that can be overcome by using different weights to those used above.
Numerous alternative distance functions have been proposed, but we
omit details here. Many aspects of these procedures are discussed by
Andrews et al. (1972).

Andrews (1974) introduced an M-estimator for robust linear
multiple regression and Hardle and Gasser (1984) apply a similar
type of estimator for fitting nonlinear curves.

there replaced by = 115.5
= 4.643.
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We have already referred to Efron and Tibshirani (1993) and
Davison and Hinkley (1997) as sources for examples on many and
varied applications of the bootstrap. We indicate one example here.

Ratio estimates

Efron and Tibshirani (1993, Section 10.3) discuss use of the
bootstrap in a problem involving a test criterion for bioequivalence
used by the US Food and Drug Administration that is based on
ratios. The procedure is useful here because there are virtually no
analytic results for the properties of the ratio that are of interest.

All statisticians and experimenters handling more than a few data
sets come face to face with data that well may be in some way
contaminated in the sense that some of the observations do not
appear to fit a model that is reasonable for the rest of the data.
Robust methods may then have a valuable role in making inferences
that are relevant to the uncontaminated data. Again we just indicate
one situation where this may be the case.

Laboratory determinations

Very often two or more laboratories are asked to carry out the same
chemical determination on samples from the same population, e.g. to
determine the percentage fat content in samples of milk or the
amount of some contaminant, e.g. lead in 100 gm samples from zinc
ingots. Precision may vary from laboratory to laboratory or some
laboratories may make consistent errors (bias) in their
measurements. Robust methods of estimation such as the use of M-
estimators might be used to reduce the influence of extreme results
from laboratories producing readings with low precision.
Conventional parametric or nonparametric tests comparing results
from different laboratories for a shift in mean or median may be
useful to detect biases.

11.5 FIELDS OF APPLICATION

Thomas (2000) describes the use of the bootstrap to determine the
precision of robust estimates of centrality, illustrating the use of
appropriate methods for ten data sets that are either highly skewed or
contain outliers.
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11.6 SUMMARY

Observations that cause surprise in the sense that they appear far
removed from the bulk of the data or seem to be inconsistent with
some specified model are generally called outliers. In any given
data set what is classed as an outlier may be context dependent
(Section 11.2.1). The appropriate action to be taken to deal with
outliers depends both upon their nature and the objectives of the
investigation in which they occur. Erroneous observations should be
corrected if possible or else rejected. If it is believed outliers
represent a small proportion of units present in the population the
action to be taken may depend on whether one wants to make
inferences relevant to the complete population or only to the
population where the small proportion giving rise to outliers are to
be ignored .

Influence studies (Section 11.2) indicate both the extent to which
outliers may influence sample characteristics such as the mean or
median and also explain why some estimators (e.g. the median) will
be less affected by substantial numbers of outliers than others (e.g.
the mean).

The bootstrap (Section 11.3) is a resampling method of inference
that relies for its usefulness on the assumption that for not-too-small
samples the sample cdf is a reasonable approximation to the
population cdf. It differs from randomization or permutation
distribution theory in that it involves sampling with replacement
whereas the latter involves sampling without replacement. It is
especially useful in situations where there are few analytic results
for exact inference or where formulation of a precise model is
difficult. Some of the problems with bias that are associated with
certain bootstrap estimators may be eased by use of the jackknife
(Section 11.3.5).

Two important categories of robust estimators (Section 11.4) are
certain L-estimators such as trimmed or Windsorized means and the
median and M-estimators which behave very like the relevant
maximum likelihood estimators when applied to uncontaminated
data but reduce the influence of outliers when these are present,
making the method particularly suitable when the status of outliers is
uncertain but we want to make inferences applicable to the
population from which the bulk of the data was sampled.
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11.1 Use the test given in Section 11.2.2 to test for outliers in each of the
following data sets:

Set A

	

3.2

	

4.9

	

1.3

	

9.7

	

12.9

	

-6.3

	

4.2

	

22.5

	

0.3

	

-7.1
Set B

	

1

	

35

	

71

	

13

	

45

	

18

	

91

	

34

	

777

	

29

	

452

11.2 Use the test given in Section 11.2.2 to test for outliers in the data set used
in Example 11.2.

11.3 Smith and Naylor (1987) give the following data for strengths of 15 cm
lengths of glass fibre and suggest that the two smallest observations may
be outliers. Does the test proposed in Section 11.2.2 confirm this?

