Factor Analysis

Summary

The **Factor Analysis** procedure is designed to extract m common factors from a set of p quantitative variables X. In many situations, a small number of common factors may be able to represent a large percentage of the variability in the original variables. The ability to express the covariances amongst the variables in terms of a small number of meaningful factors often leads to important insights about the data being analyzed.

This procedure supports both principal components and classical factor analysis. Factor loadings may be extracted from either the sample covariance or sample correlation matrix. The initial loadings may be rotated using either varimax, equimax, or quartimax rotation.

Sample StatFolio: factor analysis.sgp

Sample Data:

The file *93cars.sf6* contains information on 26 variables for n = 93 makes and models of automobiles, taken from Lock (1993). The table below shows a partial list of the data in that file:

Make	Model	Engine	Horsepower	Fuel	Passengers	Length
		Size		Tank		
Acura	Integra	1.8	140	13.2	5	177
Acura	Legend	3.2	200	18	5	195
Audi	90	2.8	172	16.9	5	180
Audi	100	2.8	172	21.1	6	193
BMW	535i	3.5	208	21.1	4	186
Buick	Century	2.2	110	16.4	6	189
Buick	LeSabre	3.8	170	18	6	200
Buick	Roadmaster	5.7	180	23	6	216
Buick	Riviera	3.8	170	18.8	5	198
Cadillac	DeVille	4.9	200	18	6	206
Cadillac	Seville	4.6	295	20	5	204
Chevrolet	Cavalier	2.2	110	15.2	5	182

It is desired to perform a factor analysis on the following variables:

Engine Size Horsepower Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat Luggage Weight

© 2005 by StatPoint, Inc.

A matrix plot of the data is shown below:

	,		•	11.			80 100 000 000	. .	
* **	brsepowe	r 📌 ·		<u>.</u>					
.	 ****	Fueltank	•	i I • [†]				: 📌 .	
			Passe						
	.	.	8	[] 1 •	, * * * *			. .	
		.		1.	 Wheelbase				
	.		:	11		Width			
			•				Turn Spac	e	
			ļ					Rear seat	. .
					 			, 🧨 '	
			8	[].,	 				Weight

As might be expected, the variables are highly correlated, since most are related to vehicle size.

Data Input

The data input dialog box requests the names of the columns containing the data:

F	actor Analysis			×
L	Make Model Type Min Price Mid Price Max Price MPG City MPG Highway Air Bags Drive Train Cylinders Engine Size Horsepower RPM Revs per Mile Manual Fueltank Passengers Length Wheelbase	Data: Engine Size Horsepowe Fueltank Passengers Length Wheelbase Width U Turn Spa Rear seat Luggage Weight (Point Labels:) Model (Select:)	97 5	
	Width			
	Sort column names			
	OK Cancel	Delete	Transform	Help

• **Data:** either the original observations or the sample covariance matrix $\hat{\Sigma}$. If entering the original observations, enter *p* numeric columns containing the *n* values for each column of X.

© 2005 by StatPoint, Inc.

If entering the sample covariance matrix, enter *p* numeric columns containing the *p* values for each column of $\hat{\Sigma}$. If the covariance matrix is entered, some of the tables and plots will not be available.

- Point Labels: optional labels for each observation.
- Select: subset selection.

Statistical Model

The goal of a factor analysis is to characterize the *p* variables in *X* in terms of a small number *m* of *common factors F*, which impact all of the variables, and a set of *errors* or *specific factors E*, which affect only a single *X* variable. Following Johnson and Wichern (2002), the orthogonal common factor model expresses the observed variables as

$$\begin{aligned} X_{1} - \mu_{1} &= l_{11}F_{1} + l_{12}F_{2} + \ldots + l_{1m}F_{m} + \varepsilon_{1} \\ X_{2} - \mu_{2} &= l_{21}F_{1} + l_{22}F_{2} + \ldots + l_{2m}F_{m} + \varepsilon_{2} \\ \ldots \\ X_{p} - \mu_{p} &= l_{p1}F_{1} + l_{p2}F_{2} + \ldots + l_{pm}F_{m} + \varepsilon_{p} \end{aligned}$$
(1)

In matrix notation,

$$X - \mu = LF + \varepsilon \tag{2}$$

where μ is a vector of means and *L* is called the *factor loading* matrix. It is assumed that the common factors and specific factors are all independent of one another. To avoid ambiguity in scaling, the variances of the common factors are assumed to equal 1, while the covariance matrix of the specific factors Ψ is a diagonal matrix with diagonal elements Ψ_j . The covariance matrix Σ of the original observations X is related to the factor loading matrix by

$$\Sigma = LL' + \Psi \tag{3}$$

An important result of the above model is the relationship between the variances of the original X variables and the variances of the derived factors. In particular,

$$Var(X_{j}) = l_{j1}^{2} + l_{j2}^{2} + \dots + l_{jm}^{2} + \Psi_{j}$$
(4)

This variance is expressed as the sum of two quantities:

1. the *communality*: $l_{j1}^2 + l_{j2}^2 + ... + l_{jm}^2$ 2. the *specific variance*: Ψ_i

The communality is the variance attributable to factors that all the *X* variables have in common, while the specific variance is specific to a single factor.

It should also be noted that the factor loadings *L* are not unique. Multiplication by any orthogonal matrix yields another acceptable set of factor loadings. Subsequent to the initial factor © 2005 by StatPoint, Inc. Factor Analysis - 3

STATGRAPHICS – Rev. 1/10/2005

extraction, it is therefore common to rotate the factor loadings until they can be most easily interpreted.

Analysis Summary

The *Analysis Summary* table is shown below:

Factor A		<u>is</u>			
Data variab					
Engine					
Horsepo					
Fueltan					
Passeng Length	C18				
Wheelba	ase				
Width	use				
U Turn	Space				
Rear sea					
Luggage	e				
Weight					
D / 1	1				
Data input:			87		
Number of Missing va					
Standardize		nent. ff	51W15C		
StandaruiZt	cu. 905				
Type of fac	ctoring: r	rincipa	l compone	ents	
Number of	factors e	extracte	d: 2		
Factor An	alysis			c	
Factor		1	Percent	-	Cumulative
Number	Eigen		Varianc	е	Percentage
1	7.9239		72.036		72.036
2	1.3235		12.032		84.068
3	0.4707		4.279		88.347
4	0.3532		3.211		91.559
5	0.2690		2.446		94.004
6	0.1902		1.729		95.734
7	0.1728		1.572		97.306
8	0.1071		0.974		98.280
9	0.0824		0.749		99.029
10	0.0694		0.632		99.660
11	0.0373	5497	0.340		100.000
		nitial			
Variable		пшан Сотти	nality		
Engine Siz		.0	muny		
Horsepowe		.0			
Fueltank		.0			
-					
Passengers		.0			
Length					
Wheelbase Width		.0			
U Turn Sp		.0			
Rear seat		.0			
Luggage Weight		.0			
weight		.0			

Displayed in the table are:

• **Data variables**: the names of the *p* input columns.

- **Data input**: either *observations* or *matrix*, depending upon whether the input columns contain the original observations or the sample covariance matrix.
- Number of complete cases: the number of cases *n* for which none of the observations were missing.
- **Missing value treatment**: how missing values were treated in estimating the covariance or correlation matrix. If *listwise*, the estimates were based on complete cases only. If *pairwise*, all pairs of non-missing data values were used to obtain the estimates.
- **Standardized**: *yes* if the analysis was based on the correlation matrix. *No* if it was based on the covariance matrix.
- **Type of factoring**: either *principal components* if the factor extraction was done directly on the sample covariance or correlation matrix, or *classical* if the diagonal elements were adjusted using estimates of the communalities.
- **Number of components extracted**: the number of components *m* extracted from the data. This number is based on the settings on the *Analysis Options* dialog box.