0.37 0.40 0.70 0.75 0.80 0.81 0.83 0.86 0.92 0.92 0.94 0.95
0.98 1.03 1.06 1.06 1.08 1.09 1.10 1.10 1.13 1.14 1.15 1.17
1.20 1.20 1.21 1.22 1.25 1.28 1.28 1.29 1.29 1.30 1.35 1.35
1.37 1.37 1.38 1.40 1.40 1.42 1.43 1.51 1.53 1.61

11.4 A sample of paired observations of X, Y are

X     1        2      3       5        8
Y 3 7 9 7 12

Use a bootstrap based on at least 40 samples to obtain an estimate of the
bootstrap standard error of the estimator
means. In addition use 1000 bootstrap samples to obtain 95 per cent
quantile-based confidence intervals for the population ratio. Appropriate
computer software will be needed for the latter computation.

11.5  For the data in Exercise 11.4 use the iackknife to estimate the bias in the
estimator

11.6 Calculate the mean of the data in Example 11.2 and also the trimmed
means trimming the top and bottom 10 per cent (deciles) and 25 per cent
(quartiles) of all observations. Explain any difference between these
estimates of centrality. Which do you prefer and why?

11.7  For the first and third data sets in Example 11.7 verify the values for the
M-estimators quoted in that example when k = 5. Also obtain the corres-
ponding estimates when k = 4.

11.8 Verify the values for the median, trimmed mean and Windsorized
estimates given in Comment 4 in Example 11.7.

EXERCISES

for the ratio of population
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Appendix

BADENSCALLIE BURIAL DATA

Several examples in this book use data on the age at death of male
members of four Scottish clans in the burial ground at Badenscallie
in the Coigach district of Wester Ross, Scotland.  The data were
collected in June 1987.  Clan names have been changed but the
records are as complete as possible for four clans.  There were a few
missing values because names or dates were unreadable on a few
headstones and several headstones appeared to be missing.  Minor
spelling variations, especially those of M’, Mc and Mac, were
ignored.  Ages are given for complete years, e.g. 0 means before
first birthday and 79 means on or after 79th but before 80th
birthday, according to the information on the tombstone.  Ages are
given in ascending order within each clan.

McAlpha (59 members)

  0   0   1   2   3   9 14 22 23 29 33 41 41 42 44 52 56 57
58 58 60 62 63 64 65 69 72 72 73 74 74 75 75 75 77 77
78 78 79 79 80 81 81 81 81 82 82 83 84 84 85 86 87 87
88 90 92 93 95

McBeta (24 members)

  0 19 22 30 31 37 55 56 66 66 67 67 68 71 73 75 75 78
79 82 83 83 88 96

McGamma (21 members)

13 13 22 26 33 33 59 72 72 72 77 78 78 80 81 82 85 85
85 86 88

McDelta (13 members)

  1 11 13 13 16 34 65 68 74 77 83 83 87
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Solutions to odd-numbered exercises

Many exercises in this book are open ended in that they require, as do most
practical statistical problems, not simply numerical outcomes (a statistic, a P-
value, confidence interval, etc.) but an interpretation of such concepts in the
context of the real world problem giving rise to the data.  The brief summaries
below are not solutions in this sense, but rather a guide to indicate appropriate
calculations.  In many cases valid alternative tests or estimation procedures might
have been used and these will often, but not invariably, lead to similar
conclusions.  Bearing such points in mind it is hoped this section will help
overcome any difficulties the reader may have with the odd-numbered exercises.

Chapter 1

1.1  2.55.   1.3  Open interval (156, 454). See Example 2.10 for ways to refine
the limits.   1.5  S = 13; P = Pr(S ≤ 13) = 7/126 ≈ 0.056, indicating slight evidence
against H0 that might suggest a larger experiment desirable.   1.7  Open interval
(–∞, 454) approx. 98 per cent coverage.    1.9  If X is N(µ, σ2) then Pr(X < µ –
σ) = Pr(Z < –1) = 0.159 because Z is N(0, 1). Thus if σ > µ there is high
probability of at least one negative value in all but small samples.   1.11  P =
1/4845.

Chapter 2

2.1  P = 0.797. No evidence against H0.   2.3  Student lifestyles not necessarily
s i mi l ar  t o  t ho s e o f ot h er s,  no t  a ll  ag es  an d o nl y  o ne  se x r ep r es en t ed .  2. 7 
(i) Interval [1, 5] gives exact 96.3 per cent coverage using StatXact convention
(see manual) for zero differences. (ii) Interval [3, 5] gives exact 91.5 per cent
coverage using same convention but any extension of limits gives coverage
exceeding 95 per cent.   2.9  P = 0.13 (two tail). 95 per cent Wilcoxon interval is
(200.5, 433). Normal theory interval (227.4, 405.9).   2.11  For H0: θ = 9 see
Example 2.9. For H0: θ = 7.5 one-tail P = 0.18.   2.13  Using method of Example
2.12 one-tail P = 0.017. Strong evidence treatment is beneficial.   2.15  Two-tail
exact P  = 0.0093 for Wilcoxon (asymptotic P = 0.0104). For modified van der
Waerden scores exact P = 0.0045, asymptotic P = 0.0052. These results are
based on StatXact convention for dealing with tied ranks.   2.17  S+ ≤ 7 (rounding
up).   2.19  One-tail test appropriate. For sign test P = 0.090, for Wilcoxon test
P = 0.011. Symmetry assumption not unreasonable so some evidence claim is
not justified.   2.21  Sign test interval is (11, 36). Wilcoxon interval is (14, 37).
Some reservations about assumption of symmetry due to observed time 145. A
valid population might be parking times of cars in that area on observation day.
If this were the Friday before Christmas parking times might have a very
different distribution from that for times on a Friday in August.



 

Chapter 3

3.1  Denoting by r the minimum number of damaged fruit in a batch of n which
implies rejection to meet producer’s risk P = 0.10 if p = 0.01 and by pwr the
corresponding power if p = 0.03 one finds

n  100  200  300  400  500
r      3      5      6      8      9
pwr 0.58 0.72 0.89 0.92 0.96

Because of large discontinuities in exact P-values the exact power fluctuates
markedly for small changes in sample size. A power of 0.95 is needed to meet
the specified consumer’s risk. Depending on available software the reader should
experiment with several values of n between 400 and 500. For n = 440, for
example, StatXact indicates that rejection if there are 8 or more damaged fruit
gives an exact producer’s risk P = 0.078 and a power 0.954 when the alternative
is p = 0.03, implying an exact consumer’s risk of P* = 1 – 0.954 = 0.046.
Asymptotic results show reasonable agreement.   3.3  For smaller sample two-
tail P = 0.24; for larger sample two-tail P < 0.001. Power increased with sample
size. The more informative 95 per cent confidence intervals for proportions
approving are (0.17, 0.59) and (0.27, 0.40).   3.5  Cox–Stuart trend test gives
two-tail P = 0.125 corresponding to 6 plus and 1 minus. A slight suggestion of a
trend but a larger sample would be needed to confirm this.  3.7  Both tests
suggest strong evidence against normality. P ≈ 0.011 (Lilliefors’). P = 0.0009
(Shapiro–Wilk).   3.9  P = 0.165. No substantial evidence against H0.   3.11  Test
for runs above and below median gives a two-tail P = 0.0634, suggesting slight
evidence against the null hypothesis of no effect. Runs above the median
dominate for those tested later. Cox–Stuart test may be less powerful as
monotonicity assumption is unlikely to be justified (two-tail P = 0.29).  3.13
Hodges–Ajne P = 0.94. No evidence against hypothesis that all types of
question are equally likely.   3.15  Sign test two-tail P = 0.109. Wilcoxon P =
0.049.   Some evidence against H0.  No reservations.