A table is also displayed showing information for each of the *p* possible factors:

- **Factor number**: the factor number *j*, from 1 to *p*.
- **Eigenvalue**: the eigenvalue of the estimated covariance or correlation matrix, $\hat{\lambda}_j$, after adjusting for the estimated communalities if using the *classical* method.
- **Percentage of variance**: the percent of the total estimated population variance represented by this factor, equal to

$$100 \left(\frac{\hat{\lambda}_j}{\hat{\lambda}_1 + \hat{\lambda}_2 + \ldots + \hat{\lambda}_m} \right) \%$$
(5)

- **Cumulative percentage**: the cumulative percentage of the total estimated population variance accounted for by the first *j* factors.
- **Initial communality**: the initial communality used in the calculations, either input by the user or estimated from the sample covariances or correlations.

In the example, the first m = 2 factors account for over 84% of the overall variance amongst the 11 variables.

Analysis Options

Factor Analysis Optior	ıs	×
Missing Value Treatment		ОК
C Listwise		Cancel
C Pairwise		Estimation
🔽 Standardize		Communalities
Type of Factoring		Help
Principal Components	Extract by	
C Classical	Minimum Eig	jenvalue
Rotation	C Number of F	actors
C None		
• Varimax	Minimum Eigenva	ilue:
C Equimax	1.	
C Quartimax	Number of Factor	S:

- **Missing Values Treatment**: method of handling missing values when estimating the sample covariances or correlations. Specify *Listwise* to use only cases with no missing values for any of the input variables. Specify *Pairwise* to use all pairs of observations in which neither value is missing.
- **Standardize**: Check this box to base the analysis on the sample correlation matrix rather than the sample covariance matrix. This corresponds to standardizing each input variable before calculating the covariances, by subtracting its mean and dividing by its standard deviation.
- **Type of Factoring**: Select *principal components* to extract the factors directly from the covariance or correlation matrix. Select *classical* to replace the diagonal elements with estimated communalities. If using the *classical* method, you can specify the communalities by pressing the *Communalities* button or let the program use an iterative procedure to estimate them.
- **Rotation**: the method used to rotate the factor loading matrix after it has been extracted. *Varimax* rotation maximizes the variance of the squared loadings in each column. *Quartimax* maximizes the variance of the squared loadings in each row. *Equimax* attempts to achieve a balance between rows and columns.
- Extract By: the criterion used to determine the number of factors to extract.
- **Minimum Eigenvalue**: if extracting by magnitude of the eigenvalues, the smallest eigenvalue for which a factor will be extracted.
- **Number of Factors**: if extracting by number of factors, the number *k*.

© 2005 by StatPoint, Inc.

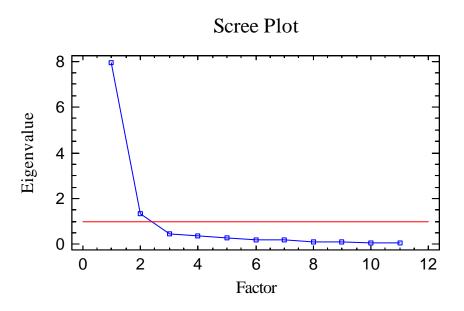
There are also two buttons that access additional dialog boxes:

Estimation Button

Estimation Options	×
- Estimation	OK
Stopping Criterion:	Cancel
Maximum Iterations:	Help
100	

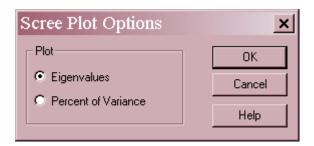
These fields control the iterations used in:

- 1. The *classical* method of factor extraction. Estimated communalities are revised until the proportional change in their sum is less than the *stopping criterion*, or the *maximum iterations* is reached.
- 2. *Rotation* of the factor loadings. The stopping criteria apply to the variance of the squared elements on the diagonal of the factor loading matrix.


Communalities Button

Communalities Options	×
Make Model Type Min Price Mid Price Max Price MPG City MPG Highway Air Bags Drive Train	(Data:)
Sort column names OK Ca	cel Delete Help

When using the *classical* estimation method, you may specify a column containing the communalities instead of having the program estimate them iteratively.


Scree Plot

The *Scree Plot* can be very helpful in determining the number of factors to extract. By default, it plots the size of the eigenvalues corresponding to each of the *p* possible factors:

A horizontal line is added at the minimum eigenvalue specified on the *Analysis Options* dialog box. In the plot above, note that only the first 2 factors have large eigenvalues.

Pane Options

• **Plot**: value plotted on the vertical axis.

Extraction Statistics

The *Extraction Statistics* pane shows the estimated value of the coefficients *l* for each factor extracted, before any rotation is applied:

Factor Loading	Matrix Befo		ctor
<u> </u>	1	2	
Engine Size	0.936606	_	154035
Horsepower	0.754754		50948
Fueltank	0.876138		241737
Passengers	0.671882	0.6	10074
Length	0.944075	0.0	244126
Wheelbase	0.944096	0.0	702147
Width	0.914567	-0.1	154446
U Turn Space	0.842284	-0.0	0955416
Rear seat	0.650975	0.6	13778
Luggage	0.778316	0.3	71338
Weight	0.948687	-0.2	237682
	Estimated		Specific
Variable	Communali	ty	Variance
Engine Size	0.900958		0.0990419
Horsepower	0.829223		0.170777
Fueltank	0.826054		0.173946
Passengers	0.823616		0.176384
Length	0.891874		0.108126
Wheelbase	0.896247		0.103753
Width	0.860287		0.139713
U Turn Space	0.71857		0.28143
Rear seat	0.800491		0.199509
Luggage	0.743667		0.256333
Weight	0.9565		0.0435005

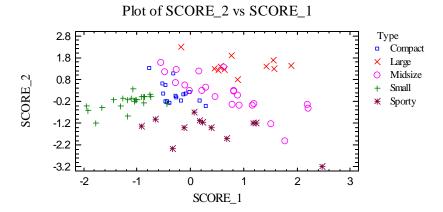
Also displayed are the communalities and the specific variances. The weights within each column often have interesting interpretations. In the example, note that the weights in the first column are all approximately the same. This implies that the first component is basically an average of all of the input variables. The second component is weighted most heavily in a positive direction on the number of *Passengers*, the *Rear Seat* room, and the amount of *Luggage* space, and in a negative direction on *Horsepower*. It likely differentiates amongst the different types of vehicles. Note also that *U Turn Space* and *Luggage* have a larger specific variance than the others, implying that they are not as well accounted for by the two extracted factors.

Rotation Statistics


The *Rotation Statistics* pane shows the estimated value of the coefficients *l* after the requested rotation is applied:

	Factor	Fac	ctor
	1	2	
Engine Size	0.859769	0.4	02188
Horsepower	0.910596	0.0	0617243
Fueltank	0.859441	0.2	95661
Passengers	0.209571	0.8	83004
Length	0.765091	0.5	53632
Wheelbase	0.739226	0.5	91432
Width	0.841818	0.3	89395
U Turn Space	0.748896	0.3	97145
Rear seat	0.190229	0.8	74245
Luggage	0.43229	0.7	46186
Weight	0.917004	0.3	40004
	Estimated		Specific
Variable	Communali	ity	Variance
Engine Size	0.900958		0.0990419
Horsepower	0.829223		0.170777
Fueltank	0.826054		0.173946
Passengers	0.823616		0.176384
Length	0.891874		0.108126
Wheelbase	0.896247		0.103753
Width	0.860287		0.139713
U Turn Space	0.71857		0.28143
Rear seat	0.800491		0.199509
Luggage	0.743667		0.256333
Weight	0.9565		0.0435005

Note that the rotation has substantially decreased the loading of *Passengers*, *Rear seat*, and *Luggage* on the first factor and made them the dominant variables in the second factor. The second factor seems to distinguish large family vehicles such as minivans and SUV's from the other automobiles.