Chapter 4

4.3  Two-tail P = 0.045 indicating moderate evidence of median difference.
W i l c o x o n 9 5  a n d  9 9  p e r  ce n t  c o nf i d e n c e  i n t e r v a ls  a r e  (0 . 0 5 ,  0 .8 5 )  a n d 
(–0.25, 1.05) and corresponding normal theory intervals are (0.03, 0.85) and
(–0.15, 1.02).   4.5  Sign test appropriate; four M corresponds to 4 plus. Two-
tail P = 0.049 suggests moderately strong evidence that fathers show better
u n d er s ta n di n g.    4 . 7  No  st r on g  e v id e n ce  of  ch a ng e  i n  a t t it u de s , t wo - ta i l 
P = 0.126.   4.9  Exact two-tail P = 0.0029 indicating strong evidence against
H0: p = 0.75.   4.11  For Wilcoxon test exact two-tail P = 0.125 so no strong
evidence against H0. t-test P = 0.063.   4.13  Wilcoxon two-tail P = 0.031 so
fairly strong evidence against equal loss.   4.15  Wilcoxon two-tail P = 0.271.
95 per cent confidence interval (–2.95, 0.95). No evidence of one organization
consistently returning higher percentages.   4.17  When θ  = 2, p1 = 0.8784.   4.19
For medians, 1, 2 we require λ = 0.6931, 0.3465 respectively, whence p0 = 0.5
and p1 = 0.707. Sample size of 35 is needed.



Chapter 5

5.3  P* = 0.0029.   5.5  WMW two-tail P = 0.0549; not formally significant at
5 per cent level but a slight indication that hard specimens may be associated
with lower temperature. Test valid if it is reasonable to suppose any difference is
a median shift or dominance by one distribution.   5.7  Exact two-tail P = 0.208
(Sm = 101).   5.9  For WMW two-tail P = 0.139; 95 per cent confidence interval
(–0.2, 1.9); for t-test P = 0.097, interval is (–0.17, 1.83). Little reason to doubt
validity of normal theory test and result reflects slightly higher efficiency.   5.11
For two independent sample analysis two-tail P = 0.272 using WMW test.
Differences between individuals in each field swamps any systematic difference
between fields for individuals. Analysis used here is inappropriate for these data
since it ignores pairing.   5.15  P = 0.352; hardly surprising in the light of findings
in Exercise 5.9.   5.17  WMW two-tail P = 0.099. t-test P = 0.18.  Smaller P for
WMW probably because WMW more robust against greater spread of Species B
values.   5.19  For asymptotic WMW test allowing for ties two-tail P = 0.004
suggesting strong evidence of shorter waiting times in 1983.  5.21  For
asymptotic WMW test allowing for ties two-tail P = 0.280 so no evidence of
difference in average sentence length. Do the data suggest WMW test may not be
appropriate? Might there not be distributional differences in features other than
average sentence length?   5.23  Appropriate runs test one-tail P = 0.72. (This is
probability of 11 or less runs under H0.) No evidence of clustering.

Chapter 6

6.1  F = 6.78 with 2, 15 degrees of freedom. P = 0.008. Similar to Kruskal–Wallis
test.   6.3  Z = 2.85, p = 0.002.   6.7  F = 2.93 with 3, 5 degrees of freedom. P =
0.139.   6.9  Jonckheere–Terpstra U = 90. Exact one-tail P = 0.056.  R a t h e r 
s l e n d e r  e v i d e n c e  s u p p o r t i n g  P r o f e s s o r ’ s  c l a i m .    6 . 11   T  =  6 . 4 7 ,  P =
0.089. Little firm evidence of consistent preferences.   6.15  (i) StatXact Monte
Carlo estimated P ≈ 0.267 (Asymptotic P = 0.262). (ii) Exact P = 0.013
(Asymptotic P = 0.020).   6.17  StatXact Monte Carlo estimated P ≈ 0.111
(Asymptotic P = 0.109).   6.19  Multiple comparison test on ranks indicates
numbers significantly higher than controls for gibberellic acid, indole acetic acid
and adenine sulphate.   6.21  Jonckheere–Terpstra U = 119. Exact or asymptotic
P < 0.0001.