2D and 3D Scatterplots

These plots display the values of 2 or 3 selected factors for each of the *n* cases, after rotation.

It is useful to examine any points far away from the others, such as the highlighted *Dodge Stealth*, which has a very low value for the second factor.

An interesting variation of this plot is one in which the variables are coded according to another column, such as the type of vehicle:

To produce the above plot:

- 1. Press the *Save Results* button and save the *Factor Scores* to new columns of the datasheet.
- 2. Select the X-Y Plot procedure from the top menu and input the new columns.
- 3. Select Analysis Options and specify Type in the Point Codes field.

It is now clear that the first factor is related to the size of the vehicle, while the second factor separates the sporty cars from the others.

Pane Options

2D Scatterplot Options	×
X-Axis Factor:	ОК
u Y-Axis Factor:	Cancel
	Help

Specify the factors to plot on each axis.

Factor Scores

The *Factor Scores* pane displays the values of the rotated factor scores for each of the *n* cases.

		Factor	Factor
Row	Label	1	2
1	Integra	-0.440603	-0.294691
2	Legend	0.817275	0.299261
3	90	0.177176	-0.154546
4	100	0.155524	1.17616
5	535i	1.5048	-1.23631
5	Century	-0.474803	1.14786
7	LeSabre	0.63412	1.25438
8	Roadmaster	1.88652	1.43271
9	Riviera	1.18707	-0.321997

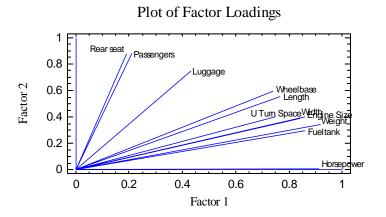
The factor scores show where each observation falls with respect to the extracted factors.

Factor Score Coefficients

The table of *Factor Score Coefficients* shows the coefficients used to create the factor scores from the original variables.

Factor Score Co	oefficients	
	Factor	Factor
	1	2
Engine Size	0.163284	0.29611
Horsepower	-0.0292234	-0.263759
Fueltank	19.7073	14.343
Passengers	4.48584	10.7923
Length	39.5473	46.3067
Wheelbase	8.18626	26.1997
Width	-59.5975	-13.7139
U Turn Space	3.83938	15.7456
Rear seat	-17.5316	-16.1991
Luggage	-6.00197	19.3445
Weight	-114.779	-181.049

If the sample covariance matrix *S* has been factored, then the coefficients are the leading terms multiplying the deviation of each variable from its mean in


$$\hat{f}_j = \hat{L}' S^{-1} (x_j - \bar{x}) \tag{6}$$

If the correlation matrix R has been factored, then the coefficients are the leading terms multiplying the standardized values of each variable according in

$$\hat{f}_j = \hat{L}' R^{-1} z_j \tag{7}$$

2D and 3D Factor Plots

The Factor Plots show the location of each variable in the space of 2 or 3 selected factors:

Variables furthest from the reference lines at 0 make the largest contribution to the factors.

Save Results

The following results may be saved to the datasheet:

- 1. *Eigenvalues* the *m* eigenvalues.
- 2. *Factor Matrix* m columns, each containing p estimates of the coefficients l before rotation.
- 3. *Rotated Factor Matrix– m* columns, each containing *p* estimates of the coefficients *l* after rotation.
- 4. *Transition Matrix* the *m* by *m* matrix that multiplies the original factor loadings to yield the rotated factor loadings.
- 5. *Communalities* the *p* estimated communalities after rotation.
- 6. *Specific variances* the *p* specific variances after rotation.

- 7. *Factor Scores m* columns, each containing *n* values corresponding to the extracted factors.
- 8. *Factor Score Coefficients* m columns, each containing the p values of the factor score coefficients.