Chapter 7

7.5  No evidence of trend using Cox–Stuart test. Low power because information
used is less than that for other coefficients.   7.7  rs = 0, tk = 0.048. No evidence
of association.   7.9  rs = 0.90, exact two-tail P = 0.006.  tb = 0.78, exact two-tail
P = 0.017.   7.11  (i) W = 0.367, Monte Carlo estimate P ≈ 0.0012
(Asymptotic P = 0.0025). (ii) W = 0.549, Monte Carlo estimate P < 0.0005
(Asymptotic P = 0.0005). Examiner 5 consistently awards higher marks.   7.13
Asymptotic one-sided P = 0.0385.



 

Chapter 8

8.3  y = –13.2 + 2.375x. Plot indicates nonlinearity.   8.7  Plot indicates clear
nonlinearity. One possibility would be to fit a monotonic regression.  8.9  WMW
U = 5, exact one-tail P = 0.075. Hardly enough evidence to reject equality of
slopes but samples are small for suggested test.

Chapter 9

9.9   Pearson chi-squared X 2 = 25.34. Asymptotic P = 0.0047. One Monte Carlo
estimate of exact P  using 10000 samples gave P = 0.0048. Likelihood ratio or
Fisher–Freeman–Halton test also appropriate.   9.11  Any valid test (Pearson,
Likelihood ratio, Fisher, Jonckheere–Terpstra) indicates overwhelming evidence
(P < 0.001) that poor make less use of the service.   9.13  Chi-squared goodness
of fit exact P < 0.0001. Overwhelming evidence that manufacturer’s claim not
justified. (Hint: under H0 the probabilities that 0, 1, 2, 3, 4 parts survive have a
binomial distribution with p = 0.95.)   9.15  Yes. P < 0.0001 (from data expected
number of positive responses under H0 is 36.8 per 100 interviewed).  9.19
McNemar X 2 = 23. Strong evidence of change in attitudes. Exact P < 0.0001.
9.21   If choices random expected number for each group is 33.33. X 2 = 38.11,
asymptotic P = 0.043. Some evidence selection not random. First choices for
A, B, C, D are respectively  248, 181, 198, 173. Expected numbers 200 for each.
X 2 = 16.99. Asymptotic P = 0.0007. Strong evidence for preference for A and
some dislike of D.   9.23  X 2 = 40.48, asymptotic P < 0.0001; G2 = 13.43,
asymptotic P = 0.266. In both tests exact P = 0.0182. Asymptotic results
completely unreliable with so many sparse cells giving rise to low expected
frequencies. Different patterns in columns 11, 12 relative to rest of table
dominate in determining X 2, G2; the former is more susceptible to small expected
frequencies in row 1.

Chapter 10

10.9  Breslow–Day statistic (10.12) is 52.86 and exact and asymptotic P < 0.0001
providing virtually overwhelming evidence that there is not a common odds ratio
and thus that a first-order interaction model does not suffice.   10.11  If we
accept ordering of parties we might use a linear-by-linear association model with
rank scores. This gives an asymptotic two-tail P = 0.20 so no evidence of
association. Other tests are possible. One might query whether any association
need be monotonic with age.   10.13  For first table exact P < 0.0001 using
Pearson, likelihood ratio or Fisher test and for second table exact P = 0.0017.
Breslow–Day test exact P = 0.58. First-order association model appears
adequate.   10.17  Cochran–Armitage test with scores 1, 2, 3, 4, 5 shows
overwhelming evidence of increasing trend. One-tail P < 0.0001.

Chapter 11

11.1  No outlier in set A. In set B 452 and 777 are outliers.   11.3  None detected.
11.5  –0.0088.   11.7  With k = 4 estimators are (i) 4.57, (ii) 5.25, (iii) 5.25.
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